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Abstract–This article presents a numerical technique based on the
modal-expansion method for modeling a multi-sleeve monopole an-
tenna fed through an infinite ground-plane by a coaxial transmission
line. The modal-expansion analysis is facilitated by introducing a per-
fectly conducting boundary at a variable height over the ground-plane
of the monopole. The resulting structure is then divided into a num-
ber of regions and the electromagnetic field components in each region
are expanded into the summation of its modal functions. The cur-
rent distribution over the monopole and sleeve surfaces as well as the
antenna’s input impedance are computed by finding the expansion co-
efficients through matching the tangential field components across the
regional interfaces. Numerical results for the surface current distribu-
tion and input impedance are presented and discussed with emphasis
laid on single- and double-sleeve monopole antennas.
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1. INTRODUCTION

Monopole antennas have been widely used in airborne and ground-
based communication systems. Monopole antennas on portable tele-
phones can be observed in daily life. A monopole with an infinite
ground-plane has the very similar radiation characteristics in the half-
space over the ground-plane as a dipole according to the method of
images. A considerable amount of theoretical and experimental work
has been devoted to the problem of a conventional monopole [1, 2].
The sleeve-monopole antenna is a modification of the conventional
monopole antenna with the outer conductor of the coaxial feed line
projected over the ground plane. The interesting and desirable prop-
erty of the sleeve monopole is its broad-band characteristic [3, 4].

In spite of the fact that the sleeve monopole exhibits broader band-
width over conventional monopole antennas, it was not thoroughly and
intensively investigated in the past. Taylor [3] and King [1] employed
the method of images and the superposition theorem to determine the
surface currents on the monopole and on the sleeve, but they did not
take into account the effect of the different radii of the monopole and
the sleeve. Therefore, it would be difficult to generalize their technique
to multi-sleeve monopoles. Taylor [3] also carried out careful measure-
ments of the current distribution and input impedance of a single sleeve
monopole. Rispin and Chang [5] introduced a simple thin-wire analysis
for sleeve antennas as well as other wire antennas by constructing the
standing wave current on the antenna surface. Wunsch [6] determined
the impedance and radiation pattern of the sleeve-monopole antenna
by using a Fourier series representation of its surface current. A rig-
orous modal-expansion method for conventional monopole and sleeve-
monopole antennas was recently developed by Shen and MacPhie [7,
8].

Experimental investigation of double- and multi-sleeve antennas in-
dicated that a much wider bandwidth can be achieved by properly
choosing the geometrical parameters. But to the authors’ knowledge,
no sound theoretical investigation has appeared. This article presents
a theoretical analysis of a multi-sleeve monopole antenna by using
the modal-expansion method [7, 8]. Our emphasis is laid on nu-
merically examining the effect of the structural parameters on the
input impedance and the current distribution on the monopole and
the sleeves of single- and double-sleeve monopole antennas.

This article is organized as follows. Section 2 details the mathemati-
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cal formulation for the multi-sleeve monopole problem. By introducing
a perfectly conducting boundary parallel to the ground-plane over the
monopole antenna, we are able to employ the modal-expansion method
to rigorously analyze the antenna problem and accurately characterize
the effects of the feed line and different radii of the monopole and the
sleeves. Unlike using the perfectly matched boundary (PMB) in [8],
where two problems with either electric or magnetic wall need to be
solved, in this work we only employ the perfectly conducting bound-
ary to reduce the computational effort by half. To make the technique
even more efficient, we also introduce a circular disk to the top plate to
greatly reduce the size of the matrices to be inverted. This is achieved
without compromising the accuracy since the radiation is null in the
vertical direction and the distance between the assumed plate and the
ground plane is maintained to be several wavelengths for convergent
results.

After assuming the conducting boundary, we divide the resulting
structure into a number of subregions. Starting with the Maxwell’s
equation, we then derive the modal functions for every subregion and
expand the electromagnetic fields in all the subregions by the summa-
tion of their modal functions. By matching the tangential electric and
magnetic components along the regional interfaces, we can find the ex-
pansion coefficients from which the surface current distribution, input
impedance, and radiation pattern result. Section 3 gives numerical
results for single- and double-sleeve monopole antennas. Current dis-
tributions, input impedances, and radiation patterns are numerically
examined for different values of the geometrical parameters. Conclu-
sions and our contributions are summarized in Section 4.

