Propagation Properties of Partially Coherent Lorentz-Gauss Beams in Uniaxial Crystals Orthogonal to the X-Axis

Guoquan Zhou¹, *, Zhiyue Ji¹, and Guoyun Ru²

Abstract—Analytical expressions of the elements of a cross spectral density matrix are derived to describe the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis. The intensity and degree of polarization for the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis are also presented. The evolution properties of the partially coherent Lorentz-Gauss beam are numerically demonstrated. The influences of the uniaxial crystal and coherence length on the propagation properties of the partially coherent Lorentz-Gauss beam in uniaxial crystals orthogonal to the x-axis are examined. The uniaxial crystal considered here has the property of the extraordinary refractive index being larger than the ordinary refractive index. The partially coherent Lorentz-Gauss beam in the direction along the x-axis spreads more rapidly than that in the direction along the y-axis. With increasing the ratio of the extraordinary refractive index to the ordinary refractive index, the spreading of the partially coherent Lorentz-Gauss beam increases in the direction along the x-axis, but decreases in the direction along the y-axis. Meanwhile, the degree of polarization in the edges of the long and short axes of the beam spot increases. With increasing the coherence length, the beam spot of the partially coherent Lorentz-Gauss beam uniformly becomes less, and the maximum degree of polarization in the edge of the beam spot decreases.

1. INTRODUCTION

Due to high angular spreading, Lorentz-Gauss beams are introduced to describe the radiation emitted by a single mode laser diode [1, 2]. The beam properties including symmetry properties [3], focal shift [4], beam propagation factor [5], and Wigner distribution function [6, 7] of Lorentz-Gauss beams have been investigated, respectively. Also, the propagation of Lorentz-Gauss beams has been widely examined in free space [3], in uniaxial crystals orthogonal to the optical axis [8, 9], through a fractional Fourier transform optical system [10, 11], in a turbulent atmosphere [12], in a Kerr medium [13], and in a strongly nonlocal nonlinear media [14]. Tight focusing properties of radially polarized Lorentz-Gauss beam has been demonstrated [15]. A virtual source to generate the rotationally symmetric Lorentz-Gauss beam has been proposed [16]. The research also shows that the Lorentz-Gauss beam can be used to trap the particles with a refractive index larger than the ambient index [17].

In practical optical systems, laser beams are almost partially coherent [18], which indicates that fully coherent laser sources are ideal cases. Therefore, the research on Lorentz-Gauss beams has been further extended to partially coherent cases. Propagation of partially coherent Lorentz-Gauss beams through a paraxial ABCD optical system has been investigated in free space and in a turbulent atmosphere, respectively [19, 20]. The scintillation aspects of partially coherent Lorentz-Gauss beams have been demonstrated via numerically integrating the average intensity and average squared intensity expressions [21]. The analytical expressions of the beam propagation factor and
the refractive indices of the uniaxial crystal are polynomials, respectively. The weight coefficients with the matrix element being given by is the coherence length. A0 is the term number of the expansion. The relative dielectric tensor of the uniaxial crystal reads as

$$\varepsilon = \begin{pmatrix} n_e^2 & 0 & 0 \\ 0 & n_o^2 & 0 \\ 0 & 0 & n_o^2 \end{pmatrix},$$

(1)

The second order coherence and polarization properties of a partially coherent Lorentz-Gauss beam in the boundary plane \(z = 0\) is characterized by the following \(2 \times 2\) cross spectral density matrix [35]

$$\hat{W}(\rho_{10}, \rho_{20}, 0) = \begin{bmatrix} W_{xx}(\rho_{10}, \rho_{20}, 0) & W_{xy}(\rho_{10}, \rho_{20}, 0) \\ W_{yx}(\rho_{10}, \rho_{20}, 0) & W_{yy}(\rho_{10}, \rho_{20}, 0) \end{bmatrix},$$

