Due to the nonuniform Electromagnetic (EM) field distribution over the superstrate, a Fabry-Perot Resonant Antenna is normally with high directivity but relatively low aperture efficiency when its aperture size is electrically large. In this paper, a Fabry-Perot resonator cavity antenna (FPCA) with a nonuniform metamaterial superstrate is proposed. The nonuniform metamaterial superstrate is a nonuniform double-sided printed dielectric, in which the upper surface is used for wideband RCS reduction, and the bottom surface is the nonuniform partially reflective surface (PRS) of FPRA for wideband and high aperture efficiency performances. Wideband RCS reduction is realized by designing the phase differences 90˚ in turn among three adjacent frequency-selective surfaces. The wideband 3 dB gain bandwidth and high aperture efficiency performances are obtained by designing the PRS with a positive reflection phase gradient vs frequency and a negative transverse-reflection magnitude gradient, respectively. The measured results show that the gain of the proposed antenna is 11.5 dBi greater than that of the primary source antenna with a peak value 15.5 dBi at 9.2 GHz. The aperture efficiency is 73.3%. The 3-dB gain bandwidth is from 8.75 to 11.47 GHz (26.9%), and the RCS reduction can be obtained effectively from 8.2 to 20 GHz (83.7%).
2. Wiesbeck, W. and E. Heidrich, "Influence of antennas on the radarcross section of camouflaged aircraft," Proc. Int. Conf. Radar, 122-125, 1992.
3. Pan, W., C. Huang, P. Chen, X. Ma, C. Hu, and X. Luo, "A low-RCS and high-gain partially reflecting surface antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 945-949, Feb. 2014.
doi:10.1109/TAP.2013.2291008
4. Jiang, H., Z. Xue, W. Li, W. Ren, and M. Cao, "Low-RCS high-gain partially reflecting surface antenna with metamaterial ground plane," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4127-4132, Sep. 2016.
doi:10.1109/TAP.2016.2589964
5. Zhang, L., et al., "Realization of low scattering for a high-gain Fabry-Pèrot antenna using coding metasurface," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3374-3383, Jul. 2017.
doi:10.1109/TAP.2017.2700874
6. Hashmi, R. M., B. A. Zeb, and K. P. Esselle, "Wideband high-gain EBG resonator antennas with small footprints and all-dielectric super structures," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2970-2977, Jun. 2014.
doi:10.1109/TAP.2014.2314534
7. Hashmi, R. M. and K. P. Esselle, "A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 830-835, Feb. 2016.
doi:10.1109/TAP.2015.2511801
8. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," Proc. 12th Eur. Conf. Antennas Propag., 1-3, London, U.K., Apr. 2018.
9. Afzal, M. U. and K. P. Esselle, "A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 276-280, Jan. 2016.
doi:10.1109/TAP.2015.2493159
10. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, S. L. Smith, and B. A. Zeb, "Single-dielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1916-1921, Mar. 2019.
doi:10.1109/TAP.2019.2891232
11. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2463-2471, May 2014.
doi:10.1109/TAP.2014.2308533
12. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 743-750, Feb. 2012.
doi:10.1109/TAP.2011.2173113
13. Zheng, Y., J. Gao, Y. Zhou, X. Cao, H. Yang, and S. Li, "Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with Chessboard arranged metamaterial superstrate," IEEE Trans. Antennas Propag., Vol. 66, No. 2, 590-599, Feb. 2018.
doi:10.1109/TAP.2017.2780896
14. Zhou, L., X. Chen, and X. Duan, "Fabry-Pérot resonator antenna with high aperture efficiency using a double-layer nonuniform superstrate," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2061-2066, Apr. 2018.
doi:10.1109/TAP.2018.2800761
15. Galarregui, J. C. I., A. T. Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6136-6143, Dec. 2013.
doi:10.1109/TAP.2013.2282915
16. Paquay, M., J.-C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3630-3638, Dec. 2007.
doi:10.1109/TAP.2007.910306
17. Jia, Y., Y. Liu, S. Gong, W. Zhang, and G. Liao, "A low-RCS and high-gain circularly polarized antenna with a low profile," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2477-2480, 2017.
doi:10.1109/LAWP.2017.2725380
18. Lian, R., Z. Tang, and Y. Yin, "Design of a broadband polarization reconfigurable Fabry-Perot resonator antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 1, 122-125, Jan. 2018.
doi:10.1109/LAWP.2017.2777502
19. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455
20. Jiang, H., Z. Xue, W. Li, W. Ren, and M. Cao, "Low-RCS high-gain partially reflecting surface antenna with metamaterial ground plane," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4127-4132, Sep. 2016.
doi:10.1109/TAP.2016.2589964
21. Mu, J., H. Wang, H.-Q. Wang, and Y. Huang, "Low-RCS and gain enhancement design of a novel partially reflecting and absorbing surface antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1903-1906, 2017.
doi:10.1109/LAWP.2017.2685623
22. Ren, J., W. Jiang, K. Zhang, and S. Gong, "A high-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 853-856, May 2018.
doi:10.1109/LAWP.2018.2820015