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Abstract—The paper deals with the modeling, based on the
Finite Difference Time Domain method, of active one- and two-
dimensional photonic crystals. The onset of laser oscillation is
observed by simulating the active substance as having a negative
frequency-dependent Lorentzian-shaped conductivity so including into
Maxwell’s equations an electric current density. Particular attention
is devoted to the implementation of uniaxial perfectly matched
layer absorbing boundary conditions for the simulation of infinitely
extending structures having gain features. Laser behaviour is simulated
as a function of various parameters; the threshold wavelength and
conductivity are evaluated as the wavelength and conductivity where
the transmittance diverges. Moreover, the properties of the active
two-dimensional photonic band gap structures are given in terms of
a Q quality factor which increases by increasing the crystal size and
strongly depends on the lattice shape. For the square lattice, when the
crystal size increases from N = 2 to N = 8 the Q-factor increases by
about an order of magnitude (from 0.027 to 0.110) for TE polarization
while for TM polarization it decreases from 0.025 to 0.022. At last
the Q-factor pertaining to the chess-board lattice, to parity of other
parameters, assumes greater values and already for N = 4, it reaches
the values obtained for the 16× 8 square lattice, for both TE and TM
polarizations.
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1. INTRODUCTION

Electromagnetism is the fundamental mediator of all interactions in
atomic physics and condensed matter physics, in other words, the
force that governs the structure of ordinary matter. In a novel class of
engineered dielectric materials, known as photonic crystals (PhCs) or
Photonic Band Gap (PBG) materials, new electromagnetic effects can
be obtained [1–4]. The light localization is a particular interesting
phenomenon of fundamental importance for using optical waves in
information and communication technologies. Because of the periodic
spatial modulation of the dielectric constant, the dispersion equation of
the electromagnetic eigenmodes in photonic crystals are quite different
from those in uniform materials. A part from the formation of
pass bands and band gaps of eigenfrequencies, extremely small group
velocity (the derivative of the angular frequency ω of the radiation field
with respect to the wave vector k,vg = dω/dk) can be easily obtained
in a photonic crystal. In fact a large enhancement of light amplification
is obtained when vg is small, the amplitude amplification factor being
proportional to v−1

g [5].
By considering the photonic band structure, given by the

normalized frequency ωn = ωa/2πc as a function of the wave vector k
(a and c being the lattice constant and the light velocity in the vacuo,
respectively) of a one-dimensional (1D), or two-dimensional (2D) or
three-dimensional (3D) lattice, it is possible to find that there exist
points, exactly the band gap edges, where vg is equal to zero. Moreover,
the photonic band structure of a 2D or a 3D PhC shows whole
frequency ranges in the Brillouin zone characterized by a small group
velocity. This phenomenon, known as the group velocity anomaly,
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is peculiar to 2D and 3D photonic crystals and it does not occur in
1D periodic structures. The enhancement of light amplification due
to a small group velocity can be so explained [6]: since the photon
undergoes many multiple reflections at the lattice discontinuities, the
optical path length increases and the photon spends a long time in the
lattice moving at a mean velocity equal to vg. In presence of an active
medium, the increase of the interaction time between radiation field
and matter gives rise to the enhancement of gain.

A subsequent effect of these phenomena is the laser oscillation
onset which can be obtained in any type of PhC, not depending on
the geometrical complexity of the lattice. In particular, Ohtaka [7]
verified that the onset of the laser oscillation is due to the presence of
divergent peaks in the transmission spectrum. In the case of 1D PhCs,
this phenomenon occurs when high gain materials and an opportune
number N of lattice periods are involved, while lower N (even N = 1)
and drastically reduced threshold gain values are required in 2D and
3D PhCs in order to obtain the same laser action. On the other hand,
it was shown that the 1D PBG lattices exhibit nearly the same lasing
properties aside from the band location in the frequency spectrum.
This is in clear contrast to the lasing action in 2D or 3D photonic
crystals, where the onset of the lasing in higher bands is much easier
than in the first band.

A number of prototypal “active” devices based on photonic
crystals were designed, constructed and tested [8–16]. As an example,
Inoue et al. [17] reported the observation of lasing action in a 2D
photonic lattice. By optically pumping a dye-solution filled in air-holes
of the 2D lattice, laser action without external mirrors is found to occur
at a specific wavelength corresponding to a flat band-dispersion in high-
symmetry direction of the 2D lattice plane, the small group velocity
being responsible for the lasing. Further increasing the pump-fluence,
another laser action is found to occur around a peak wavelength of the
spontaneous emission spectrum.

