Vol. 112
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-26
Experimental Feasibility Study of Using mm -Wave for Arterial Radial Displacement Monitoring
By
Progress In Electromagnetics Research M, Vol. 112, 67-80, 2022
Abstract
Doppler Ultrasound as the gold standard for noninvasive arterial pulsation monitoring has limitations such as dependency on the operator and absence of acoustic window in some patients. Recently, mm-wave has been propounded as an alternative modality for biomedical diagnostics. However, heartbeat monitoring using mm-wave modality has been experimentally investigated only for external carotid artery, and its usage for deeper arteries has not been proved, yet. This study investigates the feasibility of mm-waves in the monitoring of non-superficial arteries. A continuous-wave (CW) reflectometer sensor is used for sensing pulsations exploiting the Doppler effect. The artery mimicking tube passes through an artificial agar-oil skin phantom. A peristaltic pump circulates the liquid through a tube. An antenna is placed in direct contact with the phantom without any coupling liquid. First, we investigate the optimum frequency of the given antenna in its impedance bandwidth [16 GHz-20 GHz]. Using the optimum frequency, the pulsation of an ar-tery with a 1.6 mm diameter, placed in the depth of 16 mm, and has less than 0.02 mm radial oscillation amplitude was easily detectable.
Citation
Somayyeh Chamaani, Teresa Slanina, Duy Hai Nguyen, Jochen Moll, and Viktor Krozer, "Experimental Feasibility Study of Using mm -Wave for Arterial Radial Displacement Monitoring," Progress In Electromagnetics Research M, Vol. 112, 67-80, 2022.
doi:10.2528/PIERM22031401
References

1. Routh, H. K., "Doppler ultrasound," IEEE Eng. Med. Biol., No. 3, 1996.
doi:

504 Gateway Time-out


2. Li, Y., P. Segers, J. Dirckx, and R. Baets, "On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement," Biomed. Opt. Express, Vol. 4, No. 7, 1229-1235, 2013.
doi:10.1364/BOE.4.001229

3. Sun, C.-K., "Cardio-ankle vascular index (CAVI) as an indicator of arterial stiffness," Dovepress, No. 6, 27-38, 2013.
doi:

4. Boutry, C. M., et al., "Biodegradable and flexible arterial-pulse sesnor for the wireless monitoring of blood flow," Nat. Biomed. Eng., Vol. 3, No. 1, 2019.
doi:10.1038/s41551-018-0336-5

5. Avolio, A. P., M. Butlin, and A. Walsh, "Arterial blood pressure measurement and pulse wave analysis --- Their role in enhancing cardiovascular assessment," Physiol. Meas., Vol. 31, 1-47, 2010.
doi:10.1088/0967-3334/31/1/R01

6. Jayanthy, A. K., N. Sujatha, and M. R. Reddy, "Measuring blood flow: Techniques and applications --- A review," Int. J. Res. Rev. Appl. Sci., Vol. 6, No. 2, 203-216, 2011.

7. Saugel, B., et al., "Cardiac output estimation using pulse wave analysis d physiology, algorithms, and technologies: A narrative review," Br. J. Anaesth., Vol. 126, No. 1, 67-76, 2021.
doi:10.1016/j.bja.2020.09.049

8. Saugel, B., et al., "Continuous noninvasive pulse wave analysis using finger cuff technologies for arterial blood pressure and cardiac output monitoring in perioperative and intensive care medicine: A systematic review and meta-analysis," Br. J. Anaesth., Vol. 125, No. 1, 25-37, 2020.
doi:10.1016/j.bja.2020.03.013

9. Elgendi, M., et al., "The use of photoplethysmography for assessing hypertension," NPJ Digit. Med., Vol. 60, 1-11, 2019.

10. Johansson, K., H. Ahn, J. Lindhagen, and O. Lundgren, "Tissue penetration and measuring depth of laser Doppler flowmetry in the gastrointestinal application," Scand. J. Gastrology, Vol. 22, No. 9, 1081-1088, 2009.
doi:10.3109/00365528708991962

11. Chatterjee, S., J. P. Phillips, and P. A. Kyriacou, "Monte Carlo investigation of the effect of blood volume and oxygen saturation on optical path in reflectance pulse oximetry," Biomed. Phys. Eng. Express, Vol. 2, No. 6, 1-14, 2016.
doi:10.1088/2057-1976/2/6/065018

12. Ruvio, G., A. Cuccaro, R. Solimene, A. Brancaccio, B. Basile, and M. J. Ammann, "Microwave bone imaging: A preliminary scanning system for proof-of-concept," Healthc. Technol. Lett., Vol. 3, No. 3, 218-221, 2016.
doi:10.1049/htl.2016.0003

13. Quail, A. W., D. B. F. Cottee, and S. W. White, "Limitations of a pulsed Doppler velocimeter for blood flow measurement in small vessels," J. Appl. Physiol., Vol. 75, No. 6, 2745-2754, 1993.
doi:10.1152/jappl.1993.75.6.2745

14. Libove, J., D. Schriebman, and M. Ingle, "Picosecond pulse imaging --- Uniquely promising but challenging modality for a wearable BMI," 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2448-2453, 2017.
doi:10.1109/SMC.2017.8122990