2. FORMULATION

The theoretical model we employ to characterize an N -sleeve monopole
antenna fed by a coaxial transmission line is shown in Fig. 1, where a
perfectly conducting boundary is placed parallel to the ground plane
at a distance d0 above the monopole. Since the radiation is null in the
vertical direction, it is feasible to introduce a disk on the conducting
plate to greatly reduce the size of the matrices to be inverted, which
makes this technique very efficient. The computational efficiency is
gained without compromising the accuracy since the separation be-
tween the introduced plate and the ground-plane can be a few wave-
lengths so that good convergent results can be obtained [8]. It will be
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Figure 1. Analysis model of a multi-sleeve monopole antenna.

seen later that the presence of the conducting plate and the loading
disk does not have significant influence on antenna’s characterization.

As indicated in Fig. 1, the inner and outer radii of the coaxial feed
line are a1 and b1 , respectively. The interior and exterior radii of the
i-th sleeve are, respectively, a2i and a2i+1 for i = 1, 2, . . . , N . The
separation distances from the top disk to the grooves and sleeves are
d2i−1 and d2i (i = 1, 2, . . . , N) . The distance between the ground-
plane and the postulated wall is d2N+1 . As described in [8], after
introducing the conducting boundary on the top of the antenna, the
resulting structure of this N -sleeve monopole can be analyzed by the
modal-expansion method.

As illustrated in Fig. 1, the whole structure of interest is first di-
vided into (2N + 3) subregions: I, II, 1, 2, . . . , 2N and 2N + 1 . Since
the structure and the incident dominant TEM mode in the coaxial
feed waveguide are axis-symmetric (no φ variation), only three field
components (Ez, Eρ , and Hφ) are non-zero.

Starting with Maxwell’s curl equations

∇× �H = jωε�E (1a)

∇× �E = − jωµ�H (1b)

and using the relation ∂
∂φ = 0 , one can derive the following expressions
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for three non-zero field components Ez, Eρ , and Hφ .

Eρ =
−1
jωε

∂

∂z
Hφ (2a)

Ez =
1
jωε

1
ρ

∂

∂ρ
(ρHφ) (2b)

∂2Hφ

∂ρ2
+

1
ρ

∂Hφ

∂ρ
+
∂2Hφ

∂z2
+

(
k2 − 1

ρ2

)
Hφ = 0 (2c)

where k = ω
√
µε is the wave number. It is noted that the exp(jωt)

time dependence is assumed and suppressed for all the fields through-
out this article. Based on these relations, one has no difficulty in
finding the field expressions for all the subregions in Fig. 1; they are
summarized in the following.

For the coaxial feed waveguide (Region I), the transverse electro-
magnetic fields with respect to the z-axis can be represented by

EI
ρ =

NI∑
n=0

(AIn exp[jβIn(z − d1)] +ARn exp[−jβIn(z − d1)]) eInρ (3a)

HI
φ=

NI∑
n=0

(−AIn exp[jβIn(z−d1)]+ARn exp[−jβIn(z−d0)])YIneInρ (3b)

where AIn=(AI0, AI1, . . . , AINI )T and ARn=(AR0, AR1, . . . , ARNI )T

with T representing the transpose operation, are the incident and re-
flected modal amplitude column vectors in the coaxial feed waveguide;
βIn =

√
k2

0ε
I
r − (xIn/a1)2 is the propagation constant with xIn/a1

being the cutoff wavenumber of the n-th mode, and YIn = ωεI
βIn

is
the modal admittance. The normalized transverse modal electric field
eInρ has the form of [9]

eInρ =




1√
2π ln(b1/a1)

1
ρ
, for n = 0

NIn
xIn
a1

Z ′0

(
xIn
a1

ρ

)
, for n > 0


 (4)

where

Z0

(
xIn
a1

ρ

)
=J0

(
xIn
a1

ρ

)
Y0(xIn)− Y0

(
xIn
a1

ρ

)
J0(xIn)

NIn =
√
π

2
1√[

Y0(xIn)/Y0

(
b1xIn
a1

)]2

+ 1
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and J0 and Y0 are the first and second kind of Bessel functions of
order 0, respectively, Z ′0 in (4) denotes the derivative of Z0 with
respect to its entire argument. It is noted that the cutoff wavenumber
xIn/a1 is the solution to the equation Z0

(
xIn
a1

b1

)
= 0.