Moreover, strong feedback and memory effects accompany
collective light emission near the photonic band edge. Near a true
3D photonic band edge, this leads to lasing without a conventional
optical cavity. A precursor of this effect was found in the 2D band edge
micro-laser [18] in which lasing from electrically injected electron-hole
pairs in a multiple quantum well array occurs preferentially at the 2D
photonic band edge, even though the emission from the active region
exhibits a broad frequency distribution.

The active PhC technology offers significant promises in this arena
but, before this can become a true reality, a number of technological
barriers, as repeatable and high-fidelity technologic processes,
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high efficiency input and output-coupling devices, manufacturing
integration methods, and so on must to be overcome. Apparently,
the engineering perspective of PhC devices requires development of
reliable design tools. As it is well known, the first theories of PhCs were
based on the solid-state physics and band-theory for semiconductor
materials. Due to the vector nature of electromagnetic (e.m.) fields,
these early analyses proved their inaccuracy so mathematical tools,
incorporating the vector nature of e.m. fields, have been developed. A
largely used technique, which gives results with good agreement with
the experimental ones, is the Plane Wave Method (PWM) where an
infinite period lattice is assumed. This method is no longer valid when
a linear defect or a point defect is included in the lattice or when a
finite period lattice is considered. For this reason, alternative tools
have been developed: one of the more common is the finite-difference
time-domain (FDTD) method [19].

Till now, active PhC device modeling has been performed in
the frequency domain by assuming the polarizability of the impurity
atoms of the gain material independent of angular frequency ω and
the impurities uniformly distributed in the dielectric material: in this
case the gain material can be modeled by simply assuming a complex
dielectric constant (with a negative imaginary part which incorporates
the population inversion phenomena, the field time dependence being
exp(−jωt). As an example, this formalism was used in [7] to describe
the light amplification in active two-dimensional photonic crystals.
In this paper, we describe a FDTD formulation that allows the
modelling of PBG structures having frequency-dependent optical gain
media. The frequency dependent gain is incorporated into the electric
current density term in Maxwell’s equations by means of a Lorentzian
frequency-dependent negative conductivity. To our knowledge, this is
the first study performed on active PhC devices by means of FDTD.

The paper is organized as it follows. Sect. 2 briefly resumes
the principles of the FDTD method, referring the Reader to the
Appendices A and B for more deepening. In particular, Appendix A
describes the fundamentals of FDTD operation in the case of 2D
photonic crystals when the frequency dependent gain is incorporated
into the electric current density term in Maxwell’s equations;
Appendix B models the uniaxial perfectly matched layer (UPML)
absorbing boundary conditions in presence of infinitely extending
active media. The reduction of the developed equations for the 1D
periodic structures can be easily obtained from those obtained for 2D
ones while the extension to the 3D periodic structures requires a light,
even if tedious, algebraic loading. Sect. 3 of the paper reports the
results of the simulations performed on active 1D photonic crystals.
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In particular, the light amplification spectra are numerically evaluated
and the lasing threshold conditions are identified by examining the
divergence of transmission and reflection coefficients. Lastly, in Section
4 we discuss the strength of the FDTD-based numerical code devoted to
the analysis of active 2D photonic crystals. In particular, the effect of
the lattice shape on the amplification and transmission characteristics
is evaluated.

2. FDTD MODELING OF PBG STRUCTURES WITH
LORENTZIAN GAIN MEDIA

In this section we briefly describe the home-made FDTD algorithm
that allows us the modeling of the active PBG structures. The process
of light emission in active PhCs is analogous to the lasing oscillation
in distributed feedback lasers: the onset of lasing is equivalent to
the divergence of the transmittance and/or the reflectance of the
assumed specimen, as demonstrated by Yariv [20]. Because we are
interested in the evaluation of the lasing threshold conditions, we will
disregard in what follows the nature of the active substance and we
will simply assume that the optical impurities (atoms or molecules)
are uniformly distributed in the photonic crystal and their population
inversion is attained by appropriate means such as optical pumping.
Under these same hypothesis, several authors [7, 21] modeled the
active substance in the frequency domain by a complex frequency-
independent dielectric constant with a negative imaginary part. In our
analysis developed in the time domain, we consider active structures
composed by frequency-dependent optical gain media. The frequency
dependent gain is incorporated into the electric current density term
in Maxwell’s equations by means of a Lorentzian frequency-dependent
negative isotropic conductivity given by:

σ(ω) =
Jx(ω)
Ex(ω)

=
Jy(ω)
Ey(ω)

=
Jz(ω)
Ez(ω)

=
1

1 + I/Is

(
σ0/2

1 + j(ω − ω0)T2
+

σ0/2
1 + j(ω + ω0)T2

)
(1)

where σ0 is the conductivity peak value, linked to the peak value of
the gain set by the pumping level and the corresponding population
inversion; ω0 is the frequency pertaining to the peak value of the
conductivity; T2 is a time constant that defines the spreading of the
Lorentzian spectral profile, S = (1+I/Is)−1 is the saturation coefficient
while Is is the saturation intensity. In Eq. (1), the Hermitian symmetry
is used for the Lorentzian profile.
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The idea of using negative conductivity to describe gain media
has been inspired by the work in the microwave community where
positive conductivity is used to simulate the lossy media. So, if positive
conductivity can be used to simulate the attenuation aspects of a
dispersive medium, then a negative conductivity might be useful for
simulating a medium with gain. The choice of Lorentzian shape for
the conductivity is based on the consideration that more complicated
and, overall, experimental gain spectra can be approximated using
a linear combination of Lorentzians. Another assumption is implicit
in disregarding the nature of the active substance: no interaction
between the input signal and other fields (such as the optical pump)
is considered.

The FDTD method is formulated using a central difference
discretization of Maxwell’s curl equations in both time and space
(see Appendix A). Yee’s original algorithm and formalism solving
Maxwell’s equations in two dimensions is adopted. The field values
on the nodal points of the discretized finite volume are calculated
in a leapfrog fashion. Due to the use of centered differences in the
approximations, the error is of second order in both the space (∆x,∆z)
and time (∆t) steps. In the calculations, the maximum time step that
may be used is limited by the stability restriction of the finite difference
equations.

The excitation plane needs to be treated carefully when setting
up the problem. If a Gaussian source is used as the excitation source,
its smooth Gaussian shaped spectrum can provide information from
dc to the desired frequency simply by adjusting the width of the pulse.
Therefore, in the following simulations a Gaussian pulse PG is assigned
to specific electric or magnetic field components in the FDTD space
lattice at the grid source point (iS , jS , kS):

PG = exp(−(n− no)/nd)2 (2)

This pulse is centered at time step no, exhibits a 1/e characteristic
decay of nd time steps and it has a nonzero value at n = 0.

The successful implementation of the FDTD algorithm is
conditioned by the inclusion of accurate and efficient absorbing
boundary conditions to emulate electromagnetic interaction in an
unbounded space. The perfectly matched layer (PML) absorbing
medium is the ideal candidate for the grid termination, but its
definition have to be modified when the computational volume is
totally filled with active medium (see Appendix B). In particular, in
the developed code, the UPML are adopted: the conductivity profile
for each side (i = x, y, z) of the grid is defined as:

σPML(i) = σmg
NPML (3)
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with
σm = [lnR(0) ln g)/(2ηε∆i(gNPML − 1)]

where η is the vacuum characteristic impedance, NPML is the cell
number which gives the UPML thickness, g is the geometric scaling
of PML conductivity profile, R(0) is the reflection error for normal
incidence and ∆i is the spatial step size.

FDTD algorithm allows for obtaining the reflection and
transmission coefficients over a wide band of frequencies in one run. In
our analysis the electromagnetic performance of the PBG structure is
described by means of transmission (transmittance T ) and reflection
(reflectance R) coefficients, defined in terms of the total time-averaged
Poynting’s vector through the input (z = 0) and output (z = L)
sections:

T =
Pt(z = L)
Pi(z = 0)

R =
Pr(z = φ)
Pi(z = 0)

where

Pi = −1
2
Re


 ∫
width

Eii,ω(x, z = 0)H∗ii,ω(x, z = 0)dx




Pr = −1
2
Re


 ∫
width

Eri,ω(x, z = 0)H∗rj,ω(x, z = 0)dx




Pt = −1
2
Re


 ∫
width

Eti,ω(x, z = L)H∗tj,ω(x, z = L)dx




and Eii,ω and Hij,ω represent, in the frequency domain, the incident
electric and magnetic field components, obtained numerically anti-
transforming Eqs. (A3) and (A4) of Appendix A. Moreover the
subscripts i and j indicate the components Eiy,ω and Hix,ω (Eix,ω and
Hiy,ω) for TE (TM) polarization. The symbol (∗) indicates the complex
conjugate while the integral is extended to the transversal width of the
PBG structure along the x direction. The same symbolism is valid for
the reflected and transmitted powers, respectively.