(2)

with the matrix element being given by

$$W_{ij}(\rho_{10}, \rho_{20}, 0) = \frac{A_{ij} w_{0x}^2 w_{0y}^2}{(w_{0x}^2 + x_{10}^2) (w_{0y}^2 + y_{10}^2) (w_{0x}^2 + x_{20}^2) (w_{0y}^2 + y_{20}^2)} \exp \left(-\frac{x_{10}^2 + x_{20}^2 + y_{10}^2 + y_{20}^2}{w_0^2} \right) \times \exp \left[-\frac{(x_{10} - x_{20})^2 + (y_{10} - y_{20})^2}{\sigma^2} \right],$$

(3)

where \(\rho_{10} = (x_{10}, y_{10})\) and \(\rho_{20} = (x_{20}, y_{20})\). \(w_{0x}\) and \(w_{0y}\) are the parameters related to the beam widths of the Lorentz part in the \(x\)- and \(y\)-directions, respectively. \(w_0\) is the waist of the Gaussian part. \(\sigma\) is the coherence length. \(A_{ij}\) denotes the correlations of the \(x\)- and \(y\)-components. If \(i = j\), \(A_{ij} = 1\). If \(i \neq j\), \(|A_{ij}| \leq 1\). Moreover, \(A_{ij}^* = A_{ji}\). The asterisk means the complex conjugation. The Lorentz distribution can be expanded into the linear superposition of Hermite-Gaussian functions [36]:

$$\frac{1}{(w_{0x}^2 + x_{10}^2) (w_{0y}^2 + y_{10}^2)} = \frac{\pi}{2w_{0x}^2 w_{0y}^2} \sum_{m1=0}^{N} \sum_{n1=0}^{N} a_{2m1} a_{2n1} H_{2m1} \left(\frac{x_{10}}{w_{0x}}\right) H_{2n1} \left(\frac{y_{10}}{w_{0y}}\right) \times \exp \left(-\frac{x_{10}^2}{2w_{0x}^2} - \frac{y_{10}^2}{2w_{0y}^2} \right),$$

(4)

where \(N\) is the term number of the expansion. \(H_{2m1}\) and \(H_{2n1}\) are the \(2m1\)-th and \(2n1\)-th order Hermite polynomials, respectively. The weight coefficients \(a_{2m1}\) and \(a_{2n1}\) have been given by [36]. The value of \(a_{2m1}\) dramatically decreases with increasing the even number \(2m1\). \(a_0 = 0.7399\), \(a_2 = 0.9298 \times 10^{-2}\).
and $a_{10} = 0.3008 \times 10^{-6}$. The cross spectral density matrix of the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis is found to be

$$
\tilde{W}(\rho_1, \rho_2, z) = \begin{bmatrix}
W_{xx}(\rho_1, \rho_2, z) & W_{xy}(\rho_1, \rho_2, z) \\
W_{yx}(\rho_1, \rho_2, z) & W_{yy}(\rho_1, \rho_2, z)
\end{bmatrix},
$$

(5)

where $\rho_1 = (x_1, y_1)$ and $\rho_2 = (x_2, y_2)$. As the scalar case is a simple one, here we only consider the scalar case. Within the framework of the paraxial propagation, the elements of the cross spectral density matrix propagating in uniaxial crystals orthogonal to the x-axis are given by [37, 38]

$$
W_{xx}(\rho_1, \rho_2, z) = \frac{k^2 n_o^2}{4\pi^2 z^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W_{xx}(\rho_{10}, \rho_{20}, 0)
\times \exp \left\{ \frac{ik}{2z n_e} \left[n_o^2 (x_1 - x_{10})^2 + n_e^2 (y_1 - y_{10})^2 \right] \right\}
\times \exp \left\{ \frac{-ik}{2z n_e} \left[n_o^2 (x_2 - x_{20})^2 + n_e^2 (y_2 - y_{20})^2 \right] \right\} dx_{10} dy_{10} dx_{20} dy_{20},
$$

