DESIGN OF A TUNABLE OPTICAL FILTER BY USING A ONE-DIMENSIONAL TERNARY PHOTONIC BAND GAP MATERIAL

S. K. Awasthi

Department of Physics, Amity Institute of Applied Science
Amity University
Noida-201301, India

S. P. Ojha

Vice Chancellor
Chaudhary Charan Singh University
Meerut-25004, India

Abstract—A band pass filter with a linearly periodic refractive index profile is discussed in analogy with Kronig Penney model in band theory of solids. The suggested filter is a one-dimensional ternary periodic structure and provides better control in dispersion relation as compared to a binary structure because it has two more controlling parameters relative to those of the binary one. Since three layers are involved in the formation of band gaps a much broader range of dispersion control is obtained. Both refractive index modulation and optical thickness modulation are considered. A mathematical analysis is presented to predict allowed and forbidden bands of wavelength with variation of angle of incidence. It is also possible to get desired ranges of the electromagnetic spectrum filtered with this structure by manipulating the value of the lattice parameters.

1. INTRODUCTION

The concept of photonic crystal (PC) structure was first introduced by Yablonovitch [1] and Sanjeev John [2] in their early work of 1987. A PC is an artificial material with a periodic modulation of its dielectric constant and having ranges of forbidden frequencies called photonic bandgaps (PBGs), analogous to electric bandgaps in semiconductors [3]. PCs have attracted a great deal of attention
as a new optical material in recent years [1, 4–8]. Accordingly to the dimensionality of the stack, they can be classified into three main categories: one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) crystals. Actually, 1-D PCs, traditionally called dielectric multilayers or superlattices, have been widely used as interference filter, high reflectors, etc before other PCs were invented [9, 10]. PCs have attracted extensive interest for their unique electromagnetic properties and potential applications in optoelectronics and optical communications [11].

PCs can shape and mould the flow of light through them, and as a result they have novel scientific and engineering applications [12] such as localization of light wave [2], the inhibition of spontaneous emission [1, 12], lasers [13–15], waveguides [16], splitters [17], fibers [18], antennas [19], optical circuits [20] and ultrafast optical switches [21].

A great deal of work has been done by technologists for the development of methods for designing multi-layer films with prescribed specifications [22–27]. Tunable optical filters have received much attention due to their potential application in fibre optic communications and other optical fields. Several configurations have been proposed, including tunable multiple electrode asymmetric directional couplers [28], tunable Mach Zehnder interferometers [29, 30], Fabry-Perot filters [31, 32], tunable waveguide arrays [33, 34], liquid crystal Fabry-Perot filters [35, 36], tunable multi grating filters [37], and acousto-optic tunable filters [38]. Another class of most popular filter is based on the phenomenon of multi-beam interference and optical waveguides [39–42].

Fabrication of optical filters in the near infrared region of the wavelength was suggested by Ojha et al. [43] in 1992. Chen et al. [44] in 1996 suggested the design of optical filters by photonic band gap air bridges and calculated the important results and some aspects of filter properties. Recently D’Orazio et al. [45] have fabricated the photonic band gap filter for wavelength division multiplexing. In another investigation Villar et al. [46] have analyzed the one-dimensional photonic band gap structures with a liquid crystal defect for the development of fiber-optic tunable wavelength filters. Banerjee et al. [27] in 2006 proposed a design of a tunable optical filter made by 1-D binary PBG material with five to six number of allowed bands. This can further be improved by using a our proposed filter design made by 1-D ternary PBG materials [47] which filters more allowed bands as compared to a filter made by 1-D binary PBG material.

In this paper we report a design of tunable optical filter by using a 1-D ternary photonic band gap material. This paper is organized as follows. In Section 2, theoretical analysis is presented which gives
basic simulation equations in the transfer matrix method (TMM) for 1-D photonic bandgap structure. The advantage of using the TMM to solve the eigen value problem is that it can avoid evaluating a high order determinant and makes the calculation of wave function simpler. Results and discussion are presented in Section 3. Finally, Section 4 deals with conclusions arrived at.

