Vol. 108
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-02-08
Ultra-Wideband CPW Fed Band-Notched Monopole Antenna Optimization Using Machine Learning
By
Progress In Electromagnetics Research M, Vol. 108, 27-38, 2022
Abstract
In this article, a compact Coplanar Waveguide (CPW) fed band-notched monopole antenna is designed and optimized. The unique feature of this article is to provide an approach for designing an antenna in the best way using machine learning techniques. Machine Learning can be used to speed up the antenna design process. There are five algorithms employed: Decision Tree, Random Forest, XGB Regression, K-Nearest Neighbor (KNN), and Artificial Neural Network (ANN). Among all algorithms, KNN gives the best result with accuracy up to 98%. From the obtained result, we can estimate the dimensions of the desired parameters, which could not be done previously by High Frequency Structure Simulator (HFSS) Electromagnetic (EM) simulator. The optimized antenna design is also fabricated and tested, which confirms its frequency range between 2.9 and 21.6 GHz. Stable radiation features in between the operating frequency range makes it suitable for Ultra-Wideband (UWB) applications.
Citation
Pinku Ranjan, Ankit Maurya, Harshit Gupta, Swati Yadav, and Anand Sharma, "Ultra-Wideband CPW Fed Band-Notched Monopole Antenna Optimization Using Machine Learning," Progress In Electromagnetics Research M, Vol. 108, 27-38, 2022.
doi:10.2528/PIERM21122802
References

1., Revision of Part 15 of the Commission's rules regarding ultra-wide-band transmission systems First report and order FCC 02.V48, Federal Communications Commission, Washington, DC, 2002.
doi:10.1049/iet-map:20070100

2. Chang, K., H. Kim, and Y. J. Yoon, "Ultra-wideband antenna with improved gain characteristics," IET Microwaves, Antennas Propagation, Vol. 2, No. 5, 512-517, August 2008.
doi:10.1049/iet-map:20070100

3. Malekpour, H. and S. Jam, "Enhanced bandwidth of shorted patch antennas using folded-patch techniques," IEEE Antenna and Wireless Propagation Letters, 198-201, 2013.
doi:10.1109/LAWP.2013.2244555

4. Kim, G. H. and T. Y. Yun, "Compact ultrawideband monopole antenna with an inverted-L-shaped coupled strip," IEEE Antenna and Wireless Propagation Letters, Vol. 12, 1291-1294, 2013.
doi:10.1109/LAWP.2013.2283863

5. Chen, S. J., T. Kaufmann, R. Shepherd, B. Chivers, B.Weng, A. Vassallo, et al. "A compact highly efficient and flexible polymer ultra-wideband antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1207-1210, December 2015.
doi:10.1109/LAWP.2015.2398424

6. Ranjan, P. and H. Gupta, "Investigation of dual-band rectangular dielectric resonator antenna with DGS for wireless applications," 2021 IEEE Bombay Section Signature Conference (IBSSC), 1-4, 2021.
doi:10.1109/LAWP.2013.2244055

7. Gautam, A. K., S. Yadav, and B. K. Kanaujia, "A CPW fed compact UWB microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 151-154, 2013.
doi:10.1109/LAWP.2013.2244055

8. Gao, P., S. He, X. Wei, Z. Xu, N. Wang, and Y. Zheng, "Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 376-379, 2014.
doi:10.1109/LAWP.2014.2305772

9. Zhu, F., S. Gao, A. T. S. Ho, R. A. Abd-Alhameed, C. H. See, J. Li, et al. "Miniaturized tapered slot antenna with signal rejection in 5-6 GHz band using a balun," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 507-510, 2012.

