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Target Detection in Low Grazing Angle with OFDM MIMO Radar

Yang Xia*, Zhiyong Song, Zaiqi Lu, and Qiang Fu

Abstract—In low grazing angle scenario, target detection performance is seriously deteriorated due to
multipath effect. This paper deals with moving target detection in low grazing angle with orthogonal
frequency division multiplexing (OFDM) multi-input multi-output (MIMO) radar. We show that the
detection performance can be improved through utilizing the multipath effect. Realistic physical and
statistical effects such as refraction of the lower atmosphere and the Earth’s curvature are incorporated
into the multipath propagation model. Then, we derive a generalized likelihood ratio test (GLRT)
detector by taking advantage of the frequency diversity of OFDM and MIMO configuration. Based
on the fact that the target responses resonate at different frequencies and statistical characteristics of
the test, we propose an algorithm which adaptively allocates the transmitted energy to improve the
detection performance. The effectiveness of the GLRT detector as well as the adaptive design method
is demonstrated via numerical examples.

1. INTRODUCTION

Target detection and tracking in low grazing angle scenario is one of the most challenging problems in
radar fields [1], where multipath effect is the main problem. The received signal is the coherent sum of
direct and indirect signals. Amplitudes of the total received signals fluctuate due to the random phase
variation of indirect signals (related to the path difference, wavelength and reflected surface [2]), which
may seriously deteriorate the detection and tracking performances.

Traditional methods dealing with multipath effect are to regard it as clutter component, thus
suppress it (e.g., see [3–6]). On the other hand, indirect signals also contain target energy, and the
detection or tracking performance may be enhanced if energy from the indirect path is accumulated. A
large amount of salient work has been done on this aspect. The prior knowledge on the environment was
exploited in [7, 8], where multipath was utilized to improve detection performance. The potential for
exploiting multipath propagation for improved radar detection of moving ground targets in dense urban
environments was investigated in [9]. Multipath effects were exploited to both cancel the interference
and reinforce the target signal in low grazing angle scenarios [10]. Focusing on the issue of target
detection in urban environment, an optimized detection algorithm based on orthogonal frequency
division multiplexing (OFDM) radar was proposed in [11, 12]. However, the signal model was idealistic
and only considered specular reflections. Based on the same waveform, the problem of target detection
in multipath scenarios was reformulated as sparse spectrum estimation [13].

Over the last decades, multi-input multi-output (MIMO) radar system has drawn a large amount
of attention due to the different types of diversities. In [14, 15], the authors showed that the statistical
MIMO radar provided significant performance improvement compared with other types of array radar.
In rich multipath environments, time reversal technique combined with MIMO radar was used to
improve the detection performance [16] while a space-time adaptive processing (STAP) method was
developed to mitigate the multipath clutter [17, 18]. In [19], the authors demonstrated that the detection
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performance could be significantly improved through multipath utilization with statistical MIMO radar.
The detection performances of two kinds of generalized likelihood ratio test (GLRT) detectors with
hybrid MIMO radar in low grazing angel were discussed in [20].

In this paper, we deal with the problem of target detection in low grazing angle. A colocated
MIMO radar configuration is employed with each antenna transmitting one of an OFDM subcarrier
frequency. To make the propagation model more accurate, realistic physical and statistical effects are
taken into account. A generalized GLRT detector is developed under Gaussian clutter assumption,
and an algorithm which adaptively allocates the transmitted energy among different transmitters is
proposed to enhance the detection performance. The performances of the GLRT detector are evaluated
via numerical examples.

2. MULTIPATH PROPAGATION MODEL

A representative scenario of multipath propagation in low grazing angle is shown in Figure 1. The
received signals include not only directly reflected signals but also indirect signals. We consider only
the first and second-order reflected signals because signals reflected more than twice can be neglected
due to heavy attenuation [9]. The transmitted signal is assumed to be narrow band and denoted by [2]

x(t) = bej(ωt+ξ) (1)

where b, ω and ξ denote the amplitude, angular frequency and initial phase, respectively. The direct
signal is

xd(t) = x(t)e−j2π/λRd , (2)

and the indirect signal is
xi(t) = x(t)ρejϕe−j2π/λRi (3)

In Eqs. (2) and (3), Rd and Ri are the total length of direct and indirect paths, respectively.
ρejϕ denotes the complex reflection coefficient which is dependent on the characteristic of the reflected
surface. Taking first-order reflected signal for example, the total received signal is

r(t) = xd(t) + xi(t) = x(t)e−j2π/λRd

(
1 + ρejϕe−j2π/λΔR

)
(4)

where ΔR = Ri −Rd and the term 1 + ρejϕe−j2π/λΔR denotes the multipath propagation factor which
is decided by reflection coefficient, wavelength and path difference [5]. It is noted that we will use ρ (a
complex value) instead of ρejϕ to represent the complex scattering coefficient hereafter.