2. THEORETICAL ANALYSIS [48, 49]

Consider 1-D photonic bandgap structure as a three layer homogeneous periodic dielectric film, composed of dielectric layers 1, 2, and 3 stacked alternatively along \(z \) axis. The periodic refractive index profiles of the structure is given by [27]

\[
 n(z) = \begin{cases}
 n_1, & 0 < z < d_1 \\
 n_2, & d_1 < z < d_2 \\
 n_3, & d_2 < z < d_3
 \end{cases}
\]

with \(n(z) = n(z + md) \) and \(m \) is the translational factor, which takes the values of \(m = 0, \pm 1, \pm 2, \pm 3, \ldots \), and \(d = d_1 + d_2 + d_3 \) is the period of the lattice with \(d_1, d_2 \) and \(d_3 \) being the width of the three regions having refractive indices \(n_1, n_2, \) and \(n_3 \) respectively. The \(z \) axis is the normal to the layer interface. This proposed filter is placed between semi-infinite media of refractive indices \(n_A \) and \(n_S \). The geometry of the structure is sketched in Fig. 1.

![Figure 1](image.png)

For the TE wave, the characteristic matrix \(M[d] \) of one period is given by [48]

\[
 M[d] = \prod_{i=1}^{k} \begin{bmatrix} \cos \gamma_i & \frac{2\pi}{p_i} \sin \gamma_i \\ -ip_i \sin \gamma_i & \cos \gamma_i \end{bmatrix} \equiv \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}
\]

where \(k = 3 \). (1, 2 and 3 signify the layers of refractive indices \(n_1, n_2 \) and \(n_3 \) respectively) \(\gamma_i = \frac{2\pi}{\lambda_0} n_i d_i \cos \theta_i, p_i = n_i \cos \theta_i, \theta_i \) is the ray
angle inside the layer of refractive index n_i, and is related to the angle of incidence θ_A by

$$\cos \theta_i = \left[1 - \frac{n_i^2 \sin^2 \theta_A}{n_i^2} \right]^{1/2}$$ \hspace{1cm} (3)

The matrix $M[d]$ in Eq. (2) is unimodular as $|M[d]| = 1$. For an N period structure, the characteristic matrix of the medium is given by [48]

$$[M(d)]^N = \begin{bmatrix} M_{11}U_{N-1}(a) - U_{N-2}(a) & M_{12}U_{N-1}(a) \\ M_{21}U_{N-1}(a) & M_{22}U_{N-1}(a) - U_{N-2}(a) \end{bmatrix} \equiv \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$ \hspace{1cm} (4)

where

$$M_{11} = \begin{pmatrix} \cos \gamma_1 \cos \gamma_2 \cos \gamma_3 - \frac{p_2}{p_1} \sin \gamma_1 \sin \gamma_2 \cos \gamma_3 \\ -\frac{p_1}{p_2} \cos \gamma_1 \sin \gamma_2 \sin \gamma_3 - \sin \gamma_1 \cos \gamma_2 \sin \gamma_3 \end{pmatrix},$$

$$M_{12} = -i \begin{pmatrix} \frac{1}{p_1} \sin \gamma_1 \cos \gamma_2 \cos \gamma_3 + \frac{1}{p_2} \cos \gamma_1 \sin \gamma_2 \cos \gamma_3 \\ +\frac{1}{p_1} \cos \gamma_1 \cos \gamma_2 \sin \gamma_3 - \frac{p_2}{p_1^2} \sin \gamma_1 \sin \gamma_2 \sin \gamma_3 \end{pmatrix},$$

$$M_{21} = -i(p_1 \sin \gamma_1 \cos \gamma_2 \cos \gamma_3 + p_2 \cos \gamma_1 \sin \gamma_2 \cos \gamma_3) \\ +p_1 \cos \gamma_1 \cos \gamma_2 \sin \gamma_3 - \frac{p_2^2}{p_1} \sin \gamma_1 \sin \gamma_2 \sin \gamma_3),$$

$$M_{22} = \begin{pmatrix} \cos \gamma_1 \cos \gamma_2 \cos \gamma_3 - \frac{p_1}{p_2} \sin \gamma_1 \sin \gamma_2 \cos \gamma_3 \\ -\frac{p_2}{p_1} \cos \gamma_1 \sin \gamma_2 \sin \gamma_3 - \sin \gamma_1 \cos \gamma_2 \sin \gamma_3 \end{pmatrix},$$

