Vol. 103
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-06-22
Analysis of Conformal Quad Band Metamaterial Absorber Design on Planar and Cylindrical Surface
By
Progress In Electromagnetics Research M, Vol. 103, 37-47, 2021
Abstract
A conformal metamaterial absorber operating at the quad band is analyzed in this paper. The proposed structure is fabricated on a 0.5 mm thick, flexible polyester dielectric substrate. The proposed structure works at the chosen frequencies 4.11 GHz, 5.37 GHz, 7.39 GHz and 8.4 GHz with the absorptivities of 96%, 95%, 90% and 94%, respectively. The structure has essential novelty of miniaturization of λ/146 in the thickness, which is an exceptionally flexible material for Radar applications. Quad band excitation can also be analyzed by the iteration of the proposed structure as well as circuit analysis. The flexible polyester material is etched with silver coating for the development of the fabricated structure. The simulated results can also be associated with the measured ones from the planar as well as a cylindrical surface to realize flexibility for stealth technology. It can be accomplished by the free space measurement technique in an anechoic chamber.
Citation
Nitinkumar J. Bathani, and Jagdishkumar Rathod, "Analysis of Conformal Quad Band Metamaterial Absorber Design on Planar and Cylindrical Surface," Progress In Electromagnetics Research M, Vol. 103, 37-47, 2021.
doi:10.2528/PIERM21051003
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 1-3, 2006, ISSN: 00036951.
doi:10.1063/1.2166681

3. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E — Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol. 64, No. 5, 15, 2001, ISSN: 1063651X.

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, 2000, ISSN: 10797114.
doi:10.1103/PhysRevLett.84.4184

5. Smith, D. R., J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004, ISSN: 00368075.
doi:10.1126/science.1096796

6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 1-4, 2008, ISSN: 00319007.
doi:10.1103/PhysRevLett.100.207402

7. S. Bhattacharyya, S. Ghosh and K. V. Srivastava, "Equivalent circuit modeling of an ultrathin dual-band microwave metamaterial absorber," Proc. Asia-Pac. Microw. Conference, 1244-1266, Sendai, Japan, 2014.

8. Kaur, K. P., T. K. Upadhyaya, and M. Palandoken, "Dual-band polarization-insensitive meta-material inspired microwave absorber for LTE-band applications," Progress In Electromagnetics Research C, Vol. 77, 91-100, 2017.
doi:10.2528/PIERC17060502

9. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "A triple band polarization insensitive ultrathin metamaterial absorber for S-C- and X-bands," Progress In Electromagnetics Research M, Vol. 77, 187-194, 2019.
doi:10.2528/PIERM18110601

10. Deng, G., K. Lv, H. Sun, J. Yang, Z. Yin, Y. Li, B. Chi, and X. Li, "An ultrathin, triple-band metamaterial absorber with wide-incident-angle stability for conformal applications at X and Ku frequency band," Nanoscale Research Letters, Vol. 15, No. 1, 2020, ISSN: 1556276X, [Online], Available: https://doi.org/10.1186/s11671-020- 03448.
doi:10.1186/s11671-020-03448-0

11. Singh, H. S., "Super compact ultrathin quad-band with wide angle stability polarization independent metamaterial absorber," Microwave and Optical Technology Letters, Vol. 62, No. 2, 718-725, 2020, ISSN: 10982760.
doi:10.1002/mop.32054

12. Chaurasiya, D., S. Ghosh, S. Bhattacharyya, A. Bhattacharya, and K. V. Srivastava, "Compact multi-band polarisation-insensitive metamaterial absorber," IET Microwaves, Antennas and Propagation, Vol. 10, No. 1, 94-101, 2016, ISSN: 17518733.
doi:10.1049/iet-map.2015.0220

13. Agarwal, M., A. Behera, and M. Meshram, "Wide-angle quad-band polarisation-insensitive metamaterial absorber," Electronics Letters, Vol. 52, No. 5, 340-342, 2016.
doi:10.1049/el.2015.4134

14. Wang, B.-X., X. Zhai, G. Wang, W. Huang, and L. Wang, "Design of a four-band and polarizationinsensitive terahertz metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 1-8, 2014.

15. Wang, N., J. Tong, W. Zhou, W. Jiang, J. Li, X. Dong, and S. Hu, "Novel quadruple-band microwave metamaterial absorber," IEEE Photonics Journal, Vol. 7, No. 1, 2015, ISSN: 19430655.

16. Jiang, H., Z. Xue, W. Li, and W. Ren, "Multiband polarisation insensitive metamaterial absorber based on circular fractal structure," IET Microwaves, Antennas and Propagation, Vol. 10, No. 11, 1141-1145, 2016, ISSN: 17518733.
doi:10.1049/iet-map.2015.0789

17. M. Bagmancı, O. Akgol, M. Ozakturk, M. Karaaslan, E. Unal, and M. Bakır, "Polarization independent broadband metamaterial absorber for microwave applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21630, 2019.
doi:10.1002/mmce.21630

18. Zhai, Z. C., H, Z. Li, and C. Liang, "A triple-band ultrathin metamaterial absorber with wideangle and polarization stability," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 241-244, 2015.
doi:10.1109/LAWP.2014.2361011

19. Wu, T., Y. M. Ma, J. Chen, and L. L. Wang, "A low profile quadruple-band polarization insensitive metamaterial absorber," Progress In Electromagnetics Research M, Vol. 90, 69-79, 2020.
doi:10.2528/PIERM20010505

20. Sharma, S., S. K. Ghosh, and S. A. Vaibhav Srivastava Kumar, "Ultra-thin dual-band polarization insensitive conformal metamaterial absorber," Microwave and Optical Technology Letters, Vol. 59, No. 2, 348-353, 2017, ISSN: 10982760.
doi:10.1002/mop.30285

21. Libi Mol, V. A. and C. K. Aanandan, "Experimental demonstration of the performance of exible metamaterial absorber on planar and cylindrical surface," Journal of Physics Communications, Vol. 2, No. 1, 2018, ISSN: 23996528.
doi:10.1088/2399-6528/aa9fbd

22. Kaur, K. P. and T. Upadhyaya, "Performance evaluation of wide-angle ultrathin microwave metamaterial absorber with polarization independence," Advanced Electromagnetics, Vol. 7, No. 4, 71-77, 2018.
doi:10.7716/aem.v7i4.761

23. Ebrahimi, A., S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, "Second-order terahertz bandpass frequency selective surface with miniaturized elements," IEEE Transactions on Terahertz Science and Technology, Vol. 5, No. 5, 761-769, 2015, ISSN: 2156342X.
doi:10.1109/TTHZ.2015.2452813

24. Kurra, L., M. P. Abegaonkar, and S. K. Koul, "Equivalent circuit model of resonant-EBG bandstop filter," IETE Journal of Research, Vol. 62, No. 1, 17-26, 2016, ISSN: 0974780X.
doi:10.1080/03772063.2015.1080602

25. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Dual-and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 3, 878-886, 2019, ISSN: 00189375.
doi:10.1109/TEMC.2018.2839881

26. Kalraiya, S., M. Ameen, R. K. Chaudhary, and R. K. Gangwar, "Compact ultrathin conformal metamaterial dual-band absorber for curved surfaces," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 12, 1-9, 2019, ISSN: 1099047X.
doi:10.1002/mmce.21929