To make the signal model more realistic, the curvature of the earth and the signal path due to the
refraction in the atmospheric are taken into consideration. The modified multipath propagation model
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is shown in Figure 2. Re denotes the effective radius of the imaginary earth and can be represented
as [19]

Re = R0

(
1 +R0

dN

dh
10−6

)−1

(5)

where R0 is the radius of actual Earth and dN/dh the refractivity gradient. The grazing angle ψ is
calculated by

ψ =
1
2

(
π − arccos

(
R2

1 +R2
2 −R2

d

2R1R2

))
(6)

The solutions of other variables (such as r1, h′r) are omitted for brevity, see [19, 21] for more details.
The complex reflection coefficient is calculated by [22]

ρ = Γ(ν,h)DS (7)
where Γ(ν,h) is vertical polarization or horizontal polarization reflection coefficient for a plane surface;
D is the divergence factor due to a curved surface; S is root-mean-squared (RMS) specular scattering
coefficient which represents the roughness of surface.

Γ(ν,h) is determined by frequency, complex dielectric constant and grazing angle ψ and calculated
by [22]

Γv � sinψ
√
εc − 1

sinψ
√
εc + 1

(8)

for vertical polarization and

Γh � sinψ −√
εc

sinψ +
√
εc

(9)

for horizontal polarization, where εc is complex dielectric constant given by εc = ε/ε0 − j60λσ. ε/ε0 is
relative dielectric constant of the reflecting medium, and σ is its conductivity.

The divergence factor D can be approximated by [22]

D �
(

1 +
2r1r2
Rerψ

)−1/2

(10)

S is related to the grazing angle and the signal wavelength, given by [22]
S = e−μ (11)

where

μ =
{

2[2πη]2 η ≤ 0.1 rad
0.16η2 + 7.42η + 0.0468 otherwise (12)

η is the surface roughness factor defined as η = σHψ/λ, σH the RMS of reflection surface, and σH/λ
the roughness of the reflected surface. The larger σH/λ is, the rougher the surface will be. For smooth
surface, σH/λ is approximated to be zero.

Finally, substituting Eqs. (8)–(12) into Eq. (7), we can get complex scattering coefficient ρ.

3. OFDM MIMO RADAR MEASUREMENT MODEL

3.1. OFDM MIMO Radar Signal Model

Consider a colocated MIMO radar with M transmitters and N receivers, where the antennas are
configured as uniform linear arrays (ULAs). The MIMO radar signal model is shown in Figure 3, where
{sm(t)}M

m=1 and {rn(t)}N
n=1 denote the transmitted and received signal, respectively. Each transmitted

waveform consists of a carrier frequency fm forming an OFDM signal, which is
sm(t) = ame

j2πfmt, 0 ≤ t ≤ T (13)
where fm = f0 + (m − 1)Δf . f0 and Δf represent the carrier frequency and subcarrier spacing,
respectively. T denotes the pulse duration of a single pulse. To keep orthogonal between different
subcarriers, Δf is the reciprocal of T . am is the complex weight corresponding to the m-th subcarrier,
which can also be thought as the transmitted energy corresponding to the m-th transmitter. To
normalize the total transmitted energy, we have

∑M
m=1 |am|2 = 1.
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Figure 3. MIMO radar signal model.
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Figure 4. Scenario of multipath propagation
in low grazing angle with one transmit-receive
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3.2. Measurement Model

Consider a far-field point target located at x = (x0, y0)T in 2-D Cartesian coordinates with velocity
v. The transmitted and received arrays are assumed to be stationary and located at XT =
[x1,T ,x2,T , . . . ,xM,T ] and XR = [x1,R,x2,R, . . . ,xM,R]. Multipath propagation model in low grazing
angle scenario is described in Figure 4, where we only give one transmit-receive pair for others are
similar. The number of possible propagation paths is P . However, in Figure 4 we only depict three
paths with different colors.

