Vol. 103

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-08-09

Design and Analysis of Variable Leakage Flux Flux-Intensifying Motor for Improve Flux-Weakening Ability

By Xiping Liu, Gaosheng Guo, Siting Zhu, and Jianwei Liang
Progress In Electromagnetics Research M, Vol. 103, 221-233, 2021
doi:10.2528/PIERM21070204

Abstract

This paper presents a novel variable leakage flux flux-intensifying motor (VLF-FIM) to improve flux-weakening ability. The innovation lies in the variable leakage flux property and the characteristic of Ld>Lq. The two characteristics can be achieved by the adoption of magnetic barriers and magnetic bridges. Consequently, the flux-weakening ability is enhanced. Then, the topology structure and operation principle of the proposed machine are introduced. Based on the two-dimensional finite element method (2DFEM), the electromagnetic performances of the proposed motor are analyzed and compared with the conventional interior permanent magnet motor (CIPMM) in detail. The performances mainly include torque, flux-weakening ability, constant power speed range (CPSR), irreversible demagnetization risk of the PM, structural strength, etc. Finally, the results show that the proposed motor has some advantages, such as good flux-weakening ability, a wide constant power range, and a large high-efficiency area. In addition, it verifies the effectiveness of the proposed method in improving the flux-weakening ability of the motor.

Citation


Xiping Liu, Gaosheng Guo, Siting Zhu, and Jianwei Liang, "Design and Analysis of Variable Leakage Flux Flux-Intensifying Motor for Improve Flux-Weakening Ability," Progress In Electromagnetics Research M, Vol. 103, 221-233, 2021.
doi:10.2528/PIERM21070204
http://www.jpier.org/PIERM/pier.php?paper=21070204

References


    1. Shi, Z., X. D. Sun, Y. F. Cai, and Z. B. Yang, "Torque analysis and dynamic performance improvement of a PMSM for EVs by skew angle optimization," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, 1-5, 2019.

    2. Jayarajan, R., N. Fernando, and I. U. Nutkani, "A review on variable flux machine technology: Topologies, control strategies and magnetic materials," IEEE Access, Vol. 7, No. 4, 70141-70156, 2019.
    doi:10.1109/ACCESS.2019.2918953

    3. Thike, R. and P. Pillay, "Characterization of a variable flux machine for transportation using a vector-controlled drive," IEEE Transactions on Transportation Electrification, Vol. 4, No. 2, 494-505, 2018.
    doi:10.1109/TTE.2017.2788200

    4. Kim, J., D. Kim, G. Park, Y. Kim, and S. Jung, "Analysis and design of SPM type variable flux memory motor considering demagnetization characteristic of permanent magnet," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, 2018.

    5. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016.

    6. Sun, A., J. Li, R. Qu, J. Chen, and H. Lu, "Rotor design considerations for a variable-flux flux-intensifying interior permanent magnet machine with improved torque quality and reduced magnetization current," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 784-790, 2015.
    doi:10.1109/ECCE.2015.7309769

    7. Yu, J., C. Liu, Z. Song, and H. Zhao, "Permeance and inductance modeling of a double-stator hybrid-excited flux-switching permanent-magnet machine," IEEE Transactions on Transportation Electrification, Vol. 6, No. 3, 1134-1145, 2020.
    doi:10.1109/TTE.2020.3000953

    8. Yu, J. and C. Liu, "Multi-Objective optimization of a double-stator hybrid-excited flux-switching permanent-magnet machine," IEEE Transactions on Energy Conversion, Vol. 35, No. 1, 312-323, 2020.
    doi:10.1109/TEC.2019.2932953

    9. Cao, L., K. T. Chau, C. H. T. Lee, and W. Lam, "Design and analysis of a new parallel-hybrid-excited machine with harmonic-shift structure," IEEE Transactions on Industrial Electronics, Vol. 67, No. 3, 1759-1770, 2020.
    doi:10.1109/TIE.2019.2907445

    10. Yang, H., H. Lin, Y. Li, H. Wang, S. Fang, and Y. Huang, "Analytical modeling of switched flux memory machine," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-5, 2018.
    doi:10.1109/TMAG.2018.2800462

    11. Xie, Y., Z. Ning, and Z. Ma, "Comparative study on variable flux memory machines with different arrangements of permanent magnets," IEEE Access, Vol. 8, No. 2, 164304-164312, 2020.
    doi:10.1109/ACCESS.2020.3022595

    12. Wei, L. and T. Nakamura, "Design and optimization of a partitional stator flux-modulated memory machine," IEEE Transactions on Magnetics, Vol. 56, No. 4, 1-5, 2020.
    doi:10.1109/TMAG.2019.2956055

    13. Yang, H., H. Lin, and Z. Q. Zhu, "Recent advances in variable flux memory machines for traction applications: A review," CES Transactions on Electrical Machines and Systems, Vol. 2, No. 1, 34-50, 2018.
    doi:10.23919/TEMS.2018.8326450

    14. Liu, X. P., Y. L. Zou, and T. Z. Sun, "Design and performance analysis of a novel mechanical flux adjusting interior permanent magnet motor," Electrical Engineering, Vol. 103, No. 3, 1515-1524, 2021.
    doi:10.1007/s00202-020-01189-y

    15. Tessarolo, A., M. Mezzarobba, and R. Menis, "Modeling, analysis, and testing of a novel spoke-type interior permanent magnet motor with improved flux weakening capability," IEEE Transactions on Magnetics, Vol. 51, No. 4, 1-10, 2015.

    16. Zhu, Z. Q., M. M. J. Al-Ani, X. Liu, and B. Lee, "A mechanical flux weakening method for switched flux permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 30, No. 2, 806-815, 2015.
    doi:10.1109/TEC.2014.2380851

    17. Limsuwan, N., T. Kato, K. Akatsu, and R. D. Lorenz, "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Transactions on Industry Applications, Vol. 50, No. 2, 1015-1024, 2014.
    doi:10.1109/TIA.2013.2273482

    18. Limsuwan, N., Y. Shibukawa, D. D. Reigosa, and R. D. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2004-2012, 2011.
    doi:10.1109/TIA.2011.2161534

    19. Zhao, X., B. Kou, L. Zhang, and H. Zhang, "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, No. 4, 182249-182259, 2020.
    doi:10.1109/ACCESS.2020.3026841

    20. Zhang, L., X. Zhu, J. Gao, and Y. Mao, "Design and analysis of new five-phase flux-intensifying fault-tolerant interior-permanent-magnet motor for sensorless operation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 6055-6065, 2020.
    doi:10.1109/TIE.2019.2955407

    21. Kato, T., M. Minowa, H. Hijikata, K. Akatsu, and R. D. Lorenz, "Design methodology for variable leakage flux ipm for automobile traction drives," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3811-3821, 2015.
    doi:10.1109/TIA.2015.2439642

    22. Fan, W., X. Zhu, L. Quan, W. Wu, L. Xu, and Y. Liu, "Flux-weakening capability enhancement design and optimization of a controllable leakage flux multilayer barrier pm motor," IEEE Transactions on Industrial Electronics, Vol. 68, No. 9, 7814-7825, 2021.
    doi:10.1109/TIE.2020.3016253

    23. Aoyama, M. and T. Noguchi, "Study and experimental performance evaluation of flux intensifying PM motor with variable leakage magnetic flux," Electrical Engineering in Japan, Vol. 207, No. 4, 36-54, 2019.
    doi:10.1002/eej.23162