Vol. 107
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-30
Retrieval of Mesospheric Neutral Wind Based on AgileDARN HF Radar
By
Progress In Electromagnetics Research M, Vol. 107, 25-34, 2022
Abstract
In this paper, the inversion method of mesospheric neutral wind is studied based on mid-latitude AgileDARN HF radar. Firstly, the meteor target observation method is carried out using 7.5 km range resolution and 2 s integration time. Then, the method of extracting the meteor echo from the data according to the doppler characteristics of the meteoris studied. Finally, the meridional and zonal components of mesospheric neutral wind are obtained by singular value decomposition method based on doppler velocity of meteor echo. The data analysis shows that the meteor echo has the highest incidence in the morning of local time and the lowest incidence in the evening of local time. The semi-diurnal characteristics of tidal waves can be seen from the meridional and zonal components of mesospheric neutral wind. Aiming at the ambiguity of elevation angle measured by AgileDARN HF radar, a method is proposed to reduce the ambiguity of elevation angle, and the wind field profile of mesospheric neutral wind along altitude is obtained, which lays a foundation for the subsequent study of gravity wave, tidal wave and planetary wave based on mesospheric wind field.
Citation
Guangming Li, "Retrieval of Mesospheric Neutral Wind Based on AgileDARN HF Radar," Progress In Electromagnetics Research M, Vol. 107, 25-34, 2022.
doi:10.2528/PIERM21090303
References

1. Hickey, M. P. and Y. H. Yu, "A full-wave investigation of the use of a ``cancellation factor'' in gravity wave-OH airglow interaction studies," Journal of Geophysical Research-Space Physics, Vol. 110, No. A1, 2005.

2. Fritts, D. C. and M. J. Alexander, "Gravity wave dynamics and effects in the middle atmosphere," Reviews of Geophysics, Vol. 41, No. 1003, 3-1-3-64, 2003.

3. Igarashi, K., S. P. Namboothiri, and P. Kishore, "Tidal structure and variability in the mesosphere and lower thermosphere over Yamagawa and Wakkanai," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 64, No. 8-11, 1037-1053, 2002.
doi:10.1016/S1364-6826(02)00056-1

4. Viereck, R. A., "A review of mesospheric dynamics and chemistry," Reviews of Geophysics, Vol. 29, 1132-1142, 1991.
doi:10.1002/rog.1991.29.s2.1132

5. Chau, J. L., et al. "Novel specular meteor radar systems using coherent MIMO techniques to study the mesosphere and lower thermosphere," Atmospheric Measurement Techniques, Vol. 12, No. 4, 2113-2127, 2019.
doi:10.5194/amt-12-2113-2019

6. Lovell, A. C. B. and J. A. Clegg, "Characteristics of radio echoes from meteor trails: The intensity of the radio reflections and electron density in the trails," Proceedings of the Physical Society of London, Vol. 60, No. 341, 491-498, 1948.
doi:10.1088/0959-5309/60/5/312

7. Galindo, F., J. Urbina, and L. Dyrud, "Effect of neutral winds on the creation of non-specular meteor trail echoes," Ann. Geophys., Vol. 39, No. 4, 709-719, 2021.
doi:10.5194/angeo-39-709-2021

8. Arnold, N. F., et al. "Comparison of D-region Doppler drift winds measured by the SuperDARN Finland HF radar over an annual cycle using the Kiruna VHF meteor radar," Annales Geophysicae, Vol. 21, No. 10, 2073-2082, 2003.
doi:10.5194/angeo-21-2073-2003

9. MacDougall, J. W. and X. Li, "Meteor observations with a modern digital ionosonde," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 63, No. 2-3, 135-141, Oxford, England, 2001.
doi:10.1016/S1364-6826(00)00143-7

10. Greenwald, R. A., et al. "Darn superdarn - A global view of the dynamics of high-latitude convection," Space Science Reviews, Vol. 71, No. 1-4, 761-796, 1995.
doi:10.1007/BF00751350