The received signal at the n-th receive sensor transmitted by the m-th transmit sensor is

ymn(t) =
P−1∑
p=0

βp
m,nsm

(
γp

m,n(t− τp
m,n)

)
+ em,n(t) (14)

where βp
m,n denotes the complex scattering coefficient of target along the p-th path of the (m, n)

transmit-receive pair. For colocated configuration, target scattering coefficients do not change with
the aspect angle [23, 24], which means that βp

m,n does not depend on the positions of transmitters and
receivers. Besides, different scattering centers of a target resonate variably at different frequencies [12],
and each transmitter radiates a different carrier frequency. Thus, βp

m,n can be substituted by βm,p.
Let β = β0 ⊗ ρT be an M × P matrix with element βm,p, where β0 = [β1, β2, . . . , βM ]T and βm

(m = 1, 2, . . . ,M − 1) is the scattering coefficient of target at the m-th subcarrier. We assume that the
reflection coefficients do not depend on the position of transmit and receive arrays (This is reasonable
for colocated configuration with small element space). In other words, ρ = ρm,n = [ρ0, ρ1, . . . , ρP−1]T
where ρp (p = 0, 1, . . . , P − 1) is the complex reflection coefficient over the p-th path. em,n(t) represents
the clutter and measurement noise along the (m, n) transmit-receive channel.

τp
m,n is the two-way time delay along the p-th path of the (m, n) transmit-receive pair.

For direct-direct path, τm,n = (||xm,T − x|| + ||xn,R − x||)/c; for direct-reflected path, τm,n =
(||xm,T − x|| + ||xn,R − xim||)/c; for reflected-reflected path, τm,n = (||xm,T − xim|| + ||xn,R − xim||)/c.
c is the speed of propagation; ||·|| denotes the Euclidean vector norm; xim = (x0,−y0) is the symmetrical
position of target with respect to the land/sea surface.

γp
m,n accounts for the stretch factor along the p-th path of the (m, n) transmit-receive pair, which

is

γp
m,n = 1 +

fp
m,n

f0
(15)

where fp
m,n is the Doppler frequency shift along the p-th path of the (m, n) transmit-receive pair. For

direct-direct path

fm,n =
fm

c

〈
x− xm,T

||x − xm,T || ,v
〉

+
fm

c

〈
x− xn,R

||x− xn,R|| ,v
〉

(16)



Progress In Electromagnetics Research M, Vol. 46, 2016 105

for direct-reflected path,

fm,n =
fm

c

〈
x− xm,T

||x − xm,T || ,v
〉

+
fm

c

〈
x− xim

n,R

||x− xim
n,R||

,v

〉
(17)

for reflected-reflected path,

fm,n =
fm

c

〈
x− xim

m,T

||x − xim
m,T ||

,v

〉
+
fm

c

〈
x− xim

n,R

||x− xim
n,R||

,v

〉
(18)

where xim
m,T and xim

n,R denote the symmetrical position of the m-th transmitter and the n-th receiver
with respect to the land/sea surface, respectively.

Substituting Eqs. (13) and (15) into Eq. (14), the received signal after demodulation is

ymn(t) =
P−1∑
p=0

βm,pame
−j2πfm(1+fp

mn/f0)τp
mnej2π[(m−1)Δf+fm/f0fp

mn]t + emn(t) (19)

We incorporate the information of known range cell (denoted by the round trip delay τ0) by
substituting t = τ0 + kTr (k = 0, 1, . . . ,K − 1), where Tr is the pulse repetition interval (PRI) and
K the temporal measurements within one coherent processing interval (CPI). Thus, Eq. (19) can be
further written as

ymn(k) =
P−1∑
p=0

βm,pamφ
p
n,m(k,v) + emn(k) (20)

where
φp

m,n(k,v) = e−j2πf0τp
mnej2π[(m−1)Δf+fm/f0fp

mn](τ0−τp
mn+kTr) (21)

Stacking the measurements into an NM × 1 vector, we obtain a measurement model as follows

y(k) = A(a)XΦ(k,v) + e(k), k = 0, 1, . . . ,K − 1 (22)

where

• y(k) = [y1(k)T ,y2(k)T , . . . ,yN (k)T ]T is an NM × 1 vector, where yn(k) = [y1,n(k), y2,n(k), . . . ,
yM,n(k)]T are the temporal measurements received by the n-th receiver.