For p-polarization

$$p_i = \frac{\cos \theta_i}{n_i}$$ \hspace{1cm} (5)

U_N are the Chebyshev polynomials of the second kind

$$U_N(a) = \frac{\sin[(N + 1) \cos^{-1} a]}{[1 - a^2]^{1/2}}$$ \hspace{1cm} (6)
where
\[a = \frac{1}{2} [M_{11} + M_{22}] , \] (7)

The optical properties of the proposed filter are essentially determined by \(N \)th power \([M(d)]^N \) of trilayer transfer matrix \(M(d) \). But behaviour of \([M(d)]^N \) is determined by eigen value of structure \(M(d) \) [49]. These are determined from characteristic polynomial of \(M(d) \), given by the following expression which is valid for any 2×2 matrix [49].

\[
\text{det} [M(d) - \lambda I] = \lambda^2 - Tr [M(d)] \lambda + \text{det} [M(d)]
\] (8)

where \(I \) is the 2×2 identity matrix. Because \(M(d) \) has unit determinant, the eigen values are the solution of the following quadratic equation

\[
\lambda^2 - Tr [M (d)] \lambda + 1 = 0
\] (9)

But \(\frac{Tr[M(d)]}{2} = a \)

So \(\lambda^2 - 2a\lambda + 1 = 0 \), with following solutions

\[
\lambda_\pm = a \pm \sqrt{a^2 - 1}
\] (10)

The eigen values \(\lambda_\pm \) are either both real valued or both complex valued with unit magnitude. These values will be inverse of each other i.e.,

\[
\lambda_+ = \frac{1}{\lambda_-}
\]

or \(\lambda_+\lambda_- = 1 \)

It can also be rewritten as

\[
\begin{align*}
\lambda_+ &= e^{jKd} \\
\lambda_- &= e^{-jKd}
\end{align*}
\] (11)

The quantity \(K \) is referred to as the Bloch wave number. This proposed filter behaves very differently depending on the nature of \(K \). The filter is primarily reflecting if \(K \) is imaginary and eigen values \(\lambda_\pm \) are real and it is primarily transmitting if \(K \) is real and eigen values are pure phases.

Using Eqs. (10) and (11), we can obtain

\[
\lambda_+ = e^{jKd} = a + \sqrt{a^2 - 1} = a + j\sqrt{1 - a^2}
\] (12)
Table 1. Photonic bandgap for \(n_1 = 1.5, n_2 = 2.2, n_3 = 1.5, d_1 = 0.85d, d_2 = 0.85 \times (0.15d), d_3 = 0.15 \times (0.15d), d = 140\, \text{nm} \).

<table>
<thead>
<tr>
<th>Angle of Incidence ((\theta_A))</th>
<th>Ultraviolet Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allowed Bands</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td>(\frac{\pi}{6})</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

or \(a = \cos (Kd) \), or

\[
K = \frac{1}{d} \left[\cos^{-1} (a) \right] \tag{13}
\]
The sign of the quantity \((a^2 - 1)\) determines whether the eigen values are real or complex. The eigen values switch from real to complex equivalently, \(K\) switches from imaginary to real, when \(a^2 = 1\) or \(a = \pm 1\). The critical values of \(K\) are found from Eq. (13) to be

\[
K = \frac{1}{d} \cos^{-1} (\pm 1) = \frac{m\pi}{d}
\]

where \(m\) is an integer.

Figure 2. Variation of \(L_{\lambda_0}\) with \(\lambda_0\) for \(n_1 = 1.5, n_2 = 2.2, n_3 = 1.5, d_1 = 0.85d, d_2 = 0.85 \times (0.15d), d_3 = 0.15 \times (0.15d)\) and \(d = 140\) nm at angles of incidence equal to \(0^\circ, 30^\circ, \text{and } 60^\circ\).