(6)

$$
W_{yy}(\rho_1, \rho_2, z) = \frac{k^2 n_o^2}{4\pi^2 z^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W_{yy}(\rho_{10}, \rho_{20}, 0) \exp \left\{ \frac{ik n_o}{2z} \left[(x_1 - x_{10})^2 + (y_1 - y_{10})^2 \right] \right\}
\times \exp \left\{ \frac{-ik n_o}{2z} \left[(x_2 - x_{20})^2 + (y_2 - y_{20})^2 \right] \right\} dx_{10} dy_{10} dx_{20} dy_{20},
$$

(7)

$$
W_{xy}(\rho_1, \rho_2, z) = \frac{k^2 n_o^2}{4\pi^2 z^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W_{xy}(\rho_{10}, \rho_{20}, 0) \exp \left\{ \frac{ik}{2z n_e} \left[n_o^2 (x_1 - x_{10})^2 + n_e^2 (y_1 - y_{10})^2 \right] \right\}
\times \exp \left\{ \frac{-ik n_o}{2z} \left[(x_2 - x_{20})^2 + (y_2 - y_{20})^2 \right] \right\} dx_{10} dy_{10} dx_{20} dy_{20},
$$

(8)

$$
W_{yx}(\rho_1, \rho_2, z) = W_{xy}^*(\rho_1, \rho_2, z),
$$

(9)

where $k = 2\pi/\lambda$ is the wave number in vacuum and λ the incident wavelength in vacuum. Using the following mathematical formulae [39]:

$$
\int_{-\infty}^{\infty} H_{2m'}(x) \exp\left\{ -\frac{(x - y)^2}{u} \right\} dx = \sqrt{\pi/u} (1 - u)^m H_{2m'} \left[(1 - u)^{-1/2} y \right],
$$

(10)

$$
H_{2m}(x) = \sum_{l=0}^{m} \frac{(-1)^l (2m)!}{l!(2m - 2l)!} (2x)^{2m-2l},
$$

(11)

$$
(a + b)^n = \sum_{l=0}^{n} \frac{n!}{l!(n-l)!} a^{n-l} b^l,
$$

(12)

$$
\int_{-\infty}^{\infty} x^{2n} \exp\left\{ -bx^2 + 2cx \right\} dx = (2n)! \sqrt{\frac{\pi}{b}} \left(\frac{c}{b} \right)^{2n} \exp\left\{ \frac{c^2}{b} \right\} \sum_{s=0}^{n} \frac{1}{s!(2n-2s)!} \left(\frac{b}{4c^2} \right)^s,
$$

(13)

the elements of the cross spectral density matrix propagating in uniaxial crystals orthogonal to the x-axis can be analytically expressed as

$$
W_{xx}(\rho_1, \rho_2, z) = \frac{k^2 \pi n_o^2}{16z^2 \sqrt{b_1 n_2}} \exp \left\{ \frac{ik}{2z n_e} \left[n_o^2 (x_1^2 - x_{10}^2) + n_e^2 (y_1^2 - y_{10}^2) \right] \right\} \exp \left\{ -\frac{1}{4b_1} \left(\frac{kn_e w_0 x_1}{z} \right)^2 \right\}
\times \exp \left\{ -\sum_{m_{10} = 0}^{m_1} (-1)^{m_1} \frac{(2m_1)!}{l_1!}(b_1^2 - b_1)^{m_1-l_1} \right\}
\times \sum_{l_2=0}^{m_2} \frac{(2m_1 - 2l_1)!}{l_2!(2m_1 - 2l_1 - l_2)!} \left(\frac{ik n_o w_0 x_1}{z n_e} \right)^{2m_1-2l_1-l_2},
$$

