Vol. 112
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-28
A Novel Compact Dual Notch with High-Gain Multi-Layer Dielectric Resonator Antenna for Ultrawide-Band Applications
By
Progress In Electromagnetics Research M, Vol. 112, 127-137, 2022
Abstract
In this paper, a novel compact high-gain multi-layer dielectric resonator antenna for ultra-wideband applications is designed and fabricated. The proposed antenna employs a new technique to make a notch-band for the frequencies within UWB. This technique helps avoid any interference for bands like WLAN and X-band for satellite applications. In this design, several notch bands can get at different frequencies by changing the length of slots. The operating bandwidth of this antenna is between 4.8 GHz and 11.31 GHz with -10 dB return-loss and maximum gain of 6 dBi. Finally, the proposed antenna is fabricated and measured to validate the simulation results. The simulation results are obtained by two different simulators; CST Studio suite TM 2020 and HFSS 15 to ensure the validity of the design results before fabrication. The fabricated antenna is measuredusing Agilent R&S Z67 VNA. There is a good agreement between the simulation and experimental results.
Citation
Mai Fouad Ahmed, Mona Abdel Ghany Mohamed, Abdelhameed Abdelmoneim Shaalan, and Walid Saber El-Deeb, "A Novel Compact Dual Notch with High-Gain Multi-Layer Dielectric Resonator Antenna for Ultrawide-Band Applications," Progress In Electromagnetics Research M, Vol. 112, 127-137, 2022.
doi:10.2528/PIERM22061204
References

1. Luk, K. M. and K. W. Leung, Dielectric Resonator Antennas, Research Studies Press, Baldock, Hertfordshire, England, 2003.

2. Bethala, C. and M. Kamsali, "Design of rectangular dielectric resonator antenna for mobile wireless application," Applied Computational Electromagnetics Society, Vol. 36, No. 5, 568-576, 2021.
doi:10.47037/2020.ACES.J.360511

3. Chauhan, M. and B. Mukherjee, "Investigation of T-shaped compact dielectric resonator antenna for wideband application," Radioelectronics and Communications Systems, Vol. 62, No. 11, 594-603, 2019.
doi:10.3103/S0735272719110050

4. Zebiri, C., H. A. Obeidat, R. A. Abd-Alhameed, D. Sayad, I. T. Elfergani, J. S. Kosha, W. F. Mshwat, C. H. See, M. Lashab, J. Rodriguez, and K. H. Sayidmarie, "Antenna for ultra-wideband applications with non-uniform defected ground plane and offset aperture-coupled cylindrical dielectric resonators," IEEE Access, Vol. 7, 166776-166787, 2019.
doi:10.1109/ACCESS.2019.2949527

5. Kaur, G. and A. Kaur, "X-shaped ultra-wide band dielectric resonator antenna used for microwave imaging applications," 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2021.

6. Zitouni, A. and N. Boukli-Hacene, "T-shaped compact dielectric resonator antenna for UWB application," Advanced Electromagnetics, Vol. 8, No. 3, 57-63, 2019.
doi:10.7716/aem.v8i3.1077

7. Vasisht, P., R. Mark, and N. Chattoraj, "An ultra-wideband rectangular ring dielectric resonator antenna integrated with hybrid shaped patch for wireless applications," Frequenz, Vol. 75, No. 9-10, 399-406, 2021.
doi:10.1515/freq-2020-0218

8. Abedian, M., S. K. Rahim, and M. Khalily, "Two-segments compact dielectric resonator antenna for UWB application," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1533-1536, 2012.
doi:10.1109/LAWP.2012.2232639

9. Abedian, M., S. K. Rahim, S. Danesh, S. Hakimi, L. Y. Cheong, and M. H. Jamaluddin, "Novel design of compact UWB dielectric resonator antenna with dual-band-rejection characteristics for Wi-MAX/WLAN bands," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 245-248, 2015.
doi:10.1109/LAWP.2014.2360828

10. Aldhaheri, R. W. and I. S. Alruhaili, "A simple and compact CPW-fed UWB antenna with WLAN band rejection," 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), 2019.

11. Majeed, A. H., A. S. Abdullah, K. H. Sayidmarie, R. A. Abd-Alhameed, F. Elmegri, and J. M. Noras, "Compact dielectric resonator antenna with band-notched characteristics for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 57, 137-148, 2015.
doi:10.2528/PIERC15022102

12. Suwanta, P., P. Krachodnok, and R. Wongson, "Wideband inverted L-shaped dielectric resonator antenna for medical applications," 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), 2017.

13. Lu, L., Y.-C. Jiao, H. Zhang, R. Wang, and T. Li, "Wideband circularly polarized antenna with stair-shaped dielectric resonator and open-ended slot ground," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1755-1758, 2016.
doi:10.1109/LAWP.2016.2532931

14. Bong, H. U., M. Jeong, N. Hussain, S. Y. Rhee, S. K. Gil, and N. Kim, "Design of an UWB antenna with two slits for 5G/WLAN-notched bands," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1295-1300, 2019.
doi:10.1002/mop.31670

15. Lu, L., Y.-C. Jiao, H. Zhang, R. Wang, and T. Li, "Wideband circularly polarized antenna with stair-shaped dielectric resonator and open-ended slot ground," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1755-1758, 2016.
doi:10.1109/LAWP.2016.2532931

16. ANSYS High Frequency Structure Simulator (HFSS), version 17.0.

17. Guha, D., B. Gupta, and Y. M. Antar, "Hybrid monopole-DRAs using hemispherical/conical- shaped dielectric ring resonators: Improved Ultrawideband designs," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 393-398, 2012.
doi:10.1109/TAP.2011.2167948

18. George, J., C. K. Aanandan, P. Mohanan, K. G. Nair, H. Sreemoolanathan, and M. T. Sebastian, "Dielectric-resonator-loaded microstrip antenna for enhanced impedance bandwidth and efficiency," Microwave and Optical Technology Letters, Vol. 17, No. 3, 205-207, 1998.
doi:10.1002/(SICI)1098-2760(19980220)17:3<205::AID-MOP16>3.0.CO;2-3

19. Trivedi, K. and D. A. Pujara, "Design and development of a wideband fractal tetrahedron dielectric resonator antenna with triangular slots," Progress In Electromagnetics Research M, Vol. 60, 47-55, 2017.
doi:10.2528/PIERM17061103

20. Wang, J., H. Ning, Q. Xiong, and L. Mao, "A compact narrow band stop filter using spiral shaped detected microstrip structure," Radio Eng., Vol. 23, No. 1, 20-213, 2014.