• A(a) = IN ⊗diag(a) is an NM×NM complex diagonal matrix. a = [a1, a2, . . . , aM ]T represent the
transmitted energy distributed among different transmitters and ⊗ denotes the Kronecker product.

• X = IN ⊗ blkdiag(βT
1 ,β

T
2 , . . . ,β

T
M ) is an NM × NMP matrix, where βT

m is the m-th row of β
denoting the scattering coefficients of target along different paths at m-th subcarrier.

• Φ(k,v) = [ΦT
1 ,Φ

T
2 , . . . ,Φ

T
N ]T is an NMP × 1 vector containing Doppler information of

target over different paths and channels, where Φn = [φT
1,n,φ

T
2,n, . . . ,φ

T
M,n, ]

T and φT
m,n =

[φ0
m,n, φ

1
m,n, . . . , φ

P−1
m,n ]T .

• e(k) = [e1(k)T , e2(k)T , . . . , eN (k)T ]T is an NM×1 vector including the measurement noise, clutter
and co-channel interference, where en(k) = [e1,n(k), e2,n(k), . . . , eM,n(k)]T .

Then, concatenating all the temporal data into anNM×K matrix, the OFDM MIMO measurement
model is

Y = A(a)XΦ(v) + E (23)

where Y = [y(0),y(1), . . . ,y(K − 1)] is an NM × K matrix containing all the temporal data within
one CPI; Φ(v) = [Φ(0,v),Φ(1,v), . . . ,Φ(K − 1,v)] is an NMP × K matrix containing the Doppler
information of target. E = [e(0), e(1), . . . , e(K − 1)].
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3.3. Statistical Model

In this paper, the scattering matrix X is assumed to be unknown. The measurement noise, clutter and
co-channel interference are modeled as temporally white and circularly symmetric zero-mean Gaussian
distribution with unknown position definite covariance C. The measurements between different pulses
are supposed to be independent. Thus the OFDM MIMO measurements are distributed as

Y ∼ CNMN,K (A(a)XΦ(v),C ⊗ IK) (24)

4. DETECTION TEST

In this section, we develop a statistical detection test for the OFDM MIMO measurements derived in
Section 3. The essence of detection is to decide whether a target is present or not in the range cell
under test. Therefore, we construct a decision problem to choose between two possible hypotheses: the
null hypothesis H0 (target-free hypothesis) and the alternate hypothesis H1 (target-present hypothesis),
which can be expressed as { H0 : X = 0, C unknown

H1 : X �= 0, v,C unknown (25)

According to Eq. (24), the measurements Y under two hypotheses are distributed as

Y ∼
{ H0 : CNMN,K(0,C ⊗ IK) C unknown

H1 : CNMN,K(A(a)XΦ(v),C ⊗ IK) v,C unknown (26)

Theoretically, the Neyman-Pearson (NP) detector is optimal which maximizes the detection
probability at a given false alarm rate [25]. However, in our problem the target velocity v and clutter
covariance C are unknown, and we resort to a GLRT detector, which is suboptimal and replaces the
unknown parameters with their maximum likelihood estimates (MLEs). The formulation of GLRT
detector is

GLR(v) =
f

(
Y|H1,v, X̂, Ĉ1

)
f

(
Y|H0, Ĉ0

) H0

≶
H1

γ (27)

where γ is the detection threshold decided by the false alarm rate. Ĉ0 is the MLE of C under H0 while
X̂ and Ĉ1 are the MLEs of X and C under H1. f(Y|H0) and f(Y|H1) follow a matrix-variate complex
Gaussian distribution [26], whose probability density functions (PDFs) are given by

f (Y|H0) =
exp

{−tr
(
C−1YYH

)}
πMNKdet(C)K

(28)

and

f(Y|H1) =
exp

{
−tr

[
C−1 (Y −A(a)XΦ(v)) (Y − A(a)XΦ(v))H

]}
πMNKdet(C)K

(29)

respectively.
The log-likelihood function of Eq. (28) is

ln f(Y|H0) = −MNK lnπ −K ln det(C) − tr
(
C−1YYH

)
(30)

Taking derivative of Eq. (30) with respect to C and making it equal to zero, we get the MLE of C under
H0

Ĉ0 =
1
K

YYH (31)

Similarly, the log-likelihood function of Eq. (29) is

ln f(Y|H1) = −MNK lnπ −K ln det(C) − tr
[
C−1 (Y − A(a)XΦ(v)) (Y − A(a)XΦ(v))H

]
(32)
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Taking derivative of Eq. (32) with respect to C and making it equal to zero, we get the MLE of C under
H1