In Region II we have

EII
z =

1
jωε0

NII∑
n=0

AIIn cos
nπz

d0

J0

(
γIIn ρ

)
J0 (γIIn a1)

(5a)

EII
ρ =

NII∑
n=1

nπAIIn
jωε0d0

sin
nπz

d0

J1

(
γIIn ρ

)
J0 (γIIn a1)

(5b)

HII
φ =

NII∑
n=0

AIIn cos
nπz

d0

J1

(
γIIn ρ

)
γIIn J0 (γIIn a1)

(5c)

where
(
γIIn

)2 = k2
0 − (nπ/d0)2, AIIn is the expansion coefficient to be

determined.
The expressions for the electromagnetic fields in Region 1 can be

obtained by employing the resonator method [8, 10].

E1
z =

1
jωε0

N1∑
n=0

[U1n(ρ)A1n + V1n(ρ)B1n] cos
nπz

d1

−
N ′1∑
n=0

Cne2nz(ρ)
cosh(αnz)

αn sinh(αnd1)
(6a)

E1
ρ =

N1∑
n=0

−nπ
jωε0d1γ2

1n

[
U ′1n(ρ)A1n + V ′1n(ρ)B1n

]
sin

nπz

d1

+
N ′1∑
n=0

Cne2nρ(ρ)
sinh(αnz)
sinh(αnd1)

(6b)

H1
φ =

N1∑
n=0

−1
γ2

1n

[
U ′1n(ρ)A1n + V ′1n(ρ)B1n

]
cos

nπz

d1

−
N ′1∑
n=0

Cne2nρ(ρ)
jωε0 cosh(αnz)
αn sinh(αnd1)

(6c)
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where γ2
in = k2

0 −
(
nπ
di

)2
, and

Uin(ρ) =
J0(γinρ)Y0(γinai)− Y0(γinρ)J0(γinai)

J0(γinai+1)Y0(γinai)− Y0(γinai+1)J0(γinai)
(7a)

Vin(ρ) =
J0(γinai+1)Y0(γinρ)− Y0(γinai+1)J0(γinρ)
J0(γinai+1)Y0(γinai)− Y0(γinai+1)J0(γinai)

(7b)

for i = 1, 2, . . . , 2N . In (6) e2nz(ρ) and e2nρ(ρ) are the longitudinal
and transverse electric field components in a coaxial waveguide whose
inner and outer radii are a1 and a2 , respectively; α2

n = (x1n/a1)2−k2
0

with x1n/a1 being the cutoff wavenumber of the n-th mode in that
waveguide. Expression for e2nρ(ρ) is the same as (4) for eInρ(ρ) with
xIn replaced by x1n and b1 with a2 .

The electromagnetic fields in Region i (i = 2, 3, . . . , 2N) are as
follows:

Ei
z =

1
jωε0

Ni∑
n=0

[Uin(ρ)Ain + Vin(ρ)Bin] cos
nπz

di
(8a)

Ei
ρ =

Ni∑
n=0

−nπ
jωε0diγ2

in

[
U ′in(ρ)Ain + V ′in(ρ)Bin

]
sin

nπz

di
(8b)

H i
φ =

Ni∑
n=0

−1
γ2
in

[
U ′in(ρ)Ain + V ′in(ρ)Bin

]
cos

nπz

di
(8c)

where Uin(ρ) and Vin(ρ) are defined in (7). Finally, the electromag-
netic field components in Region 2N + 1 have the form of

