Vol. 101
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-03-16
BER Analysis in Non-Homogeneous Fading Environments with Impulsive Noise
By
Progress In Electromagnetics Research M, Vol. 101, 197-206, 2021
Abstract
In this paper, using binary phase-shift keying (BPSK) modulation, analytical expressions of bit-error-rate (BER) for various non-homogeneous fading environments (α-μ, η-μ and κ-μ) subjected to SαS noise are obtained. The derived results are expressed in terms of Meijer's G-function and Gamma function. These expressions are used to study the performance of other prominent fading models (like Nakagami-m, Rayleigh, Rician, and Hoyt) available in the technical literature. Further, it is shown that the effect of the impulsive index (α) over BER is much pronounced compared to the amount of fading (AF). Numerical results are provided for different impulsive settings. The derived results corroborate with simulations.
Citation
Umer Ashraf, and Ghulam Rasool Begh, "BER Analysis in Non-Homogeneous Fading Environments with Impulsive Noise," Progress In Electromagnetics Research M, Vol. 101, 197-206, 2021.
doi:10.2528/PIERM21020801
References

1. Simon, M. K. and M.-S. Alouini, Digital Communication over Fading Channels, Vol. 95, John Wiley & Sons, 2005.

2. Proakis, J. G. and M. Salehi, Digital Communications, Vol. 4, McGraw-Hill, New York, 2001.

3. Savischenko, N. V., Special Integral Functions Used in Wireless Communications Theory, World Scientific, 2014.
doi:10.1142/9168

4. Niranjayan, S. and N. C. Beaulieu, "Analysis of wireless communication systems in the presence of non-Gaussian impulsive noise and Gaussian noise," 2010 IEEE Wireless Communication and Networking Conference, 1-6, IEEE, 2010.

5. Sharma, S., V. Bhatia, and A. K. Mishra, "Wireless consumer electronic devices: The effects of impulsive radio-frequency interference," IEEE Consumer Electronics Magazine, Vol. 8, No. 4, 56-61, 2019.
doi:10.1109/MCE.2019.2905538

6. Laguna-Sanchez, G. and M. Lopez-Guerrero, "On the use of alpha-stable distributions in noise modeling for PLC," IEEE Transactions on Power Delivery, Vol. 30, No. 4, 1863-1870, 2015.
doi:10.1109/TPWRD.2015.2390134

7. Banerjee, S. and M. Agrawal, "Underwater acoustic communication in the presence of heavy-tailed impulsive noise with bi-parameter cauchy-gaussian mixture model," 2013 Ocean Electronics (SYMPOL), 1-7, IEEE, 2013.

8. Shongwe, T., A. J. H. Vinck, and H. C. Ferreira, "A study on impulse noise and its models," SAIEE Africa Research Journal, Vol. 106, No. 3, 119-131, 2015.
doi:10.23919/SAIEE.2015.8531938

9. Samoradnitsky, G., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Routledge, 2017.
doi:10.1201/9780203738818

10. Nolan, J. P., "Numerical calculation of stable densities and distribution functions," Communications in Statistics. Stochastic Models, Vol. 13, No. 4, 759-774, 1997.
doi:10.1080/15326349708807450

11. Ashraf, U. and G. R. Begh, "Performance evaluation of Nakagami-m fading with impulsive noise," IET Communications, 2021, DOI: 10.1049/cmu2.12065.

12. Chen, Y., F. Xu, and J. Chen, "Polynomial-approximation-based locally optimum detector for signals with symmetric alpha stable noise," IET Communications, Vol. 8, No. 16, 2952-2960, 2014.
doi:10.1049/iet-com.2014.0385

13. Chitre, M. A., J. R. Potter, and S. Ong, "Optimal and near-optimal signal detection in snapping shrimp dominated ambient noise," IEEE Journal of Oceanic Engineering, Vol. 31, No. 2, 497-503, 2006.
doi:10.1109/JOE.2006.875272

14. Sun, W., X. Yuan, J. Wang, Q. Li, L. Chen, and D. Mu, "End-to-end data delivery reliability model for estimating and optimizing the link quality of industrial WSNs," IEEE Transactions on Automation Science and Engineering, Vol. 15, No. 3, 1127-1137, 2018.
doi:10.1109/TASE.2017.2739342

15. Rajan, A. and C. Tepedelenlioglu, "Diversity combining over Rayleigh fading channels with symmetric alpha-stable noise," IEEE Transactions on Wireless Communications, Vol. 9, No. 9, 2968-2976, 2010.
doi:10.1109/TWC.2010.071410.100194

16. Silva, H. S., W. J. Queiroz, D. B. Almeida, F. Madeiro, and M. S. Alencar, "Bit error probability of the M-QAM scheme subject to multilevel double gated additive white Gaussian noise and η-μ, κ-μ, or α-μ fading," Transactions on Emerging Telecommunications Technologies, Vol. 30, No. 12, e3682, 2019.
doi:10.1002/ett.3682

17. Yilmaz, F. and M.-S. Alouini, "On the bit-error rate of binary phase shift keying over additive white generalized Laplacian noise (AWGLN) channels," 2018 26th Signal Processing and Communications Applications Conference (SIU), 1-4, IEEE, 2018.