(14)
\[
W_{yy}(\rho_1, \rho_2, z) = \frac{k^2 \pi \Delta_{21}}{16 e^2} \sqrt{\frac{b_3 u_3}{b_7 u_4}} \exp\left[\frac{ikn_\sigma (\rho_1^2 - \rho_2^2)}{2z}\right] \exp\left[-\left(\frac{1}{4b_3} \left(\frac{k n_{w_0} x_1}{z}\right) - \frac{1}{4u_3} \left(\frac{k n_{w_0} y_1}{z}\right)^2\right)\right] \\
\times \frac{c_3}{b_4} \frac{2^{m_2-2l_3}}{l_2!(2m_2 - 2l_3 + l_2)!} \left(\frac{c_3}{b_4}\right)^{2m_2-2l_3} \exp\left(\frac{c_3}{b_4}\right)^{2m_2-2l_3} \\
\times \exp\left(\frac{c_3}{b_4}\right) \sum_{s_1=0}^{[2m_2-2l_3+l_2]/2} \frac{1}{s_1!(2m_2 - 2l_3 + l_2 - 2s_1)!} \\
\times \frac{b_4}{4c_3} \frac{s_1}{(2m_2 - 2l_3 + l_2)!} \sum_{l_1=0}^{[2m_1-2l_1]/2} \frac{(-1)^{l_1}(2m_1)!}{l_1!(2m_1 - 2l_1)!(b_1^2 - b_3)^{m_1-l_1}} \\
\times \frac{1}{2^{n_1} \sum_{l_5=0}^{2n_1-2l_4} (2n_1 - 2l_4)! \\
\times \left(-\frac{2u_{0y}}{\sigma^2}\right) \frac{l_5}{l_5!(2n_2 - 2l_6 - l_5)!} \sum_{l_3=0}^{2n_2-2l_6} (2n_2 - 2l_6 + l_5)! \\
\times \frac{c_2}{u_2} \frac{n_2}{u_2} \frac{u_3}{u_4} \frac{1}{s_2!(2n_2 - 2l_6 + l_5 - 2s_2)!} \left(\frac{u_3}{4c_3}\right)^{s_2}, (14)
\]