Ĉ1 =
1
K

(Y − A(a)XΦ(v)) (Y − A(a)XΦ(v))H (33)

In our problem, the scattering matrix is also unknown. Substituting Eq. (33) into Eq. (32), the
ML estimator of X can be formulated as

X̂ML = arg min
X

ln
∣∣∣(Y − A(a)XΦ(v)) (Y − A(a)XΦ(v))H

∣∣∣ (34)

However, the MLE of X does not yield a closed-form due to the block-diagonal structure. Noting
that the measurement model is referred to as the block-diagonal growth curve (BDGC) model [27], an
approximate ML (AML) estimator of X is developed in [27, 28]. We omit the detailed derivation of
X̂ML for brevity, see [12, 27, 29] for more details.

Then, substituting the estimator Ĉ0 under H0 into Eq. (28), the likelihood function under H0 is

f(Y|H0) =
exp(−KMN)
πMNK |Ĉ0|K

(35)

Similarly, substituting the estimator Ĉ1 under H1 into Eq. (29), the likelihood function under H1 is

f(Y|H1) =
exp(−KMN)
πMNK |Ĉ1|K

(36)

Finally, substituting Eqs. (35), (36) into Eq. (27) and after some algebraic manipulations, we come
up with the following test statistic

GLR(v) =
|Ĉ0|
|Ĉ1|

=

∣∣(1/K)YYH
∣∣∣∣∣∣(1/K)

(
Y − A(a)X̂Φ(v)

) (
Y − A(a)X̂Φ(v)

)H
∣∣∣∣

(37)

Since the target velocity v is unknown, the GLRT detector turns to be max
v

GLR(v) = GLR(v̂), which
is compared with a threshold.

5. ADAPTIVE DESIGN

In this section, we develop an algorithm which adaptively allocates the transmitted energy among
different transmitters to enhance the detection performance. Based on the fact that the target responses
resonate at different frequencies, which is equivalent to say that target scattering coefficients vary at
different transmitters in OFDM MIMO radar, the transmitted energy can be optimally distributed.
First, we derive the asymptotic statistical characteristic of the detection test derived in Section 4.
Then, an optimal algorithm is proposed to improve the detection performance.

Under H0 hypothesis, the measurement is distributed as Y ∼ CNMN,K(0,C ⊗ IK). Following a
similar approach in [26, 30], we find that 1/GLR(v) is the product of a set of independent complex central
beta variables, which is similar to Wilk’s Lamda statistic in the case of real data. In [31] the authors
derived the asymptotic expansion of three statistics under the framework of generalized multivariate
analysis of variance (GMANOVA). Similarly, in [Ch. 8, 32] the authors also derived the asymptotic
expansion of the distribution of the likelihood ratio criterion. Therefore, following the results in [31–33],
we know that K ln GLR(v) has a complex chi-square distribution with MN degrees of freedom when
K → ∞, which is K ln GLR(v) ∼ Cχ2

MN . Since this distribution does not depend on clutter covariance,
the test statistic tends to a constant false-alarm rate (CFAR) test when K → ∞.

Similarly, under H1 hypothesis K ln GLR(v) has a noncentral complex chi-square distribution with
MN degrees of freedom when K → ∞, which is K ln GLR(v) ∼ Cχ2

MN(λ). The noncentral parameter
is

λ = tr
(
C−1 (A(a)XΦ(v)) (A(a)XΦ(v))H

)
(38)
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According to [30], the detection performance is proportional to the noncentral parameter λ.
Therefore, the detection performance can be improved through maximizing the noncentral parameter.
The optimization problem can be formulated as

aopt = arg max
a

{
tr

(
C−1 (A(a)XΦ(v)) (A(a)XΦ(v))H

)}
subject to aHa = 1 (39)

where aHa = 1 is the transmitted energy constraint. A non-optimal a will be transmitted in the first K
pulses. Then we estimate v̂ and X̂ through max

v
GLR(v) = GLR(v̂) and (34) respectively. The clutter

covariance is estimated by Ĉ = 1/K(Y−A(a)X̂Φ(v̂))(Y−A(a)X̂Φ(v̂))H . Finally the optimal aopt is
calculated though solving Eq. (39).

