Vol. 114
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-11-23
A Multifunctional Patch Antenna Loaded with Near Zero Index Refraction Metamaterial
By
Progress In Electromagnetics Research M, Vol. 114, 127-137, 2022
Abstract
In this paper a multifunctional patch antenna loaded with near zero index refraction metamaterial (NZIM) is presented. This multifunctional antenna operates at 5.8 GHz and provides high gain and beam steering capability. The proposed configuration comprises a patch antenna placed below an NZIM superstrate. The rectangular microstrip antenna is used as a radiation source to demonstrate the performance of this design. The NZIM superstrate, which behaves as an NZIM, based on 9×9 resonating unit cells of split ring resonators (SRRs), allows gathering radiated waves from the antenna and collimating them toward the superstrate's normal direction, which results in gain enhancement. The beam-steering in the E-plane is obtained by slowly tilting the NZIM over the patch antenna. The main characteristics of the antenna placed near the NZIM superstrate are studied numerically and experimentally to successfully demonstrate this dual function feature. It is found experimentally that the gain enhancement of 8 dB with improved directivity and radiation efficiency are obtained in comparison with the antenna without the NZIM metasurface. In addition, we were also able to steer the direction of the main beam just by tilting the NZIM superstrate from -20° to 20° with a gain variation of 5 dB and without changing the whole dimension of the structure.
Citation
Fatima Zohra Khoutar, Oumaima Nayat-Ali, Mariem Aznabet, and Otman El Mrabet, "A Multifunctional Patch Antenna Loaded with Near Zero Index Refraction Metamaterial," Progress In Electromagnetics Research M, Vol. 114, 127-137, 2022.
doi:10.2528/PIERM22092203
References

1. Ghassemi, N. and K. Wu, "High-efficient patch antenna array for E-band gigabyte point-to-point wireless services," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1261-1264, Oct. 2012.
doi:10.1109/LAWP.2012.2224087

2. Kim, D. Y., Y. Lim, H. S. Yoon, and S. Nam, "High-efficiency W-band electroforming slot array antenna," IEEE Trans. Antennas Propag., Vol. 63, 1854-1857, Apr. 2015.
doi:10.1109/TAP.2015.2398129

3. Nasimuddin, K. Esselle, and A. K. Verma, "Compact circularly polarized enhanced gain microstrip antenna on high permittivity substrate," Asia-Pacific Microwave Conference Proceedings, Mar. 2006.

4. Munk, A. B., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, Hoboken, Jan. 2005.

5. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Design of a high-directivity electromagnetic band gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate," Microw. Opt. Technol. Lett., Vol. 43, 462-467, Oct. 2004.
doi:10.1002/mop.20502

6. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microw. Theory Techn., Vol. 47, 1509-1514, Aug. 1999.
doi:10.1109/22.780402

7. Yuehe, G., P. E. Karu, and S. B. Trevor, "The use of simple thin partially reflective surfaces with positive re ection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propag., Vol. 60, 743-750, Oct. 2012.

8. Nikfalazar, M., et al., "Two-dimensional beam-steering phased-array antenna with compact tunable phase shifter based on BST thick films," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 586-588, 2017.
doi:10.1109/LAWP.2016.2591078

9. Aslan, Y., J. Puskely, J. H. J. Janssen, M. Geurts, A. Roederer, and A. Yarovoy, "Thermal-aware synthesis of 5G base station antenna arrays: An overview and a sparsity-based approach," IEEE Access, Vol. 6, 58868-58882, 2018.
doi:10.1109/ACCESS.2018.2873977

10. Abdellatif, A. S. M., High performance integrated beam-steering techniques for millimeter-wave systems, Univ. Waterloo, Waterloo, ON, USA, 2015.

