Vol. 105
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-11-26
Design of Compact Hexagonal Shaped Multiband Antenna for Wearable and Tumor Detection Applications
By
Progress In Electromagnetics Research M, Vol. 105, 205-217, 2021
Abstract
A compact multiband antenna for frequency bands of 2.45 GHz (ISM), 3.3 GHz (5G), and 5.8 GHz (ISM) is proposed. Modified Complimentary Split Ring Resonator (CSRR) and the cross-shaped stub is introduced in the hexagonal radiator to achieve triple-band operation including both ISM bands applications of 2.45 GHz, 5.8 GHz and WiFi/WLAN. The stubs in the radiator also improve the bandwidth and impedance matching of the antenna. The 10 dB impedance of the proposed antenna varies from 2.43 GHz to 2.64 GHz, 3.02 GHz to 3.85 GHz, and 4.88 GHz to 6.82 GHz. The antenna is analyzed on a human phantom model for wearable applications, where simulated SAR and theoretically calculated SAR are 0.3251 W/Kg and 0.3299 W/Kg, respectively. The antenna is used on a human breast model for cancer detection applications, where the SAR value is used to analyze and validate the performance of the antenna; therefore, the antenna has effectively worked for biomedical and wearable applications.
Citation
Navneet Sharma, Anubhav Kumar, Asok De, and Rakesh Kumar Jain, "Design of Compact Hexagonal Shaped Multiband Antenna for Wearable and Tumor Detection Applications," Progress In Electromagnetics Research M, Vol. 105, 205-217, 2021.
doi:10.2528/PIERM21081701
References

1. Rajak, N., N. Chattoraj, and R. Mark, "Metamaterial cell inspired high gain multiband antenna for wireless applications," AEU - International Journal of Electronics and Communications, Vol. 109, 23-30, 2019.
doi:10.1016/j.aeue.2019.07.003

2. Si, L.-M., W. Zhu, and H.-J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037

3. Sharma, N. and S. S. Bhatia, "Metamaterial inspired fidget spinner-shaped antenna based on parasitic split ring resonator for multi-standard wireless applications," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, 1471-1490, 2020.
doi:10.1080/09205071.2019.1654412

4. Murugeshwari, B., R. Samson Daniel, and S. Raghavan, "A compact dual band antenna based on metamaterial-inspired split ring structure and hexagonal complementary split-ring resonator for ISM/WiMAX/WLAN applications," Applied Physics A, Vol. 125, No. 9, 1-8, 2019.
doi:10.1007/s00339-019-2925-x

5. Hasan, M. M., M. R. I. Faruque, and M. T. Islam, "Dual band metamaterial antenna for LTE/bluetooth/WiMAX system," Scientific Reports, Vol. 8, No. 1, 1-17, 2018.

6. Sharma, S. K., M. A. Abdalla, and Z. Hu, "Miniaturisation of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1444-1449, 2018.
doi:10.1049/iet-map.2017.0927

7. Rajeshkumar, V. and S. Raghavan, "A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications," AEU - International Journal of Electronics and Communications, Vol. 69, No. 1, 274-280, 2015.
doi:10.1016/j.aeue.2014.09.012

8. Zhu, C., et al. "Electrically small metamaterial-inspired tri-band antenna with meta-mode," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1738-1741, 2015.
doi:10.1109/LAWP.2015.2421356

9. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for mobile applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1444-1447, 2015.
doi:10.1002/mop.29113

10. Patel, R., et al. "Meandered low profile multiband antenna for wireless communication applications," Wireless Networks, Vol. 27, No. 1, 1-12, 2021.
doi:10.1007/s11276-020-02437-6

11. Patel, R., et al. "Low profile multiband meander antenna for LTE/WiMAX/WLAN and INSAT-C application," AEU - International Journal of Electronics and Communications, Vol. 102, 90-98, 2019.
doi:10.1016/j.aeue.2019.02.010

12. Girjashankar, P. R., T. Upadhyaya, and N. Daftary, "Design of dual wideband planar antenna for wireless applications," 2019 Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), IEEE, 2019.

13. Subramanian, S., B. Sundarambal, and D. Nirmal, "Investigation on simulation-based specific absorption rate in ultra-wideband antenna for breast cancer detection," IEEE Sensors Journal, Vol. 18, No. 24, 10002-10009, 2018.
doi:10.1109/JSEN.2018.2875621

14. nst. of Appl. Phys., Italian Nat. Res. Council "Calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz,", Florence, Italy, [Online], Available: http://niremf.ifac.cnr.it/tissprop.

15. Karthik, V. and T. Rama Rao, "Investigations on SAR and thermal effects of a body wearable microstrip antenna," Wireless Personal Communications, Vol. 96, No. 3, 3385-3401, 2017.
doi:10.1007/s11277-017-4059-9