6. NUMERICAL RESULTS

In this section, we present several numerical examples to illustrate performances of the proposed
detector. We consider a special case of MIMO radar, where the transmit array is also the receive
array (M = N). The simulation scenario is described in Figure 2, and the simulation parameters are
shown in Table 1. Since the closed-form expression of false alarm rate and threshold is not available, we
use Monte Carlo simulations instead. We assume that the entries of C−1/2 are generated from CN (0, 1)
distribution and then are scaled to satisfy the required SCR. The definition of signal to clutter (SCR)
is similar to [34], which is

SCR =
1
K

∑K
k=1 (A(a)XΦ(k,v))H (A(a)XΦ(k,v))

tr(C)
(40)

Table 1. Parameter settings of the simulations.

Parameters Values
Carrier frequency f0 1GHz

Bandwidth B 100 MHz
Frequency weights a 1/

√
MIM

Pulse repetition interval Tr 2 ms
Pulse number K 40

Height of the radar platform 200 m
Height of target 100 m

Relative distance between radar and target 5 km
Scattering coefficient of the target X CN (0, 1)

Multipath number P 3
signal to clutter (SCR) −25 dB

In Figure 5, we show the receiver operating characteristics (ROC) curves with different transmitters
and receivers, where the number of transmit and receive antennas is N = M = 2, 3, 4, respectively. If
not explicit stated, other parameters are the same as in Table 1. As expected, the detection performance
is improved with increasing the antenna number. We exploit the target response at different frequencies
as well as the frequency diversity among different transmit antennas due to the OFDM MIMO radar
scheme to improve the detection performances.

The effects of multipath number on the detection performances at different SCRs are shown in
Figure 6, where the number of transmit and receive antennas is N = M = 3. Here, P = 1 means that
we only consider the line of sight (LOS) return. The curves show that the detection performance can
be improved through exploiting the multipath effect with OFDM MIMO radar. At the same time, the
results also show that the detection performance is improved as SCR is increased.
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Figure 5. Detection performances with different
transmitters and receivers.
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Figure 6. Detection performances with different
path numbers and SCRs.
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Figure 7. Detection performances with different
target heights.
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Figure 8. Comparison of detection performances
between monostatic OFDM and OFDM MIMO
radar.

Figure 7 depicts the detection performances with different target heights, where the transmit and
receive antennas are N = M = 3. The results show that the detection performance decreases with the
increase of target height in low grazing angle scenario. As the target height becomes larger, the grazing
angle gets larger, and the complex scattering coefficient becomes smaller. Therefore, the detection
performances decrease.

We compare performances of the detector with that in [12] which was derived with OFDM single-
input single-output (SISO) radar. The results are shown in Figure 8, where L denotes the subcarrier
number in OFDM SISO radar system. As for OFDM SISO radar, the detection performance is improved
with increasing the subcarrier number, which agrees with the conclusions in [12]. However, the detection
performances of OFDM MIMO with N = M = 3 (which means that three subcarriers are used)
outperform that of the OFDM SISO radar with L = 2, 3, 4, because the measurements of OFDM
MIMO radar are more than that of OFDM SISO radar, and more information can be obtained. The
results confirm the advantages of using MIMO radar.

Finally, we compare the adaptive design method with that distributing energy equally among
different transmitters. We assume that the transmitted waveform in the firstK pulses has equal weights,
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Figure 9. Detection performances with and without adaptive energy allocation.

i.e., 1/
√
MIM . Then based on Eq. (39), we compute aopt for the next K pulses. We show the detection

performance improvement due to the adaptively energy allocation in Figure 9. Since the target RCS
varies among different subcarriers, the transmitted energy can be optimally allocated accordingly.

7. CONCLUSIONS

In this paper, we address the problem of target detection in low grazing angle with OFDM MIMO radar.
To make the propagation model more accurate, we incorporate the realistic physical and statistical
effects. Based on the characteristic of OFDM MIMO radar system and the multipath propagation
model, we develop an OFDM MIMO measurement model and derive a GLRT detector under Gaussian
clutter assumption. Then we propose an adaptive design algorithm based on maximizing the noncentral
parameter of the distribution of test statistical to enhance the detection performance. We show that
the detection performances are improved due to the multipath utilization as well as the adaptive design
method. We also demonstrate that the detection performances of OFDM MIMO radar outperform the
monostatic OFDM radar. However, we only consider Gaussian clutter assumption, and we will extend
our work to more general situations such as compound Gaussian clutter in the future work.
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