Figure 3. Variation of \(L_{\lambda_0}\) with \(\lambda_0\) for \([n_1 = 3.6, n_2 = 1.52, n_3 = 3.6, d_1 = 0.85d, d_2 = 0.85 \times (0.15d), d_3 = 0.15 \times (0.15d)\) and \(d = 3000\) nm at angles of incidence equal to \(0^\circ, 30^\circ, \text{and } 60^\circ\).
For this proposed filter K satisfies Eq. (7)

\[
\begin{align*}
\cos \beta_1 \cos \beta_2 \cos \beta_3 & - \frac{1}{2} \left(\frac{p_2}{p_1} + \frac{p_1}{p_2} \right) \sin \beta_1 \sin \beta_2 \cos \beta_3 \\
- \frac{1}{2} \left(\frac{p_2}{p_3} + \frac{p_3}{p_2} \right) \cos \beta_1 \sin \beta_2 \sin \beta_3 & - \frac{1}{2} \left(\frac{p_1}{p_3} + \frac{p_3}{p_1} \right) \sin \beta_1 \cos \beta_2 \sin \beta_3 \\
& = \cos \{ K (d_1 + d_2 + d_3) \}
\end{align*}
\]

(15)

Now abbreviating the LHS as L_{λ_0} Eq. (15) can be written as

\[
L_{\lambda_0} = \cos (kd)
\]

(16)

where the LHS (L_{λ_0}) of Eq. (15) in terms of free space wavelength (λ_0) can be written as

\[
L_{\lambda_0} = \cos \left[\frac{2\pi n_1 d_1}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_1^2} \right)^{\frac{1}{2}} \right] \cos \left[\frac{2\pi n_2 d_2}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_2^2} \right)^{\frac{1}{2}} \right] \cos \left[\frac{2\pi n_3 d_3}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_3^2} \right)^{\frac{1}{2}} \right] \\
- \frac{1}{2} \left[\left(\frac{n_1^2}{n_2^2} \left(1 - \frac{\sin^2 \theta_A}{n_2^2} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \right] \\
\times \left[\sin \left[\frac{2\pi n_1 d_1}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_1^2} \right)^{\frac{1}{2}} \right] \sin \left[\frac{2\pi n_2 d_2}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_2^2} \right)^{\frac{1}{2}} \right] \cos \left[\frac{2\pi n_3 d_3}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_3^2} \right)^{\frac{1}{2}} \right] \\
- \frac{1}{2} \left[\left(\frac{n_1^2}{n_3^2} \left(1 - \frac{\sin^2 \theta_A}{n_3^2} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \right] \\
\times \left[\cos \left[\frac{2\pi n_1 d_1}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_1^2} \right)^{\frac{1}{2}} \right] \sin \left[\frac{2\pi n_2 d_2}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_2^2} \right)^{\frac{1}{2}} \right] \cos \left[\frac{2\pi n_3 d_3}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_3^2} \right)^{\frac{1}{2}} \right] \right]
\]

Figure 4. Variation of L_{λ_0} with λ_0 for $n_1 = 2.6$, $n_2 = 1.52$, $n_3 = 2.6$, $d_1 = 0.85d$, $d_2 = 0.85 \times (0.15d)$, $d_3 = 0.15 \times (0.15d)$ and $d = 600\text{nm}$ at angles of incidence equal to 0°, 30°, and 60°.

\[
\sin \left[\frac{2\pi n_3 d_3}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_3^2} \right)^{\frac{1}{2}} \right] \\
-\frac{1}{2} \left[\frac{n_1^2}{n_3^2} \left(1 - \frac{\sin^2 \theta_A}{n_1^2} \right)^{\frac{1}{2}} + \frac{n_3^2}{n_1^2} \left(1 - \frac{\sin^2 \theta_A}{n_3^2} \right)^{\frac{1}{2}} \right] \\
\times \left[\sin \left[\frac{2\pi n_1 d_1}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_1^2} \right)^{\frac{1}{2}} \right] \cos \left[\frac{2\pi n_2 d_2}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_2^2} \right)^{\frac{1}{2}} \right] \right] \\
\sin \left[\frac{2\pi n_3 d_3}{\lambda_0} \left(1 - \frac{\sin^2 \theta_A}{n_3^2} \right)^{\frac{1}{2}} \right]
\]

This dispersion equation will determine the allowed and forbidden ranges of wavelengths.