11. Ghasemi, A., et al., "High beam steering in Fabry-Perot leaky-wave antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 261-264, 2013.
doi:10.1109/LAWP.2013.2248052

12. Nakano, H., S. Mitsui, and J. Yamauchi, "Tilted-beam high gain antenna system composed of a patch antenna and periodically arrayed loops," IEEE Trans. Antennas Propag., Vol. 62, 2917-2925, 2014.
doi:10.1109/TAP.2014.2311460

13. Katare, K. K., A. Biswas, and M. J. Akhtar, "Microwave beam steering of planar antennas by hybrid phase gradient metasurface structure under spherical wave illumination," J. Appl. Phys., Vol. 122, 234901, 2017.
doi:10.1063/1.5000999

14. Katare, K. K., A. Biswas, and M. J. Akhtar, "Wideband beam-steerable configuration of metasurface loaded slot antenna," Int. J. RF. Microwave Comput. Aid Eng., e21408, 2018.
doi:10.1002/mmce.21408

15. Trentini, G. V., "Partially reflecting sheet array," IRE Trans. Antennas Propag., Vol. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455

16. Chen, X., M. T. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 16608, Jul. 2004.
doi:10.1103/PhysRevE.70.016608

17. Li, D., Z. Szabo, X. Qing, E. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, 6018-6023, Aug. 2012.
doi:10.1109/TAP.2012.2213231

18. Reis, J. R., M. Vala, T. E. Oliveira, T. R. Fernandes, and R. F. S. Caldeirinha, "Metamaterial-inspired flat beamsteering antenna for 5G base stations at 3.6 GHz," Sensors, Vol. 21, 8116, Dec. 2021.
doi:10.3390/s21238116

19. Luo, Y., Q. Zeng, X. Yan, T. Jiang, R. Yang, J. Wang, Y. Wu, Q. Lu, and X. Zhang, "A graphene-based tunable negative refractive index metamaterial and its application in dynamic beam-tilting terahertz antenna," Microw. Opt. Technol. Lett., Vol. 61, No. 12, 2766-2772, Dec. 2019.
doi:10.1002/mop.31970

20. Kumar, S., L. Kurra, M. Abegaonkar, A. Basu, and S. K. Koul, "Multilayer FSS for gain improvement of a wide-band stacked printed antenna," 2015 International Symposium Antennas Propagation (ISAP), 1-4, Hobart, TAS, 2015.

21. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "FSS properties of a uniplanar EBG and its application in directivity enhancement of a microstrip antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1606-1609, 2016.
doi:10.1109/LAWP.2016.2518299

22. Zhu, H., S. W. Cheung, and T. I. Yuk, "Enhancing antenna boresight gain using a small metasurface lens: Reduction in half-power beamwidth," IEEE Antennas Propag. Mag., Vol. 58, 35-44, Feb. 2016.
doi:10.1109/MAP.2015.2501235

23. Ma, B., X. M. Yang, T. Q. Li, H. Y. Chenc, H. Hed, Y. W. Chend, A. Line, J. Chenf, and B. J. Wangg, "Gain and directivity enhancement of microstrip antenna loaded with multiple splits octagon-shaped metamaterial superstrate," Int. J. Appl. Electromagn., Vol. 58, 201-213, 2016.

24. Gangwar, D., D. Sushrut, and R. L. Yadava, Gain Enhancement of Microstrip Patch Antenna Loaded with Split Ring Resonator Based Relative Permeability Near Zero as Superstrate, Vol. 96, 22389-22399, Springer, Sept. 2017.

25. Aggarwal, I., S. Pandey, and M. R. Tripathy, "A high gain super wideband metamaterial based antenna," J. Microw. Optoelectron. Electromagn. Application, Vol. 20, No. 2, 248-273, Jun. 2021.
doi:10.1590/2179-10742021v20i21147

26. Sumathi, K., S. Lavadiya, P. Yin, J. Parmar, and S. K. Patel, "High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku band wireless network applications," Wireless Networks, Vol. 27, 2131-2146, 2021.
doi:10.1007/s11276-021-02567-5