\[
W_{xy}(\rho_1, \rho_2, z) = \frac{k^2 \pi \Delta_{21}}{16 e^2} \sqrt{\frac{b_3 u_3}{b_7 u_5}} \exp[i k z (n_e - n_0)] \exp\left[\frac{ikn_\sigma (\rho_1^2 - \rho_2^2)}{2z}\right] \exp\left[-\left(\frac{1}{4b_1} \left(\frac{k n_{w_0} x_1}{2z}\right)^2 + \frac{ikn_\sigma y_1}{2z} - \frac{ikn_\sigma}{2z} \rho_2^2\right)\right] \\
\times \exp\left[\frac{1}{4b_1} \left(\frac{k n_{w_0} x_1}{2z}\right)^2 - \frac{1}{4u_1} \left(\frac{k n_{w_0} y_1}{2z}\right)^2\right] \\
\times \frac{c_1}{u_1} \frac{2^{n_1} (2m_1)!}{l_1!(2m_1 - 2l_1)!} \sum_{l_1=0}^{[2m_1-2l_1]/2} \frac{(-1)^{l_1}(2m_1)!}{l_1!(2m_1 - 2l_1)!(b_1^2 - b_3)^{m_1-l_1}} \\
\times \frac{1}{2^{n_2} \sum_{l_5=0}^{2n_2-2l_4} (2n_2 - 2l_4)! \\
\times \left(-\frac{2u_{0y}}{\sigma^2}\right) \frac{l_5}{l_5!(2n_2 - 2l_6 - l_5)!} \sum_{l_3=0}^{2n_2-2l_6} (2n_2 - 2l_6 + l_5)! \\
\times \frac{c_2}{u_2} \frac{n_2}{u_2} \frac{u_3}{u_4} \frac{1}{s_2!(2n_2 - 2l_6 + l_5 - 2s_2)!} \left(\frac{u_3}{4c_3}\right)^{s_2}, (15)
\]
\[
\left(-\frac{2u_{0x}^2}{\sigma^2}\right) \sum_{l_3=0}^{m_2} \frac{(-1)^{l_3}(2m_2)!}{l_3!(2m_2 - 2l_3)!} 2^{m_2 - 2l_3} \\
\times (2m_2 - 2l_3 + l_2)! \left(\frac{c_5}{b_5}\right)^{2m_2 - 2l_3 + l_2} \exp\left(\frac{c_5^2}{b_5}\right) \sum_{s_1=0}^{[2m_2-l_3+l_2]/2} \frac{1}{s_1!(2m_2 - 2l_3 + l_2 - 2s_1)!} \left(\frac{b_5}{4e_5^2}\right)^{s_1} \\
\times \left(1 - \frac{1}{u_1}\right)^{n_1} \sum_{l_4=0}^{n_1} \frac{(-1)^{l_4}(2n_1)!}{l!(2n_1-l_4)!(u_1^2-u_1)^{n_1-l_4}} \sum_{l_5=0}^{2n_1-2l_4} \frac{(2n_1-2l_4)!}{l_5!(2n_1-2l_4-l_5)!} \left(\frac{ikw_0 y_0 y_1}{z}\right)^{2n_1-2l_4-l_5} \\
\times \left(-\frac{2u_{0y}^2}{\sigma^2}\right) \sum_{l_6=0}^{n_2} \frac{(-1)^{l_6}(2n_2)!}{l_6!(2n_2-2l_6)!} 2^{2n_2 - 2l_6} \left(\frac{c_6}{u_5}\right)^{2n_2 - 2l_6 + l_5} \exp\left(\frac{c_6^2}{u_5}\right) \\
\times \frac{1}{s_2!(2n_2 - 2l_6 + l_5 - 2s_2)!} \left(\frac{u_5}{4e_5^2}\right)^{s_2},
\]

where the auxiliary parameters are defined as follows:

\[b_1 = \left(\frac{1}{w_0^2} + \frac{1}{2w_{0x}^2} + \frac{1}{\sigma^2} - \frac{ikn_0^2}{2zn_e}\right) w_{0x}^2\]

\[b_2 = \left(\frac{1}{w_0^2} + \frac{1}{2w_{0y}^2} + \frac{1}{\sigma^2} + \frac{ikn_0^2}{2zn_e}\right) w_{0y}^2 - \frac{w_{0x}^4}{b_1\sigma^4},\]

\[c_1 = \frac{ikw_0 x_0 n_0^2 x_2}{2zn_e z} - \frac{ikw_0^3 x_0^2 y_1}{2b_1\sigma^2 z},\]

\[c_2 = \frac{ikw_0 y_0 y_1 n_e y_2}{2z} - \frac{ikw_0^3 y_0 y_1}{2u_1\sigma^2 z},\]

\[b_3 = \left(\frac{1}{w_0^2} + \frac{1}{2w_{0x}^2} + \frac{1}{\sigma^2} - \frac{ikn_0}{2z}\right) w_{0x}^2,\]

\[b_4 = \left(\frac{1}{w_0^2} + \frac{1}{2w_{0y}^2} + \frac{1}{\sigma^2} + \frac{ikn_0}{2z}\right) w_{0y}^2 - \frac{w_{0x}^4}{b_3\sigma^4},\]

\[c_3 = \frac{ikw_0 x_0 n_0 x_2}{2z} - \frac{ikw_0^3 x_0^2 y_1}{2b_3\sigma^2 z},\]

\[u_3 = \left(\frac{1}{w_0^2} + \frac{1}{2w_{0y}^2} + \frac{1}{\sigma^2} - \frac{ikn_0}{2z}\right) w_{0y}^2,\]