E2N+1
z =

1
jωε0

N2n+1∑
n=0

A(2N+1)n cos
nπ(z + s)
d2N+1

H
(2)
0 (γ(2N+1)nρ)

H
(2)
0 (γ(2N+1)na2N+1)

(9a)

E2N+1
ρ =

N2N+1∑
n=0

nπA(2N+1)n

jωε0d2N+1
sin

nπ(z+s)
d2N+1

H
(2)
1 (γ(2N+1)nρ)

γ(2N+1)nH
(2)
0 (γ(2N+1)na2N+1)

(9b)

H2N+1
φ =

N2N+1∑
n=0

A(2N+1)n cos
nπ(z+s)
d2N+1

H
(2)
1 (γ(2N+1)nρ)

γ(2N+1)nH
(2)
0 (γ(2N+1)na2N+1)

(9c)

where γ2
(2N+1)n = k2

0−
(

nπ
d2N+1

)2
, and H

(2)
0 and H

(2)
1 are the outgoing

second kind Hankel functions of order 0 and 1, respectively.
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After having found all the field expressions, we are now at the po-
sition to match these field components along the regional interfaces.
In order to efficiently handle this multi-sleeve structure, a recursive
algorithm is desired. In the following, we shall deal with the field-
matching process [8] for one groove cell first and derive the recursive
matrix equations for the expansion coefficients and then use the derived
recursive relation to treat the general multi-layered problem. Consider
the groove between sleeve i and sleeve i+1 , as shown in Fig. 2, which
is scaled for a better view. The groove region is denoted as 2i + 1 ,
while the regions of sleeves i and i+1 are, respectively, 2i and 2i+2 .
The field expressions for the three regions are given in (8).

d2i

a 2i+1

a 2i+2

d

2i+22i+1Region 2i

2i+2

d2i+1

Figure 2. The i-th groove cell.

Application of the boundary conditions that the tangential electro-
magnetic fields must be continuous at the interface ρ = a2i+1 between
Regions 2i and 2i+ 1 results in the following matrix equations:

B2i+1 =FA(i+1)A2i (10a)

DC(2i)A2i+DD(2i)B2i=FTA(i+1)

[
DA(2i+1)A2i+1+DB(2i+1)B2i+1

]
(10b)

where

FA(i+1)(n,m) =
εn

d2i+1

∫ d2i

0
cos

nπz

d2i+1
cos

mπz

d2i
dz
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DA(2i) =
−d2iU

′
2i(a2i)

εnγ2
(2i)n

δnm, DB(2i) =
−d2iV

′
2i(a2i)

εnγ2
(2i)n

δnm

DC(2i) =
−d2iU

′
2i(a2i+1)

εnγ2
(2i)n

δnm, DD(2i) =
−d2iV

′
2i(a2i+1)

εnγ2
(2i)n

δnm

with εn = 1 for n = 0, εn = 2 for n > 0 and δn,m = 1 for n =
m, δn,m = 0 for n �= m . Similarly, enforcement of the boundary
conditions that the tangential electromagnetic fields must be equal
along the interface ρ = a2i+2 between Regions 2i+1 and 2i+2 leads
to

A2i+1 =FB(i+1)B2i+2 (11a)

DA(2i+2)A2i+2 + DB(2i+2)B2i+2 =FTB(i+1)

[
DC(2i+1)A2i+1

+DD(2i+1)B2i+1

]
(11b)

where

FB(i+1)(n,m) =
εn

d2i+1

∫ d2i+2

0
cos

nπz

d2i+1
cos

mπz

d2i+2
dz.

From (10) and (11), one eliminates A2i+1 and B2i+1 and derives the
relations between A2i, B2i , and A2i+2 , B2i+2 as follows.

B2i =Ti,11A2i + Ti,12B2i+2 (12a)
A2i+2 =Ti,21A2i + Ti,22B2i+2 (12b)

where

Ti,11 =D−1
D(2i)

[
FTA(i+1)DB(2i+1)FA(i+1) −DC(2i)

]
Ti,12 =D−1

D(2i)F
T
A(i+1)DA(2i+1)FB(i+1)

Ti,21 =D−1
A(2i+2)F

T
B(i+1)DD(2i+1)FA(i+1)

Ti,22 =D−1
A(2i+2)

[
FTB(i+1)DC(2i+1)FB(i+1) −DB(2i+2)

]
.