11. Hall, G. E., et al. "Super dual auroral radar network observations of meteor echoes," Journal of Geophysical Research-Space Physics, Vol. 102, No. A7, 14603-14614, 1997.
doi:10.1029/97JA00517

12. Jenkins, B., M. J. Jarvis, and D. M. Forbes, "Mesospheric wind observations derived from Super Dual Auroral Radar Network (SuperDARN) HF radar meteor echoes at Halley, Antarctica: Preliminary results," Radio Science, Vol. 33, No. 4, 957-965, 1998.
doi:10.1029/98RS01113

13. Hussey, G. C., et al. "A comparison of Northern Hemisphere winds using SuperDARN meteor trail and MF radar wind measurements," Journal of Geophysical Research - Atmospheres, Vol. 105, No. D14, 18053-18066, 2000.
doi:10.1029/2000JD900272

14. Arnold, N. F., et al. "Super dual auroral radar network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere," Annales Geophysicae, Vol. 19, No. 4, 425-434, 2001.
doi:10.5194/angeo-19-425-2001

15. Yukimatu, A. S. and M. Tsutsumi, "A new SuperDARN meteor wind measurement: Raw time series analysis method and its application to mesopause region dynamics," Geophysical Research Letters, Vol. 29, No. 20, 2002.
doi:10.1029/2002GL015210

16. Tsutsumi, M., et al. "Advanced SuperDARN meteor wind observations based on raw time series analysis technique," Radio Science, Vol. 44, 2009.

17. Jenkins, B. and M. J. Jarvis, "Mesospheric winds derived from SuperDARN HF radar meteor echoes at Halley, Antarctica," Earth Planets and Space, Vol. 51, No. 7-8, 685-689, 1999.
doi:10.1186/BF03353226

18. Hibbins, R. E., P. J. Espy, and M. J. Jarvis, "Quasi-biennial modulation of the semidiurnal tide in the upper mesosphere above Halley, Antarctica," Geophysical Research Letters, Vol. 34, No. 21, 2007.
doi:10.1029/2007GL031282

19. McKinley, D. W. R., Meteor Science and Engineering, McGraw-Hill, New York, 1961.

20. Berngardt, O. I., A. L. Voronov, and K. V. Grkovich, "Optimal signals of Golomb ruler class for spectral measurements at EKB SuperDARN radar: Theory and experiment," Radio Science, Vol. 50, No. 6, 486-500, 2015.
doi:10.1002/2014RS005589

21. Song, J., et al. "Analysis of FPGA implementation for AgileDARN radar digital system," Remote Sensing Technology and Application, Vol. 32, No. 6, 1064-1070, 2017.

22. Thomas, R. M., P. S. Whitham, and W. G. Elford, "Response of high frequency radar to meteor backscatter," Journal of Atmospheric and Terrestrial Physics, Vol. 50, 703-724, 1988.
doi:10.1016/0021-9169(88)90034-7

23. Meng-Dao, X., B. Zheng, and Q. Yong, "Transient interference excision in OTHR," Chinese Journal of Electronics, Vol. 30, No. 6, 823-826, 2002.

24. Matthews, D. M., et al. "Optimising estimates of mesospheric neutral wind using the TIGER SuperDARN radar," Advances in Space Research, Vol. 38, No. 11, 2353-2360, 2006.
doi:10.1016/j.asr.2005.07.046

25. Bristow, W. A., et al. "Simultaneous observations of the July 1996 2-day wave event using the Super Dual Auroral Radar Network and the High Resolution Doppler Imager," Journal of Geophysical Research-Space Physics, Vol. 104, No. A6, 12715-12721, 1999.
doi:10.1029/1999JA900030

26. Selvaraj, D., et al. "On the governing dynamics of the VHF radar echoes from the mesosphere and collision-dominated lower E region over Gadanki (13.5 degrees N, 79.2 degrees E)," Journal of Geophysical Research - Space Physics, Vol. 122, No. 1, 1163-1177, 2017.
doi:10.1002/2016JA023297

27. Reid, I. M., et al. "Mesospheric radar wind comparisons at high and middle southern latitudes," Earth Planets and Space, Vol. 70, 2018.