Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-04-27

Performance Analysis of a Rain Fading Predicted Model in Tropical Areas for 5G Communication

By Trilochan Patra and Swarup Kumar Mitra
Progress In Electromagnetics Research M, Vol. 110, 49-59, 2022
doi:10.2528/PIERM22021904

Abstract

The basic climatic characteristic of the tropical areas is abundant precipitation throughout the year. For such precipitation the radio signal (RF) power of these areas gets diminished in communicating any signaling information from a sender to a receiver i.e. rain fading occurs in these areas. Rain fading is one of the major causes which decline the characteristics of radio system in tropical areas. To reduce excessive rain fading various fade reduction techniques such as diversification techniques, adaptive power control technique and adaptive waveform technique have been used. Frequency diversification technique is an effective technique for diminishing rain fading. In this work in order to diminish rain fading a suggested model has been implemented. Frequency diversification improvement factor is accepted to heighten the performance of this suggested model. Besides, by adopting an experimental data sheet a comparison of this suggested model with a number of various existing rain attenuation predicted models has been depicted for validation of the suggested model. The experiment was performed by accepting two mm-Wave connectors acting on two frequencies of 26 GHz and 38 GHz, respectively, for observing which model renders better result in the tropical region with respect of various distances, frequencies, and elevation angles.

Citation


Trilochan Patra and Swarup Kumar Mitra, "Performance Analysis of a Rain Fading Predicted Model in Tropical Areas for 5G Communication," Progress In Electromagnetics Research M, Vol. 110, 49-59, 2022.
doi:10.2528/PIERM22021904
http://www.jpier.org/PIERM/pier.php?paper=22021904

References


    1. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work," IEEE Access, 35-49, 2013.

    2. Lam, H. Y., J. Din, and S. L. Jong, "Statistical and physical descriptions of raindrop size distributions in equatorial Malaysia from disdrometer observations," Adv. Meteorol., 1-14, 2015.

    3. Moupfouma, F. and J. Tiffon, "Raindrop size distribution from microwave scattering measurements in equatorial and tropical climates," Electron. Lett., Vol. 18, No. 23, 1012-1014, 1982.

    4. Lam, H. Y., et al., "Impact of rain attenuation on 5G millimeter wave communication systems in equatorial malaysia investigated through disdrometer data," 2017 11th European Conference on Antennas and Propagation (EUCAP), 1793-1797, 2017.

    5. Abdulrahman, A. Y., et al., "Investigation of the unified rain attenuation prediction method with data from tropical climates," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1108-1111, January 2014.

    6. Capsoni, C., L. Luini, A. Paraboni, C. Riva, and A. Martellucci, "A new prediction model of rain attenuation that separately accounts for stratiform and convective rain," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 196-204, 2009.

    7. Kumar, L. S., Y. H. Lee, and J. T. Ong, "Truncated gamma drop size distribution models for rain attenuation in Singapore," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1325-1335, 2010.

    8. Awang, M. A. and J. Din, "Comparison of the rain drop size distribution model in tropical region," 2004 RF and Microwave Conference (IEEE Cat. No.04EX924), 20-22, 2004.

    9. Da Silva Mello, L. A. R. S., M. S. Pontes, I. Fagundes, M. P. C. Almeida, and F. J. Andrade, "Modified rain attenuation prediction method considering the effect of wind direction," J. Microwaves, Optoelectron Electromagn. Appl., Vol. 13, No. 2, 254-267, 2014.

    10. Ghiani, R., L. Luini, and A. Fanti, "Investigation of the path reduction factor on terrestrial links for the development of a physically-based rain attenuation model," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-2, 2016.

    11. Alhilali, M., J. Din, M. Schonhuber, and H. Y. Lam, "Estimation of millimeter wave attenuation due to rain using 2D video distrometer data in Malaysia," Indones J. Electr. Eng. Comput. Sci., Vol. 7, No. 1, 164-9, 2017.

    12. Lam, H. Y., L. Luini, J. Din, C. Capsoni, and A. D. Panagopoulos, "Application of the SC EXCELL model for rain attenuation prediction in tropical and equatorial regions," 2010 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 1-6, 2010.