3. 1D PBG STRUCTURE SIMULATION RESULTS

The 1D PBG structure under investigation is shown in Fig. 1. It is
composed of N layers of active material in air (ε1 = 1); the dielectric
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Figure 1. Sketch of one-dimensional PBG stack structure.

constant ε2 of the active layers is assumed equal to 2.0 throughout the
paper, this value being typical for transparent organic polymers. The
lattice constant a = h1 + h2 is put equal to 1µm, and the thickness
h2 of the active thin layer, normalized by a, is taken to be 0.28. The
frequency ω of light, normalized by 2πc/a, is swept in the frequency
range of 0 < ωn < 2.0, c being the light velocity in the vacuo. In order
to compare our results with those obtained by other methods [7], the
central frequency of the examined range corresponds to a frequency
f = 300 THz. We take the xy plane parallel to the layer plane and the
z direction in the stack direction.

The FDTD simulations are performed by exciting the PBG
structure with a single-cycle Gaussian pulse centered at time step
no = 100, having nd = 30: for these values the pulse bandwidth
covers the frequency region of interest. The incident field is evaluated
in time domain at the total field/scattered field interface, placed in
z = 0. The source plane (z = −zi) is located to a distance from this
discontinuity equal to 140 ∆z, that allows the complete evolution and
the return to zero of the Gaussian pulse, before the reflected wave
from the first layer comes back to the source. The reflected field is
evaluated in time domain near the section z = 0 in the scattered field
region; the transmitted field is calculated in time at the point z = L,
just beyond the end of the PBG structure. The resulting fields are
FFT transformed to obtain the frequency spectra.
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Figure 2. Transmission coefficient T evaluated by means of the
FDTD-based code, for the passive PBG structure constituted byN = 8
periods of dielectric medium (ε2 = 2.0) and air; lattice constant
a = 1µm; thickness of the dielectric thin films h2, normalized by a,
equal to 0.28.

The UPML conductivity profile for each side (i = x, y, z) of the
grid is characterized by the following parameters: thickness equal
to NPML = 10 cells, geometric scaling of PML conductivity profile
g = 2.5, reflection error for normal incidence R(0) = exp(−16) and
∆i equal to the spatial step size. The FDTD computational window is
identified by a lattice pitch ∆z = λ/500 = 2 nm in space with λ = 1µm
corresponding to the central frequency of the examined range, and
∆t = ∆z/c = 6.66 10−3 fs. These values of the computational domain
steps guarantee good numerical dispersion and stability [4].

We start our simulations by analyzing the periodic passive stack
constituted by N = 8 periods of dielectric layers having ε2 = 2.0 and
ε1 = 1 (air). Fig. 2 shows the evaluated transmission coefficient of
the N = 8 period passive stack. The transmission spectrum shows
four band gaps, three of them well defined and centered at the ωn
normalized frequency values equal to 0.44, 0.9 and 1.76 respectively,
while the band gap centered at ωn = 1.35 is just hinted reaching
only the value of T = 0.7. These results are in good agreement
with those calculated by using a computer code based on the transfer-
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Figure 3. Band structure, obtained by a TMM-based code, of the
infinite PBG stack lattice of dielectric material in air. Other data as
those in Fig. 2.

matrix (TMM) approach [22]†. In particular, Fig. 3 shows the band
structure, evaluated by TMM, for the wave vector (0, 0, kz) of the x, y
axis infinite periodic stack, by disregarding the active nature of the
dielectric substance (kz, of course, is the wave vector component in
the stack direction). In the analyzed range of normalized frequency, we
notice four band gaps, the not shaded spectral ranges representing the
band gaps. The first band gap is located in the range of normalized
frequency 0.4 < ωn < 0.5, while the following band gaps are in the
ranges 0.86 < ωn < 0.96; 1.34 < ωn < 1.36 and 1.72 < ωn < 1.80, for
kz ranging from 0 to 0.5.