10. Gautam, A. K., Indu, and B. K. Kanaujia, "Dual band-notched rectangular monopole antenna for ultra wideband application," Microwave and Optical Technology Letters, 12, December 2013.
doi:10.1002/mop.28913

11. Rajeshkumar, V. and S. Raghavan, "Bandwidth enhanced compact fractal antenna for UWB application with 5-6 GHz band rejection," Microwave and Optical Technology Letters, Vol. 57, 607-613, 2015.
doi:10.1002/mop.28913

12. Devi, M., A. K. Gautam, and B. K. Kanaujia, "A compact ultra wideband antenna with triple band-notch characteristics," International Journal of Microwave and Wireless Technologies, 2015.
doi:10.1109/LAWP.2012.2192900

13. Nguyen, D. T., D. H. Lee, and H. C. Park, "Very compact printed triple band-notched UWB antenna with quarter-wavelength slots," IEEE Antennas and Wireless Propagation Letters, 411-414, December 2012.
doi:10.1109/LAWP.2012.2192900

14. Wu, Q., Y. Cao, H. Wang, and W. Hong, "Machine-learning-assisted optimization and its application to antenna designs: Opportunities and challenges," China Communications, Vol. 17, No. 4, 152-164, 2020.
doi:10.23919/JCC.2020.04.014

15. Wu, Q., W. Chen, C. Yu, H. Wang, and W. Hong, "Multilayer machine learning-assisted optimization-based robust design and its applications to antennas and array," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 6052-6057, September 2021.
doi:10.1109/TAP.2021.3069491

16. Shi, M., L. Cui, H. Liu, M. Lv, and X. Sun, "A new UWB antenna with band-notched characteristics," Progress In Electromagnetics Research M, Vol. 74, 201-209, 2018.
doi:10.2528/PIERM18081002

17. Saed, M. and R. Yadla, "Microstrip-fed low profile and compact dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 56, 151-162, 2006.
doi:10.2528/PIER05041401

18. Tang, M. C., H. Wang, T. Deng, and R. W. Ziolkowski, "Compact planar ultrawideband antennas with continuously tunable, independent band-notched filters," IEEE Transactions on Antennas and Propagation, 3292-3301, 2016.
doi:10.1109/TAP.2016.2570254

19. Rezaeieh, S. A. and M. Abbak, "A novel compact antenna enhanced with variable notches," Microwave and Optical Technology Letters, 946-949, 2012.
doi:10.1002/mop.26716

20. Sarkar, M., S. Dwari, and A. Daniel, "Compact printed monopole antenna for ultra-wideband application with dual bandnotched characterstic," Microwave and Optical Technology Letters, 946-949, 2013.

21. Rahman, M., M. Nageshvara Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics MDPI, 2019.
doi:10.1109/TAP.2020.2966051

22. Sharma, Y., H. H. Zhang, and H. Xin, "Machine learning techniques for optimizing design of double T-shaped monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5658-5663, 2020.
doi:10.1109/TAP.2020.2966051

23. El Misilmani, Hilal M., Tarek Naous, and Salwa K. Al Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 10, e22356, 2020.
doi:10.1002/mmce.22356

24. Chauhan, N. S., Decision Tree Algorithm - Explained, towards data science, [Online], Available: https://towardsdatascience.com/decision-tree-algorithm-explained-83beb6e78ef4.
doi:10.1023/A:1010933404324

25. Breiman, L., "Random forests," Machine Learning, Vol. 45, No. 1, 5-32, 2001.
doi:10.1023/A:1010933404324

26., Vishal MordeXGBoost Algorithm - Explained, towards data science, [Online], Available: https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d.
doi:10.1109/TAP.2020.3001743

27. Cui, L., Y. Zhang, R. Zhang, and Q. H. Liu, "A modified efficient KNN method for antenna optimization and design," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 6858-6866, October 2020.
doi:10.1109/TAP.2020.3001743

28. Sallam, T., A. B. Abdel-Rahman, M. Alghoniemy, Z. Kawasaki, and T. Ushio, "A neural-network-based beamformer for phased array weather radar," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 9, 5095-5104, September 2016.
doi:10.1109/TGRS.2016.2554116

29. Wang, J. R., W. J. Liu, and M. S. Tong, "An artificial neural network based design of triple-band microstrip patch antenna for WLAN applications," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, 2020.

30., Training and Test Sets: Splitting Data. Machine Learning Crash Course, [Online], Available: https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data.