\[u_4 = \left(\frac{1}{w_0^2} + \frac{1}{2w_{0y}^2} + \frac{1}{\sigma^2} + \frac{ikn_0}{2z}\right) w_{0y}^2 - \frac{w_{0y}^4}{u_3\sigma^4},\]

\[c_4 = \frac{ikw_0 y_0 y_1 n_e y_2}{2z} - \frac{ikw_0^3 y_0 y_1}{2u_3\sigma^2 z},\]

\[c_5 = \frac{ikw_0 x_0 x_2}{2z} - \frac{ikw_0^3 x_0^2 y_1}{2b_1\sigma^2 n_e z},\]
\[b_5 = \left(\frac{1}{w_0^2} + \frac{1}{2w_{0x}^2} + \frac{1}{\sigma^2} + \frac{ikn_o}{2z} \right) w_{0x}^2 - \frac{w_{0x}^4}{b_1\sigma^4} , \]

\[u_5 = \left(\frac{1}{w_0^2} + \frac{1}{2w_{0y}^2} + \frac{1}{\sigma^2} + \frac{ikn_o}{2z} \right) w_{0y}^2 - \frac{w_{0y}^4}{u_1\sigma^4} , \]

\[c_6 = \frac{ikw_{0y}n_oy_1}{2z} - \frac{ikw_{0y}n_ey_1}{2u_1\sigma^2z} . \]

The intensity and degree of polarization for the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the \(x \)-axis are given by [35]

\[I(\rho, z) = \text{Tr} \tilde{W}(\rho, \rho, z) = W_{xx}(\rho, \rho, z) + W_{yy}(\rho, \rho, z) , \]

\[P(\rho, z) = \left\{ 1 - \frac{4\text{det}\tilde{W}(\rho, \rho, z)}{[\text{Tr}\tilde{W}(\rho, \rho, z)]^2} \right\}^{1/2} , \]

where \(\text{Tr} \) denotes the trace, and \(\text{det} \) stands for the determinant.

3. NUMERICAL CALCULATIONS AND ANALYSES

According to the obtained analytical expressions (Equations (14)–(16)), the properties of the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the \(x \)-axis are numerically demonstrated. The calculation parameters are set as follows: \(\lambda = 0.8 \mu m, w_0 = 20 \mu m, w_{0x} = w_{0y} = 10 \mu m, \) and \(n_o = 2.616 \) (rutile crystal). Fig. 1 represents the normalized intensity distribution of the partially coherent Lorentz-Gauss beam in different observation planes of the uniaxial crystal. \(z_0 = kw_0^2/2 \) is the Rayleigh distance in vacuum. \(\sigma = 10 \mu m \) and \(n_e/n_o = 1.1 \) in Fig. 1. Equation (33) denotes that the intensity of the partially coherent Lorentz-Gauss beam is independent of \(A_{xy} \). Upon propagation

![Figure 1](image-url)
Figure 2. The normalized intensity distribution of the partially coherent Lorentz-Gauss beam propagating in different uniaxial crystal. $\sigma = 10 \, \mu m$ and $z = 2z_0$. (a) $n_e/n_o = 1.1$, (b) $n_e/n_o = 1.3$, (c) $n_e/n_o = 1.5$, and (d) $n_e/n_o = 1.7$.

Figure 3. The normalized intensity distribution of the partially coherent Lorentz-Gauss beam propagating in the uniaxial crystal. $n_e/n_o = 1.1$ and $z = 2z_0$. (a) $\sigma = 5 \, \mu m$, (b) $\sigma = 10 \, \mu m$, (c) $\sigma = 20 \, \mu m$, and (d) $\sigma = \infty$.
Figure 4. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam propagating in the uniaxial crystal. $A_{xy} = 0$, $\sigma = 10\, \mu m$, and $n_e/n_o = 1.1$. (a) $z = 0.1z_0$, (b) $z = z_0$, (c) $z = 2z_0$, and (d) $z = 5z_0$.

