Vol. 103

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-07-19

Fast Optimization of Array Antenna Enclosed by Asymmetric Radome Using AEP Combined with Enhanced HGAPSO

By Legen Dai, Yong-Jun Xie, Chungang Zhang, and Peiyu Wu
Progress In Electromagnetics Research M, Vol. 103, 161-171, 2021
doi:10.2528/PIERM21051306

Abstract

An efficient analysis and optimization method is proposed to compensate the influence of asymmetric radome on an antenna by correcting amplitude and phase of the excitations. The asymmetrical and heteromorphic radomes are inevitable for the radar on high-speed aircraft. Many previous researches focused on the optimization of the radome structure and thickness to reduce the influence of radomes. However, the influence of complex streamlined radome cannot be compensated by merely optimizing the structure and thickness of the radome. Therefore, an alternative optimization method, optimizing amplitude and phase of feeds, is used in this paper. This paper adopts the active element pattern (AEP) technique, utilizing full-wave simulation method to extract the AEP for each antenna element and computing radiation patterns of array antenna by using vector composition of AEP. In combination with hybrid genetic algorithm-particle swarm optimization (HGAPSO), the antenna radiation characteristics can be obtained by updating excitations, which avoid the repeated full-wave simulation in the optimization process. Furthermore, the speed updating formula of PSO algorithm is improved combined with prior information, and the convergence speed is further increased. Finally, a 64 elements array antenna-radome system was optimized as an example in the cases of continuously adjustable phase and digital discrete phase.

Citation


Legen Dai, Yong-Jun Xie, Chungang Zhang, and Peiyu Wu, "Fast Optimization of Array Antenna Enclosed by Asymmetric Radome Using AEP Combined with Enhanced HGAPSO," Progress In Electromagnetics Research M, Vol. 103, 161-171, 2021.
doi:10.2528/PIERM21051306
http://www.jpier.org/PIERM/pier.php?paper=21051306

References


    1. Kozakoff, D. J., Analysis of Radome-enclosed Antennas, 2nd Ed., Artech House, Norwood, MA, USA, 2010.

    2. Orta, R., R. Tascone, and T. Zich, "Performance degradation of dielectric radome covered antennas," IEEE Trans. Antennas Propagat., Vol. 36, No. 12, 1707-1713, 1988.
    doi:10.1109/8.14392

    3. Chikaoka, S., I. Chiba, Y. Sunahara, and T. Numazaki, "Pattern synthesis of an array antenna in a radome," Antennas and Propagation Society International Symposium, 1990, AP-S, Merging Technologies for the 90’s, Digest, 852-855, IEEE, 1990.
    doi:10.1109/APS.1990.115242

    4. Gordon, R. K. and R. Mittra, "Finite element analysis of axisymmetric radomes," IEEE Trans. Antennas Propagat., Vol. 41, No. 7, 975-981, 1993.
    doi:10.1109/8.237631

    5. Hsu, F., P. R. Chang, and K. K. Chan, "Optimization of two-dimensional radome boresight error performance using simulated annealing technique," IEEE Trans. Antennas Propagat., Vol. 41, No. 9, 1195-1203, 1993.
    doi:10.1109/8.247745

    6. Hsu, F., K. K. Chan, P. R. Chang, and S. H. Chao, "Optimal boresight error design of radomes of revolving symmetry," Electron. Lett., Vol. 30, No. 19, 1561-1562, 1994.
    doi:10.1049/el:19941083

    7. Nair, R. U. and R. M. Jha, "Novel A-sandwich radome design for airborne applications," Electron. Lett., Vol. 43, No. 15, 787-788, 2007.
    doi:10.1049/el:20070825

    8. Nair, R. U. and R. M. Jha, "Electromagnetic performance analysis of a novel monolithic radome for airborne applications," IEEE Trans. Antennas Propagat., Vol. 57, No. 11, 3664-3668, Nov. 2009.
    doi:10.1109/TAP.2009.2026595

    9. Xu, W. Y., B. Y. Duan, P. Li, N. G. Hu, and Y. Y. Qiu, "Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes," IEEE Trans. Antennas Propagat., Vol. 62, No. 11, 5880-5885, 2014.
    doi:10.1109/TAP.2014.2352361

    10. Pozar, D. M., "The active element pattern," IEEE Trans. Antennas Propagat., Vol. 42, No. 8, 1176-1178, 1994.
    doi:10.1109/8.310010

    11. Ou Yang, J., Q. R. Yuan, F. Yang, H. J. Zhou, Z. P. Nie, and Z. Q. Zhao, "Synthesis of conformal phased array with improved NSGA-II algorithm," IEEE Trans. Antennas Propagat., Vol. 57, No. 12, 4006-4009, 2009.
    doi:10.1109/TAP.2009.2026714

    12. He, Q. Q., B. Z. Wang, and W. Shao, "Radiation pattern calculation for arbitrary conformal arrays that include mutual-coupling effects," IEEE Antennas Propag. Mag., Vol. 52, No. 2, 57-63, 2010.
    doi:10.1109/MAP.2010.5525566

    13. Yang, X. S., H. Qian, B. Z. Wang, and S. Q. Xiao, "Radiation pattern computation of pyramidal conformal antenna array with active-element pattern technique," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 28-37, 2011.
    doi:10.1109/MAP.2011.5773565

    14. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 343-353, 1997.
    doi:10.1109/8.558650

    15. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 52, No. 2, 397-407, 2004.
    doi:10.1109/TAP.2004.823969

    16. Ho, S. L., S. Y. Yang, G. Z. Ni, E. W. C. Lo, and H. C.Wong, "A particle swarm optimization-based method for multiobjective design optimizations," IEEE Trans. Magn., Vol. 41, No. 5, 1756-1759, 2005.
    doi:10.1109/TMAG.2005.846033

    17. Ho, S. L., S. Y. Yang, G. Z. Ni, and H. C. Wong, "A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices," IEEE Trans. Magn., Vol. 42, No. 4, 1107-1110, 2006.
    doi:10.1109/TMAG.2006.871426

    18. Liu, L. L., R. S. Hu, X. P. Hu, G. P. Zhao, and S. Wang, "A hybrid PSO-GA algorithm for job shop scheduling in machine tool production," Inter. J. of Product. Resear., Vol. 53, No. 19, 5755-5781, 2015.
    doi:10.1080/00207543.2014.994714

    19. Zhang, Q., R. M. Ogren, and S. C. Kong, "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO-GA and basic GA," Applied Energy, Vol. 165, 676-684, 2016.
    doi:10.1016/j.apenergy.2015.12.044