15. Libove, J., D. Schriebman, M. Ingle, and B. Wahl, "Wearable brain imager/BMI technology for structural, vascular and functional extraction," 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 3806-3811, 2016.
doi:10.1109/SMC.2016.7844827

16. Deverson, S., D. H. Evans, and D. C. Bouch, "The effects of temporal bone on transcranial Doppler ultrasound beam shape," Ultrasound Med. Biol., Vol. 26, No. 2, 239-244, 2000.
doi:10.1016/S0301-5629(99)00129-5

17. Zhou, T., S. Member, P. M. Meaney, M. J. Pallone, S. Geimer, and K. D. Paulsen, "Microwave tomographic imaging for osteoporosis screening: A pilot clinical study," IEEE Eng. Med. Biol. Soc. 2010, 1218-1221, 2010.
doi:10.1109/IEMBS.2010.5626442

18. Michimoto, I., et al., "Simulation study on the effects of cancellous bone structure in the skull on ultrasonic wave propagation," Sci. Rep., Vol. 11, No. 1, 1-12, 2021.
doi:10.1038/s41598-021-96502-5

19. Chandra, R., H. Zhou, I. Balasingham, S. Member, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Trans. Biomed. Eng., Vol. 62, No. 7, 1667-1682, 2015.
doi:10.1109/TBME.2015.2432137

20. Meaney, P. M., et al., "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects," IEEE Trans. Biomed. Eng., Vol. 59, No. 12, 3304-3313, 2012.

21. Amin, B., M. A. Elahi, A. Shahzad, E. Porter, B. McDermott, and M. O'Halloran, "Dielectric properties of bones for the monitoring of osteoporosis," Med. Biol. Eng. Comput., Vol. 57, No. 1, 1-13, 2019.

22. Amin, B., A. Shahzad, M. O'halloran, and M. A. Elahi, "Microwave bone imaging: A preliminary investigation on numerical bone phantoms for bone health monitoring," Sensors (Switzerland), Vol. 20, 1-21, 2020.

23. Mase, A., et al., "Non-contact and real-time measurement of heart rate and heart rate variability using microwave reflectometry," Rev. Sci. Instrum., Vol. 91, No. 1, 2020.

24. Nagae, D. and A. Mase, "Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing," Rev. Sci. Instrum., Vol. 81, No. 9, 2010.

25. Dany Obeid, G. E. Z., G. Zaharia, and S. Sadek, "Microwave Doppler radar for heartbeat detection vs electrocardiogram," Microw. Opt. Technol. Lett., Vol. 54, No. 11, 2610-2617, 2013.

26. Xu, Y., Q. Li, and Z. Tang, "Accurate and contactless vital sign detection in short time window with 24 GHz Doppler radar," J. Sensors, Vol. 2021, 1-14, 2021.

27. Shi, K., S. Schellenberger, T. Steigleder, F. Michler, and F. Lurz, "Contactless carotid pulse measurement using continuous wave radar,", 1-3, November 2018.

28. Chamaani, S., A. Akbarpour, M. Helbig, and J. Sachs, "Matrix pencil method for vital sign detection from signals acquired by microwave sensors," Sensors, Vol. 21, No. 17, 1-24, 2021.

29. Pisa, S., S. Chicarella, E. Pittella, E. Piuzzi, O. Testa, and R. Cicchetti, "A double-sideband continuous-wave radar sensor for carotid wall movement detection," IEEE Sens. J., Vol. 19, No. 10, 8162-8171, 2018.

30. Fung, Y. C. and S. C. Cowin, Biomechanics: Motion, Flow, Stress, and Growth, 1st Ed., Springer, New York, 1990.

31. Hoeks, A. P. G., P. J. Brands, F. A. M. Smeets, and R. S. Reneman, "Assesment of the distinsibility of superficial arteries," Ultrasound Med. Biol., Vol. 16, No. 2, 121-128, 1990.

32. Mynard, J. P., A. Kondiboyina, and R. Kowalski, "Measurement, analysis and interpretation of pressure/flow waves in blood vessels," Front. Physiol., Vol. 11, 1-26, 2020.

33. A-900 Peristaltic pump, [Online], Available, https://www.hll.de/12/1/AD223/MTA2NzIwNDA-w/Landgraf HLL 106720400 Landgraf HLL.html.

34. R. Corporation, RO4000r Series High Frequency Circuit Materials, 2018.

35. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microw. Mag., Vol. 12, No. 7, 78-94, 2011.

36. Nguyen, D. H., J. Ala-laurinaho, J. Moll, V. Krozer, and S. Member, "Improved sidelobe-suppression microstrip patch antenna array by uniform feeding networks," IEEE Trans. Antennas Propag., Vol. 68, No. 11, 7339-7347, 2020.

37. Nguyen, D. H., J. Moll, V. Krozer, V. Memmolo, and G. Zimmer, "Elliptical monopole antenna design for the early breast cancer imaging at high frequencies," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-4, 2021.

38. Scalise, L., A. De Leo, V. Mariani Primiani, P. Russo, D. Shahu, and G. Cerri, "Non contact monitoring of the respiration activity by electromagnetic sensing," MeMeA 2011 --- 2011 IEEE Int. Symp. Med. Meas. Appl. Proc., 418-422, May 2011.