Figure 5. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam propagating in different uniaxial crystal. $A_{xy} = 0$, $\sigma = 10\, \mu m$, and $z = 2z_0$. (a) $n_e/n_o = 1.1$, (b) $n_e/n_o = 1.3$, (c) $n_e/n_o = 1.5$, and (d) $n_e/n_o = 1.7$.
Figure 6. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam propagating in the uniaxial crystal. \(A_{xy} = 0, n_e/n_o = 1.1, \) and \(z = 2z_0. \) (a) \(\sigma = 5 \mu m, \) (b) \(\sigma = 10 \mu m, \) (c) \(\sigma = 20 \mu m, \) and (d) \(\sigma = \infty. \)

Figure 7. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam propagating in the uniaxial crystal. \(A_{xy} = 0.2, \sigma = 10 \mu m, \) and \(n_e/n_o = 1.1. \) (a) \(z = 0.1z_0, \) (b) \(z = z_0, \) (c) \(z = 2z_0, \) and (d) \(z = 5z_0. \)
in the uniaxial crystals orthogonal to the x-axis, the spreading of the partially coherent Lorentz-Gauss beam in the direction along the y-axis is far slower than that in the direction along the x-axis due to anisotropic effect of the crystals. As a result, the beam spot of the partially coherent Lorentz-Gauss beam propagating in the uniaxial crystals is elongated in the direction along the x-axis. The normalized intensity distribution of the partially coherent Lorentz-Gauss beam propagating in different uniaxial crystals is shown in Fig. 2. $\sigma = 10\, \mu m$ and $z = 2z_0$ in Fig. 2. With increasing the value of n_e/n_o, the spreading of the partially coherent Lorentz-Gauss beam increases in the direction along the x-axis, but decreases in the direction along y-axis, which results in the increased elongation of the beam spot in the direction along the x-axis. Fig. 3 represents the normalized intensity distribution of the partially coherent Lorentz-Gauss beam with different coherence lengths in the observation plane $z = 2z_0$. $n_e/n_o = 1.1$ in Fig. 3. With increasing the coherence length, the beam spot of the partially coherent Lorentz-Gauss beam shrinks uniformly in each direction. Therefore, the beam spot of a fully coherent Lorentz-Gauss beam is the smallest.

Figure 4 represents the distribution of degree of polarization of the partially coherent Lorentz-Gauss beam in different observation planes of the uniaxial crystal. $A_{xy} = 0$, $\sigma = 10\, \mu m$, and $n_e/n_o = 1.1$ in Fig. 4. The loop in the subfigures denotes that the normalized intensity inside it is not equal to zero (hereafter). Here, we only discuss the degree of polarization at the region where the normalized intensity distribution is larger than zero. The degree of polarization shows a symmetrical distribution. The degree of polarization in the edges of the long and short axes reaches the maximum and second largest values, respectively. As $A_{xy} = 0$, the on-axis degree of polarization is always zero. Moreover, the degree of polarization in the central region of the beam spot is also equal to zero. Upon propagation in the uniaxial crystals orthogonal to the x-axis, the degree of polarization in the edge of the beam spot first increases and then keeps stable without considering the expansion of the beam spot.

The degree of polarization of the partially coherent Lorentz-Gauss beam propagating in different uniaxial crystals has different distribution, as shown in Fig. 5, in which $A_{xy} = 0$, $\sigma = 10\, \mu m$, and $z = 2z_0$. It is shown that the degree of polarization in the edges of the long and short axes increases with the increase of n_e/n_o. With increasing the value of n_e/n_o, the region along the x-axis where the degree of polarization has the maximum value increases faster than the region along the y-axis where

