Vol. 110
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-05-12
A New 2×2-Element Subarray Antenna Synthesis Based on Waveguide Cavity Resonators
By
Progress In Electromagnetics Research M, Vol. 110, 133-143, 2022
Abstract
A new design of a 2×2-element subarray antenna based on an all-cavity resonator structure is presented in this article. A novel topology which employs only two resonators to lay out the subarray is proposed, and two X-band rectangular waveguide cavity resonators are utilized for the subarray physical implementation. The first resonator is a conventional half-guided resonator operating at the TE101 mode. The second resonator, which is an oversized TE102 resonator based, is modified in order to keep the TE101 mode to propagate within the bandwidth of interest and facilitate the connection with four radiating apertures. The developed coupling matrix approach is utilized to calculate the desirable frequency response, which is a standard 2nd order Chebyshev response with introducing filtering functionality to the realised gain response of the subarray. The simulation results obtained by two simulation softwares (CST and Ansoft HFSS) validate the calculation results. An extremely wide impedance bandwidth of 23% at center frequency 10 GHz when the reflection coefficient S11 = -10 dB is obtained. A very stable realised gain with less than 0.5 dBi variations over the bandwidth of interest (8.8-11.1 GHz) is obtained with a peak gain value of 13.1 dBi at 11 GHz. The radiation patterns have very low side lobe levels, particularly in the E-plane, due to the existence of small non-radiating area and maintaining small spacing between the radiating apertures. The proposed 2×2-element subarray has the advantages of wider bandwidth and low profile compared with our and other previous 2×2-element subarrays.
Citation
Raad Salih Jarjees, and Rashad Hassan Mahmud, "A New 2×2-Element Subarray Antenna Synthesis Based on Waveguide Cavity Resonators," Progress In Electromagnetics Research M, Vol. 110, 133-143, 2022.
doi:10.2528/PIERM22030106
References

1. Zhang, M., T. Yamamoto, J. Hirokawa, and M. Ando, "A wideband circularly polarized corporate-fed waveguide aperture array in the 60 GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 20, 1824-1828, 2021.
doi:10.1109/LAWP.2021.3098329

2. Volakis, J. L., Antenna Engineering Handbook, McGraw-Hill Education, 2007.

3. Miura, Y., J. Hirokawa, M. Ando, Y. Shibuya, and G. Yoshida, "Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band," IEEE Transactions on Antennas and Propagation, Vol. 59, 2844-2851, 2011.
doi:10.1109/TAP.2011.2158784

4. Ando, M., Y. Tsunemitsu, M. Zhang, J. Hirokawa, and S. Fujii, "Reduction of long line effects in single-layer slotted waveguide arrays with an embedded partially corporate feed," IEEE Transactions on Antennas and Propagation, Vol. 58, 2275-2280, 2010.
doi:10.1109/TAP.2010.2044346

5. Arakawa, H., H. Irie, T. Tomura, and J. Hirokawa, "Suppression of E-plane sidelobes using a double slit layer in a corporate-feed waveguide slot array antenna consisting of 2×2-element radiating units," IEEE Transactions on Antennas and Propagation, Vol. 67, 3743-3751, 2019.
doi:10.1109/TAP.2019.2902677

6. Tekkouk, K., J. Hirokawa, K. Oogimoto, T. Nagatsuma, H. Seto, Y. Inoue, et al. "Corporate-feed slotted waveguide array antenna in the 350-GHz band by silicon process," IEEE Transactions on Antennas and Propagation, Vol. 65, 217-225, 2016.
doi:10.1109/TAP.2016.2631132

7. Shad, S. and H. Mehrpouyan, "60 GHz waveguide-fed cavity array antenna by multistepped slot aperture," IEEE Antennas and Wireless Propagation Letters, Vol. 19, 438-442, 2020.
doi:10.1109/LAWP.2020.2966149

8. Kim, D., J. Hirokawa, M. Ando, J. Takeuchi, and A. Hirata, "4×4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band," IEEE Transactions on Antennas and Propagation, Vol. 61, 5968-5975, 2013.
doi:10.1109/TAP.2013.2281361

9. Tomura, T., Y. Miura, M. Zhang, J. Hirokawa, and M. Ando, "A 45˚ linearly polarized hollow-waveguide corporate-feed slot array antenna in the 60-GHz band," IEEE Transactions on Antennas and Propagation, Vol. 60, 3640-3646, 2012.
doi:10.1109/TAP.2012.2201094

10. Huang, G.-L., S.-G. Zhou, T.-H. Chio, and T.-S. Yeo, "Broadband and high gain waveguide-fed slot antenna array in the Ku-band," IET Microwaves, Antennas & Propagation, Vol. 8, 1041-1046, 2014.
doi:10.1049/iet-map.2013.0702

11. Hirokawa, J., "Plate-laminated waveguide slot array antennas and its polarization conversion layers," Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, Vol. 53, 9-19, 2012.