3. RESULT AND DISCUSSION

For the proposed filter, investigations are carried out in ultraviolet, infrared and visible regions of electromagnetic spectrum. For ultraviolet region of investigation we have chosen the materials with refractive indices $n_1 = 1.52$, $n_2 = 2.2$ and $n_3 = 1.52$. Keeping $d_1 =$
0.85\(d\), \(d_2 = 0.85 \times (0.15d)\) and \(d_3 = 0.15 \times (0.15d)\) where \(d = 140\) nm, is the period of the structure. Investigations are also repeated for infrared and visible regions of electromagnetic spectrum by changing the period of the structure as 3000 nm and 600 nm respectively. Keeping \(n_1 = 3.6\), \(n_2 = 1.52\) and \(n_3 = 3.6\) for infrared region and \(n_1 = 2.6\), \(n_2 = 1.52\) and \(n_3 = 2.6\) for visible region.

Using these values in Eq. (15) \(L_{\lambda_0}\) is plotted against the free space wavelength (\(\lambda_0\)) for different values of angle of incidence (\(\theta_A\)) as 0\(^\circ\), 30\(^\circ\) and 60\(^\circ\). The curves are depicted in Fig. 2 to Fig. 4 respectively. The photonic band (in nm) obtained in this manner are shown in the Tables 1, 2 and 3. Because of the existence of the cosine function on the right-hand side of the Eq. (15), the upper and lower limiting values will obviously be +1 and −1 respectively. The portion of the curve lying between these limiting values will yield the allowed ranges of wavelengths and those out sides will show the forbidden ranges of transmission. From the study of these figures it is found that

Table 2. Photonic bandgap for \([n_1 = 3.6, n_2 = 1.52, n_3 = 3.6, d_1 = 0.85d, d_2 = 0.85 \times (0.15d), d_3 = 0.15 \times (0.15d), d = 3000\) nm].

<table>
<thead>
<tr>
<th>Angle of Incidence ((\theta_A))</th>
<th>Infrared Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allowed Bands</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(\pi) / 6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(\pi) / 3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
the width of the allowed photonic bands increases as the wavelength
increases. The width of the allowed photonic bands is maximum at 0°
i.e., normal incidence and as the angle of incidence increases the width
decreases, for fixed values of \(n_1, n_2, n_3, d_1, d_2, \) and \(d_3 \) as shown in the
Tables 1, 2 and 3 respectively. Actually these allowed bands give the
different ranges of wavelengths that can be transmitted through the
filter structure. The ranges of transmission depend on the values of
controlling parameters \(n_1, n_2, n_3, d_1, d_2, \) and \(d_3 \). Thus by choosing
suitable values of these parameters one can get the desired range of
transmission (or reflection).

Table 3. Photonic bandgap for \([n_1 = 2.6, n_2 = 1.52, n_3 = 2.6, \)
\(d_1 = 0.85d, d_2 = 0.85 \times (0.15d), d_3 = 0.15 \times (0.15d), d = 600 \text{nm}] \).

<table>
<thead>
<tr>
<th>Angle of Incidence ((\theta_A))</th>
<th>Visible Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allowed Bands</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(\pi / 6)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(\pi / 3)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
4. CONCLUSION

In this work we have suggested the matrix formulation method for finding out dispersion relation for 1D ternary PBG structure. Using this dispersion relation we have suggested a design of an optical filter which can work for all the ranges of electromagnetic spectrum by choosing the suitable values of controlling parameters. This study can be used to develop more efficient and accurate photonic band gap material based tunable optical filter. The proposed optical filter made of 1-D ternary PBG material filters more number of allowed bands as compared to a filter made of 1-D binary PBG material and with better control in the wavelength of allowed bands to be filtered.

ACKNOWLEDGMENT

The author would like to thank Dr. Ashok K. Chauhan, Founder President, Amity University, (Noida) India for his constant interest and encouragement. Thanks are also due to Prof. U. Malaviya for her valuable suggestions and insights and Prof. S. N. Shukla for discussions during the preparation of the manuscript.

REFERENCES