Figure 8. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam propagating in different uniaxial crystal. $A_{xy} = 0.2$, $\sigma = 10\, \mu m$, and $z = 2z_0$. (a) $n_e/n_o = 1.1$, (b) $n_e/n_o = 1.3$, (c) $n_e/n_o = 1.5$, and (d) $n_e/n_o = 1.7$.
Figure 9. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam propagating in the uniaxial crystal. $A_{xy} = 0.2$, $n_e/n_o = 1.1$, and $z = 2z_0$. (a) $\sigma = 5 \, \mu m$, (b) $\sigma = 10 \, \mu m$, (c) $\sigma = 20 \, \mu m$, and (d) $\sigma = \infty$.

the degree of polarization has the maximum value. With increasing the value of n_e/n_o, therefore, the region difference where the degree of polarization has the maximum value between the directions along the x- and y-axes widens. The region with the maximal value of the degree of polarization in the direction along the x-axis is larger than that in the direction along the y-axis. Fig. 6 represents the distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam with different coherence lengths in the observation plane $z = 2z_0$, $A_{xy} = 0$ and $n_e/n_o = 1.1$ in Fig. 6. The magnitude of the degree of polarization in Fig. 6(c) is larger than that in Fig. 6(b). However, their difference is slightly smaller than 0.1, which leads to their same label in Fig. 6. With increasing the coherence length, the maximum degree of polarization in the edge of the beam spot will decrease. As a result, the degree of polarization of the fully coherent Lorentz-Gauss beam reaches the smallest value. Figs. 7–9 are very similar to Figs. 4–6, respectively. The only difference is that $A_{xy} = 0$ in Figs. 4–6 and $A_{xy} = 0.2$ in Figs. 7–9. Comparing Figs. 7–9 with Figs. 4–6, one can draw a conclusion that all the results obtained from the case of $A_{xy} = 0$ are also valid for the case of $A_{xy} = 0.2$. Accordingly, the evolution properties of the degree of polarization of the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis are similar for the different values of A_{xy}.

4. CONCLUSIONS

Analytical expressions of the elements of the cross spectral density matrix are derived to describe the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis. Therefore, the intensity and degree of polarization for the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis can be calculated. Then the evolution properties of the partially coherent Lorentz-Gauss beam are numerically demonstrated. The influences of the uniaxial crystal and coherence length on the propagation properties of the partially coherent Lorentz-Gauss beam in uniaxial crystals orthogonal to the x-axis are examined. Here we consider that the extraordinary refractive index of the uniaxial crystal is larger than its ordinary refractive index. Upon propagation in the uniaxial crystals orthogonal to the x-axis, the spreading of the partially coherent Lorentz-Gauss beam in the direction along the x-axis is faster than that in the direction along...
the y-axis, which results in the elongation of the beam spot in the direction along the x-axis. With increasing the value of n_e/n_o, the spreading of the partially coherent Lorentz-Gauss beam increases in the direction along the x-axis, but decreases in the direction along the y-axis. With increasing the coherence length, the beam spot of the partially coherent Lorentz-Gauss beam uniformly becomes less in each direction. The degree of polarization of the partially coherent Lorentz-Gauss beam displays a symmetrical distribution. The degree of polarization in the edges of the long and short axes of the beam spot reaches the maximum and second largest values, respectively. Upon propagation in the uniaxial crystals orthogonal to the x-axis, the degree of polarization in the edge of the beam spot first increases and then keeps stable without counting the expansion of the beam spot. With increasing the value of n_e/n_o, the degree of polarization in the edges of the long and short axes of the beam spot increases, and the region difference where the degree of polarization reaches the maximum value between the directions along the x- and y-axes also widens. With increasing the coherence length, the maximum degree of polarization in the edge of the beam spot decreases. This research is beneficial to the practical applications of single mode diode laser.

ACKNOWLEDGMENT

This research was supported by the National Natural Science Foundation of China under Grant No. 11574272, Zhejiang Provincial Natural Science Foundation of China under Grant No. LY16A040014, and the Scientific Research Fund of Zhejiang Provincial Education Department under Grants Nos. Y201432649 and Y201225628.

REFERENCES