Equation (12) provides a recursive relation of the electromagnetic fields
between two adjacent sleeve regions 2i and 2i+2 . It is noted that no
matrix inversion is required for computing the transmission matrices
in (12) since DD(2i) and DD(2i) are diagonal matrices. If the relation

B2i+2 = Γ2i+2A2i+2 (13)
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is known, one can easily obtain

B2i = Γ2iA2i (14)

where
Γ2i = Ti,11 + Ti,12Γ2i+2 [I−Ti,22Γ2i+2]

−1 Ti,21

and I is the identity matrix.
Applying the boundary condition at the interface ρ = a2N+1 , we

obtain

A2N+1 =FA(N+1)A2N (15a)

DC(2N)A2N + DD(2N)B2N =FTA(N+1)Y2N+1A2N+1, (15b)

which yields
B2N = Γ2NA2N (16)

where

Γ2N =D−1
D(2N)

[
FTA(N+1)Y2N+1FA(N+1) −DC(2N)

]
FA(N+1)(n,m) =

εn
d2N+1

∫ d2i

0
cos

nπ(z + s)
d2N+1

cos
mπz

d2N
dz

Y2N+1,(n,m) =
εnH

(2)
1 (γ(2N+1)na2N+1)

γ(2N+1)nd2N+1H
(2)
0

(
γ(2N+1)na2N+1

)δnm.
Given (16), one is able to determine Γ2N−2 using (12)–(14) for

i = N − 1 . Repeatedly using (12)–(14), one can then get the matrix
Γ2 for the relation

B2 = Γ2A2. (17)

Finally, application of the boundary conditions that the tangential
electromagnetic field components must be continuous at the interfaces
ρ = a1 , ρ = a2 , and z = d1 leads to the following matrix equations
[8]:

B1 =FA1AII (18a)
DIIAII =FTA1(DA1A1 + DB1B1) + WIIC (18b)

A1 =FB1B2 (19a)
DA2A2 + DB2B2 =FTB1(DC1A1 + DD1B1) + WCC (19b)

C =M(AI + AR) (20a)
YI(AI −AR) =MAA1 + MBB1 + MTY1C (20b)
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where

DII,(n,m) =
d0J1(γIIn a1)

εnγIIn J0(γIIn a1)
δnm, Y1,(n,m) =

−jωε0
αn tanh(αnd1)

δnm

WII,(n,m) = − jωε0
αm

e2mρ(a1)
∫ d0

0
cos

nπz

d0

cosh(αmz)
sinh(αmd1)

dz

WC,(n,m) = − jωε0
αm

e2mρ(a2)
∫ d2

0
cos

nπz

d2

cosh(αmz)
sinh(αmd1)

dz

Mn,m = 2π
∫ b1

a1

e2nρ(ρ)e1mρ(ρ)ρdρ

MA,(n,m) = 2π(−1)m
∫ b1

a1

U ′1m(ρ)
−γ2

1m

e1nρ(ρ)ρdρ

MB,(n,m) = 2π(−1)m
∫ b1

a1

V ′1m(ρ)
−γ2

1m

e1nρ(ρ)ρdρ.

All the above integrals can be worked out in closed-form [11].
Using (17) and after some manipulations one has no difficulty in

arriving at

AR =
[
2(I−Y−1

I YL0)−1 − I
]
AI (21)

AII =Y−1
M WIIM(AI + AR) (22)

A2 =Q
[
FTB1DD1FA1AII + WCM(AI + AR)

]
(23)

where

YL0 =
[(

MAFB1Γ2QFTB1DD1FA1+MBFA1

)
Y−1
M WII+MTY1

]
M

YM =DII − FTA1DB1FA1 − FTA1DA1FB1Γ2QFTB1DD1FA1

with Q =
[
DA2 + DB2Γ2 − FTB1DC1FB1Γ2

]−1 . From (21) we can
obtain the reflection coefficients for all of the modes in the coaxial
feed waveguide assuming the incident column vector AI is known
(for example, (1, 0, . . . , 0)T ) . Other expansion coefficients can then
be found from (10)–(12), (15) and (17)–(20). The input impedance of
the multi-sleeve monopole antenna and the current distribution along
the monopole and the sleeves can be straightforwardly calculated by
using the computed expansion coefficients [8]. Based on the current
distribution and employing the method of images [12, 13], we can then
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calculate the far-zone radiation pattern. For the detailed formulation,
the reader is referred to [8].