18. Almehmadi, F. S. and O. S. Badarneh, "On the error rate of coherent binary modulation techniques in mobile communication systems over generalized fading channels impaired by generalized Gaussian noise," AEU-International Journal of Electronics and Communications, Vol. 82, 14-19, 2017.
doi:10.1016/j.aeue.2017.07.021

19. Miyamoto, S., M. Katayama, and N. Morinaga, "Performance analysis of QAM systems under class A impulsive noise environment," IEEE Transactions on Electromagnetic Compatibility, Vol. 37, No. 2, 260-267, 1995.
doi:10.1109/15.385891

20. Tepedelenlioglu, C. and P. Gao, "Performance of diversity reception over fading channels with impulsive noise," 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, iv-iv, IEEE, 2004.

21. Weng, J. F. and S. H. Leung, "On the performance of DPSK in rician fading channels with class A noise," IEEE Transactions on Vehicular Technology, Vol. 49, No. 5, 1934-1949, 2000.
doi:10.1109/25.892596

22. Queiroz, W. J., F. Madeiro, W. T. Lopes, and M. S. Alencar, "On the performance of M-QAM for Nakagami channels subject to gated noise," Telecommunication Systems, Vol. 68, No. 1, 1-10, 2018.
doi:10.1007/s11235-017-0371-7

23. Silva, H. S., M. S. Alencar, W. J. Queiroz, D. B. Almeida, and F. Madeiro, "Bit error probability of the M-QAM scheme under η-μ fading and impulsive noise in a communication system using spatial diversity," International Journal of Communication Systems, Vol. 32, No. 11, e3959, 2019.
doi:10.1002/dac.3959

24. Mei, Z., M. Johnston, S. Le Goff, and L. Chen, "Error probability analysis of M-QAM on Rayleigh fading channels with impulsive noise," 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1-5, IEEE, 2016.

25. Mei, Z., M. Johnston, S. Le Goff, and L. Chen, "Performance analysis of LDPC-coded diversity combining on rayleigh fading channels with impulsive noise," IEEE Transactions on Communications, Vol. 65, No. 6, 2345-2356, 2017.
doi:10.1109/TCOMM.2017.2683485

26. Ndo, G., F. Labeau, and M. Kassouf, "A Markov-Middleton model for bursty impulsive noise: Modeling and receiver design," IEEE Transactions on Power Delivery, Vol. 28, No. 4, 2317-2325, 2013.
doi:10.1109/TPWRD.2013.2273942

27. Silva, H. S., M. S. de Alencar, W. J. de Queiroz, R. de A Coelho, and F. Madeiro, "Bit error probability of M-QAM under impulsive noise and fading modeled by using markov chains," Radioengineering, Vol. 27, No. 4, 1183-1190, 2018.
doi:10.13164/re.2018.1183

28. Gonzalez, J. G., J. L. Paredes, and G. R. Arce, "Zero-order statistics: A mathematical framework for the processing and characterization of very impulsive signals," IEEE Transactions on Signal Processing, Vol. 54, No. 10, 3839-3851, 2006.
doi:10.1109/TSP.2006.880306

29. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 7th Ed., Academic, San. Diego, CA, USA, 2007.

30. Karagiannidis, G. K. and A. S. Lioumpas, "An improved approximation for the Gaussian Q-function," IEEE Communications Letters, Vol. 11, No. 8, 644-646, 2007.
doi:10.1109/LCOMM.2007.070470

31. Yang, F. and X. Zhang, "Ber analysis for digital modulation schemes under symmetric alpha-stable noise," 2014 IEEE Military Communications Conference, 350-355, IEEE, 2014.
doi:10.1109/MILCOM.2014.63

32. Yacoub, M. D., "The α-μ distribution: A general fading distribution," The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Vol. 2, 629-633, IEEE, 2002.
doi:10.1109/PIMRC.2002.1047298

33. Alvi, S. H., S. Wyne, and D. B. da Costa, "Performance analysis of dual-hop AF relaying over α-μ fading channels," AEU-International Journal of Electronics and Communications, Vol. 108, 221-225, 2019.
doi:10.1016/j.aeue.2019.06.013

34. Yacoub, M. D., "The κ-μ distribution and the η-μ distribution," IEEE Antennas and Propagation Magazine, Vol. 49, No. 1, 68-81, 2007.
doi:10.1109/MAP.2007.370983

35. Badarneh, O. S., T. Aldalgamouni, and M. Aloqlah, "Outage probability analysis of multi-hop relayed wireless networks over η-μ fading channels," AEU-International Journal of Electronics and Communications, Vol. 67, No. 10, 833-838, 2013.
doi:10.1016/j.aeue.2013.04.005

36. Prudnikov, Y. A. P. and O. I. Marichev, Integrals, and series: More special functions, Vol. 3, Gordon and Breach Sci. Publ., New York, NY, USA, 2007.

37. Ermolova, N. Y., "Moment generating functions of the generalized η-μ and κ-μ distributions and their applications to performance evaluations of communication systems," IEEE Communications Letters, Vol. 12, No. 7, 502-504, 2008.
doi:10.1109/LCOMM.2008.080365

38. Jameson, G. J. O., "Beyond the ratio test," The Mathematical Gazette, Vol. 555, No. 471-484, 102, 2018.