12. Chen, Z., S.-G. Zhou, and T.-H. Chio, "A class of all metal cavity-backed slot array with direct metal laser sintering," IEEE Access, Vol. 6, 69650-69659, 2018.
doi:10.1109/ACCESS.2018.2880481

13. He, J., Y. Wu, D. Chen, M. Zhang, J. Hirokawa, and Q. Liu, "Realization of a wideband series-fed 4×4-element waveguide slot array in the X-band," IEEE Access, 2021.

14. Mahmud, R. H. and M. J. Lancaster, "High-gain and wide-bandwidth filtering planar antenna array-based solely on resonators," IEEE Transactions on Antennas and Propagation, Vol. 65, 2367-2375, 2017.
doi:10.1109/TAP.2017.2670443

15. Mahmud, R. H., H. N. Awl, Y. I. Abdulkarim, M. Karaaslan, and M. J. Lancaster, "Filtering two-element waveguide antenna array based on solely resonators," AEU-International Journal of Electronics and Communications, Vol. 121, 153232, 2020.

16. Mahmud, R. H. and M. J. Lancaster, "A 2×2 filtering subarray element antennas using all-resonator structures," IET Microwaves, Antennas & Propagation, Vol. 15, 592-599, 2021.
doi:10.1049/mia2.12080

17. Mahmud, R. H., "Synthesis of waveguide antenna arrays using the coupling matrix approach,", University of Birmingham, 2016.
doi:10.1049/mia2.12080

18. Williams, A. E., "A four-cavity elliptic waveguide filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, 1109-1114, 1970.
doi:10.1109/TMTT.1970.1127419

19. Atia, A. E. and A. E. Williams, "Narrow-bandpass waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 20, 258-265, 1972.
doi:10.1109/TMTT.1972.1127732

20. Skaik, T. F., M. Lancaster, and F. Huang, "Synthesis of multiple output coupled resonator circuits using coupling matrix optimisation," IET Microwaves, Antennas & Propagation, Vol. 5, 1081-1088, 2011.
doi:10.1049/iet-map.2010.0447

21. Shang, X., Y. Wang, W. Xia, and M. J. Lancaster, "Novel multiplexer topologies based on all-resonator structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 3838-3845, 2013.
doi:10.1109/TMTT.2013.2284496

22. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.

23. Pozar, D. M., Microwave Engineering, Chap. 6, John Wiley & Sons, 2011.

24. Miek, D., C. Bartlett, F. Kamrath, P. Boe, and M. Höft, "Investigation of the cutting plane and tolerance analysis of cross-coupled W-band waveguide filters with multiple transmission zeros by source to load cross-coupling," International Journal of Microwave and Wireless Technologies, 1-10, 2021.

25. Lancester, M., Passive Microwave Device Applications of Superconductors, Cambridge University Press, Cambridge, UK, 1997.
doi:10.1017/CBO9780511526688

26. C. M. Studio, Computer Simulation Technology AG, Darmstadt, Germany, 2009.

27. El Mrabet, O., "High frequency structure simulator (HFSS) tutorial," IETR, UMR CNRS, Vol. 6164, 2005-2006, 2006.

28. Carceller, C., P. Soto, V. Boria, M. Guglielmi, and J. Gil, "Design of compact wideband manifold-coupled multiplexers," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 3398-3407, 2015.
doi:10.1109/TMTT.2015.2460738

29. Zhang, Y., J. Xu, X. He, F. Zhang, Y. Sun, X. Li, et al. "A 3-D printed circularly polarized filtering antenna," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1999-2000, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8889108

30. Santosa, C. E., J. T. S. Sumantyo, C. M. Yam, K. Urata, K. Ito, and S. Gao, "Subarray design for C-band circularly-polarized synthetic aperture radar antenna onboard airborne," Progress In Electromagnetics Research, Vol. 163, 107-117, 2018.
doi:10.2528/PIER18060602

31. Lin, C.-K. and S.-J. Chung, "A filtering microstrip antenna array," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 2856-2863, 2011.
doi:10.1109/TMTT.2011.2160986

32. Mansour, G., M. J. Lancaster, P. S. Hall, P. Gardner, and E. Nugoolcharoenlap, "Design of filtering microstrip antenna using filter synthesis approach," Progress In Electromagnetics Research, Vol. 145, 59-67, 2014.
doi:10.2528/PIER14011405