3. NUMERICAL EXAMPLES

Based on the formulation described in the previous section, a Fortran
program was written for analyzing a monopole antenna with arbitrary
number of sleeves. The validity of the formulation for conventional
monopole [7] and single-sleeve monopole [8] was extensively verified.
The formulation for the multi-sleeve case has been verified for its spe-
cial single-sleeve case with different radii of the sleeve and checked by
the power conservation consideration. The number of modes consid-
ered in each region follow the well-known criterion [14] and was numer-
ically studied in [8]. The choice of NI = 2 and NII = 80 is adopted
in all the computations reported in this article, and the relations

N ′1 =
a2 − a1

b1 − a1
NI (24)

and
Ni

di
=

NII

d0
for i = 1, 2, . . . , 2N + 1 (25)

are always respected for convergent results.
The influence of the postulated boundary on the calculation of the

antenna’s input impedance is examined with satisfactory convergence
for all the cases considered. Figure 3 shows the convergence behav-
ior of a single-sleeve monopole’s input impedance with respect to the
distances d0 and s . It is seen that the impedance variation is neg-
ligible when d0 > 1.5λ and s > 0.5λ . For larger s , the impedance
converges for smaller d0 . It should be mentioned that the existence of
the metallic disk on the introduced conducting wall can make all the
matrices to be inverted relatively small since the size of the matrices
to be inverted is closely related to d0 and has nothing to do with the
separation d3 = d2 + l+s . Therefore, choosing a suitable s and using
a small d0 can make the modal-expansion analysis very efficient. Sim-
ilar examination is carried out for a double-sleeve monopole antenna
and the convergence behavior is illustrated in Figure 4 for distances d0

and s . We can see that the results are quite good when d0 > 1.4λ and
s > 0.5λ . The choices of d0 = 1.5λ and s = 0.5λ are adopted in the
later computations and will not be specifically stated in the examples
considered.
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Figure 3. Convergence behavior of the input impedance of a single-
sleeve monopole antenna with respect to distances d0 and s (a1 =
1.08 mm, a2 = b1 = 3.5 mm, εrI = 2, a3 = 4.5 mm, d2 = d1 =
d0 + 32 mm, d3 = d2 + 7.5 mm + s, f = 2 GHz).
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Figure 4. Convergence behavior of the input impedance of a double-
sleeve monopole antenna with respect to distances d0 and s (a1 =
1.08 mm, a2 = b1 = 3.5 mm, εrI = 2, a3 = 3.75 mm, a4 = 4.5 mm, a5

= 4.75 mm, d1 = d2 = d0 + 30 mm, d3 = d2 + 30 mm, d4 = d2 +
12 mm, d5 = d2 + 14 mm + s, f = 1.9 GHz).
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Figure 5. Input impedance of a conventional monopole (a1 =
1.08 mm, a2 = b1 = 3.5 mm, εrI = 2, d0 =1.4λ, d1 =d0+37.5 mm+s).

Figures 5, 6, 7 gives a comparison of the input impedance of conven-
tional monopole, single-sleeve monopole, and double-sleeve monopole
antennas. For these three monopoles considered, the impedance’s fre-
quency characteristics are very similar because all of them have the first
resonant frequency at 1.9 GHz. It should be pointed out that for sleeve
monopoles, the input impedance is not only related to the total length
of the antenna projected over the ground-plane, but also depends upon
the length of the monopole and the length of the sleeve. Figures 8
and 9 presents the input impedance of single-sleeve and double-sleeve
monopole antennas with different lengths of the monopole and sleeves.
Both the input resistance and input reactance change dramatically for
different compositions of monopole and sleeves even when the total
length of the antenna (monopole + sleeves) is kept a constant. This is
expected because the sleeves are part of the cylindrical radiator and
different compositions of monopole and sleeves correspond to differ-
ent locations of the feeding point, which should provide quite different
impedance characteristics.

