Vol. 113
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-08-30
Electromagnetic Wave Propagation through Stratified Lossy Conductive Media
By
Progress In Electromagnetics Research M, Vol. 113, 1-10, 2022
Abstract
It is commonly believed that electromagnetic waves cannot propagate in lossy conductive media and that they quickly decay inside such media over short length scales of the order of the so-called skin depth. Here we prove that this common belief is incorrect if the conductive medium is stratified. We demonstrate that electromagnetic waves in stratified lossy conductive media may have propagating character, and that the propagation length of such waves may be considerably larger than the skin depth in homogeneous media. Our findings have broad implications in many fields of science and engineering. They enable radio communication and imaging in such strongly lossy conductive media as seawater, various soils, plasma and biological tissues. They also enable novel electromagnetic metamaterial designs by mediating the effect of losses on electromagnetic signal propagation in metamaterials. Our results demonstrate a new class of inherently non-Hermitian electromagnetic media with high dissipation, no gain, and no PT-symmetry, which nevertheless have almost real eigenvalue spectrum.
Citation
Igor I. Smolyaninov, and Alexander B. Kozyrev, "Electromagnetic Wave Propagation through Stratified Lossy Conductive Media," Progress In Electromagnetics Research M, Vol. 113, 1-10, 2022.
doi:10.2528/PIERM22061605
References

1. Blum, W. E. H., P. Schad, and S. Nortcliff, Essentials of Soil Science, Borntraeger Science Publishers, Stuttgart, 2018.

2. Vance, S., M. Bouffard, M. Choukroun, and C. Sotin, "Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice," Planetary and Space Science, Vol. 96, 62-70, 2014.
doi:10.1016/j.pss.2014.03.011

3. Smolyaninov, I. I., "Surface electromagnetic waves at gradual interfaces between lossy media," Progress In Electromagnetics Research, Vol. 170, 177-186, 2021.
doi:10.2528/PIER21043006

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

5. Guo, A., G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, "Observation of PT-symmetry breaking in complex optical potentials," Phys. Rev. Letters, Vol. 103, 093902, 2009.
doi:10.1103/PhysRevLett.103.093902

6. Smolyaninov, I. I., Q. Balzano, C. C. Davis, and D. Young, "Surface wave based underwater radio communication," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 2503-2507, 2018.
doi:10.1109/LAWP.2018.2880008

7. Landau, L. D. and E. M. Lifshitz, Quantum Mechanics, Elsevier, 1977.

8. Li, Y. and D. W. Oldenburg, "Aspects of charge accumulation in DC resistivity experiments," Geophysical Prospecting, Vol. 39, 803-826, 1991.
doi:10.1111/j.1365-2478.1991.tb00345.x

9. Bloch, F., "Uber die quantenmechanik der elektronen in kristallgittern," Zeitschrift fur Physik, Vol. 52, 555-600, 1929.
doi:10.1007/BF01339455

10. Kittel, C., Introduction to Solid-state Physics, 173-196, John-Wiley, Singapore, 1996.

11. Bender, C. M. and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT Symmetry," Phys. Rev. Letters, Vol. 80, 5243, 1998.
doi:10.1103/PhysRevLett.80.5243

12. Smolyaninov, I. I., "Gradient-index nanophotonics," Journal of Optics, Vol. 23, 095002, 2021.
doi:10.1088/2040-8986/ac1322

13. Kozyrev, A. B., C. Qin, I. V. Shadrivov, Yu. S. Kivshar, I. L. Chuang, and D. W. van der Weide, "Wave scattering and splitting by magnetic metamaterials," Opt. Express, Vol. 15, 11714-11722, 2007.
doi:10.1364/OE.15.011714

14. Smolyaninov, I. I., Hyperbolic Metamaterials, Morgan & Claypool/Institute of Physics, London, 2018.
doi:10.1088/978-1-6817-4565-7

15. Wangberg, R., et al. "Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media," J. Opt. Soc. Am. B, Vol. 23, 498, 2006.
doi:10.1364/JOSAB.23.000498