    13. Atayero, A. A., M. K. Luka, and A. A. Alatishe, "Satellite link design: A tutorial," International Journal of Electrical & Computer Sciences, Vol. 11, No. 4, 1-6, August 2011.

    14. Moupfouma, F., "Improvement of a rain attenuation prediction for terrestrial microwave links," IEEE Trans. Antennas Propag., Vol. 32, No. 12, 1368-1372, 1984.

    15. Joss, J. R., R. Cavalli, and R. K. Crane, "Good agreement between theory and experimental for attenuation data," Journal de Recherches Atmospheriques, Vol. 8, 299-313, 1974.

    16. ITU-R, "Specific attenuation model for rain for use in prediction methods," Recommendation ITU-R P.638-3, 1-5, 2005.

    17. ITU-R, "Propagation data and prediction methods required for the design of Earth-space telecommunication systems," Recommendation ITU-R P.618-8, Vol. 12, 1-24, 2015.

    18. Yussuff, A. I. and N. H. Haji Khamis, "Rain attenuation modelling and mitigation in the tropics: Brief review," International Journal of Electrical and Computer Engineering, Vol. 2, No. 6, 748-757, 2012.

    19. Stutzman, W. L. and K. M. Yon, "A simple rain attenuation model for earth{space radio links operating at 10-35 GHz," Radio Sciences, Vol. 21, No. 1, 65-72, 1986.

    20. García-López, J. A., J. M. Hernando, and J. Selga, "Simple rain Attenuation method for satellite radio links," IEEE Trans. Antennas Propag., Vol. 36, No. 3, 444-448, 1998.

    21. Bhattacharya, R., R. Das, R. Guha, S. D. Barman, and A. B. Bhattacharya, "Variability of millimetre wave rain attenuation and rain rate prediction: A survey," Indian Journal of Radio and Space Physics, Vol. 36, No. 4, 325-344, 2007.

    22. Moupfouma, F., "Electromagnetic waves attenuation due to rain: A prediction model for terrestrial or L.O.S SHF and EHF radio communication links," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 30, 622-632, 2009.

    23. Da Silva Mello, L. A. R., M. S. Pontes, R. M. De. Souza, and N. P. Garcia, "Prediction of rain attenuation in terrestrial links using full rainfall rate distribution," Electron. Lett., Vol. 23, No. 25, 1442-1443, 2007.

    24. Recommendation ITU-R P.530-13, "Propagation data and prediction methods required for the design of terrestrial line-of-sight systems," International Telecommunication Union, Geneva, Switzerland, 2009.

    25. Crane, R. K., Electromagnetic Wave Propagation through Rain, Chaps. 1-4, John Wiley, New York, 1996.

    26. Crane, R. K., Propagation Handbook for Wireless Communication System Design, Chap. 2, CRC Press, New York, 2003.

    27. De Miranda, E. C., M. S. Pontes, and L. A. R. Da Silva Mello, "Statistical modeling of the cumulative probability distribution function of rainfall rate in Brazil," Proceedings of URSICLIMPARA, 77-80, Ottawa, Ont., Canada, April 1998.

    28. Patra, T. and S. K. Mitra, "Rain attenuation predicted model for 5G communication in tropical regions," International Journal of Engineering and Advanced Technology (IJEAT), Vol. 9, No. 3, 1151-1158, 2020.

    29. ITU-R P.1057-1, "Probability distribution relevant to radio wave propagation modeling,", 2001.

    30. Islam, M. R., L. M. Altajjar, M. M. Rashid, and L. K. Bashar, International WIE Conference on Frequency Diversity Improvement Factor for Rain Fed Mitigation in Malaysia, 159-163, Electrical and Computer Engineering, IEET, Dhaka, Bangladesh, December 2015.

    31. Patra, T. and S. Sil, "Frequency diversity improvement factor for rain fade mitigation technique for 50-90 GHz in tropical region," IEEE Conference (IEMECON), 86-90, Thailand, August 2017.

    32. D'Amico, M., S. L. Jong, and C. Riva, "Tipping bucket data processing for propagation application," 2013 7th European Conference on Antennas and Propagation (EuCAP), 256-260, 2013.