Figure 10 gives the return loss of the three monopole antennas con-
sidered in Figs. 5, 6, 7, respectively. It is interesting to note that
the bandwidth of a single-sleeve monopole is wider than that of the
conventional monopole. The −10 dB return loss bandwidth of the
single-sleeve monopole is 22% , compared to 18% for the conven-
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Figure 6. Input impedance of a single-sleeve monopole (a1 = 1.08 mm,
a2 = b1 = 3.5 mm, εrI = 2, a3 = 4.5 mm, d2 = d1 = d0 +32mm, d3 =
d2 + 7.5 mm + s).
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Figure 7. Input impedance of a double-sleeve monopole (a1 = 1 mm,
a2 = b1 = 4 mm, εrI = 1, a3 = 4.25 mm, a4 = 5.25 mm, a5 =
5.5 mm, d1 = d2 = d0 + 27.5 mm, d3 = d2 + 11.2 mm, d4 = d2 +
4 mm, d5 = d2 + 9 mm + s).
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Figure 8. Input impedance of single-sleeve monopole antennas with
different monopole and sleeve lengths (a1 = 1.08 mm, a2 = b1 =
3.5 mm, εrI = 2, a3 = 4.5 mm, d2 = d1 = d0 + h, d3 = d2 + l + s).
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Figure 9. Input impedance of double-sleeve monopole antennas with
different monopole and sleeve lengths (a1 = 1 mm, a2 = b1 = 4 mm,
εrI = 1, a3 = 4.25 mm, a4 = 5.25 mm, a5 = 5.5 mm, d2 = d1 =
d0 + h, d3 = d2 + l1, d4 = d3 − l2, d5 = d4 + l3 + s).
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Figure 10. Comparison of the return loss of conventional monopole,
single-sleeve monopole, and double-sleeve monopole antennas (Param-
eters are given in Figs. 5, 6, 7, respectively).

tional monopole. The double-sleeve monopole antenna exhibits even
wider bandwidth than single-sleeve monopole. The −10 dB return loss
bandwidth of the double-sleeve monopole is 30% , and the −20 dB re-
turn loss bandwidth is 8.8% without any impedance matching struc-
ture. This is certainly a remarkable advantage of using double-sleeve
monopole antenna since the minimum return loss of the conventional
monopole antenna is about −17 dB, as seen in Fig. 10.

Figures 11 and 12 shows the current distribution and radiation pat-
tern of a conventional monopole. It is seen that the current is almost
zero at the end of the monopole and the current distribution variation
depends on the electrical length (d1−d0)/λ of the monopole. Figures
13 and 14 presents the current distribution and radiated field pattern
of a single-sleeve monopole. Similar to the observations on the input
impedance, the current distribution changes quite a lot for different
values of monopole length and sleeve length. Radiation patterns also
differ from each other, though in a much insignificant way. Figures 15
and 16 gives the current distribution and radiation pattern of a double-
sleeve monopole antenna. Since the current on the monopole and sleeve
surfaces very well approximates the quasi-sinusoidal variation, the ra-
diation pattern is very much similar to that of a quarter-wavelength
monopole, as noted in in Fig. 16.
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4. CONCLUSIONS

This paper has provided a rigorous modal-expansion analysis of the
current distribution and input admittance of a multi-sleeve monopole
antenna driven through an infinite conducting ground plane from a
coaxial line. The presented method has no limitation on the radii of
the monopole and the sleeves and is applicable to a monopole antenna
with arbitrary number of sleeves.

Extensive computed results have been presented for the current dis-
tributions, input impedances, and radiation patterns of single- and
double-sleeve monopole antennas. The bandwidth of a double-sleeve
monopole antenna has been studied in detail and compared to that of
the conventional monopole and a single sleeve monopole.
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