Now we consider the active nature of the PBG structure by
modeling the active medium 2 by means of a frequency-dependent
negative conductivity having a Lorentzian gain profile. Moreover,
throughout the paper, we will disregard the saturation effects because
the number of time steps does not allow the structure saturation. Our
analysis starts by considering a Lorentzian material with an increasing
spectral gain profile, characterized by the following parameters:
normalized frequency ωn = 2 (corresponding to a wavelength λ0 =
0.5µm), σ0 = −3337 S/m, T2 = 0.7 fs. Fig. 4 shows the corresponding
† The program “Translight” can be downloaded from http://www.elec.gla.uk/˜areynolds/
software.html. It is based on the paper by Bell et al. [22]
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Figure 4. Transmission coefficient of the N = 8 period active
stack; active Lorentzian material characterized by a conductivity σ(ω)
having the following parameters: ωn = 2 (λ0 = 0.5µm), σ0 =
−3337 S/m, T2 = 0.7 fs, the modulus and phase of σ(ω) are here
reported, too. Other data as those in Fig. 2.

modulus (dashed line) and phase (dashed-dotted line) of the above
defined conductivity σ(ωn) and the evaluated transmission coefficient
T , obtained by our FDTD-based code, for the PBG active stack
constituted by N = 8 layers of active material. The transmission
coefficient, of course, is higher than that shown in Fig. 2 for the passive
PBG structure: the T peak values increase by increasing the frequency,
according to the shape of the conductivity modulus, reaching the
maximum value T = 7.5 in correspondence of the fourth band gap.
Moreover, the T peaks are localized at the inferior edge of the band
gaps. This is due to the fact that the dielectric constant ε2 of the gain
layer is greater than that ε1 of the passive layer; while if we assume
ε2 < ε1, then we calculate that the maximum T peak values occur
at the superior edge of the photonic band gaps, to a parity of other
parameters.

Now a Lorentzian material with a decreasing spectral gain profile,
characterized by the following parameters: normalized frequency ωn =
1 (corresponding to λ0 = 1µm), σ0 = −1668 S/m, T2 = 0.07 fs,
is investigated. Even in this example, the evaluated transmission
coefficient for the N = 8 period active stack, depicted in Fig. 5, shows,
also now, peaks localized at the inferior edge of each band gap but they
exhibit decreasing values by increasing the frequency. For a greater
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Figure 5. Transmission coefficient of the N = 8 period PBG structure
having the active Lorentzian material characterized by a conductivity
σ(ω) with the following parameters: ωn = 1 (λ0 = 1µm), σ0 =
−1668 S/m, T2 = 0.07 fs.

Figure 6. Transmission coefficient of the N = 8 period active stack,
the active Lorentzian material being characterized by the conductivity
σ(ω) having the same numerical values as in Fig. 5 but a greater time
constant T2 = 0.07 ps (narrower frequency range).
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Figure 7. Transmission coefficient of the N = 8 period active stack
having the active Lorentzian material characterized by the following
parameters: ωn = 1.71 (λ0 = 0.58µm), σ = −2853 S/m, T2 = 0.07 ps;
i.e., centered at the inferior edge of the fourth band gap.

time constant T2, the Lorentzian spectral gain profile is concentrated in
a narrow frequency range so, as we can infer from Fig. 6 (ωn = 1, σ0 =
−1668 S/m, T2 = 0.07 ps), the corresponding transmission spectrum
shows a peak value well localized at the frequency value ωn = 1 which
corresponds to the maximum value of the conductivity and, of course,
it is characterized by the same T values pertaining to the passive stack
out of the very narrow frequency range centered at ωn = 1.

A sensible enhancement of the peak value of the transmission
coefficient T is obtained by fixing the frequency of maximum
conductivity just in correspondence of an edge frequency of a band
gap. As an example, by considering the Lorentzian conductivity profile
(σ0 = −2853 S/m, T2 = 0.07 ps) having the maximum value fixed at
the inferior edge of the fourth band gap ωn = 1.71 (λ0 = 0.58µm), we
obtain the transmission coefficient plot shown in Fig. 7 which exhibits
a good peak just at ωn = 1.71. Of course, if we center the Lorentzian
at the superior edge ωn = 1.86 (λ0 = 0.53µm) of the same fourth band
gap, we obtain the spectrum of Fig. 8 where the peak at ωn = 1.86 is
apparent.

By comparing these spectra, we infer that the shift of the
conductivity peak value into correspondence of an edge of a band gap
induces a sensible enhancement of the peak value of the transmission



312 D’Orazio et al.

Figure 8. Transmission coefficient of the N = 8 period active stack
having the active Lorentzian material characterized by the following
parameters: ωn = 1.86 (λ0 = 0.53µm), σ = −2853 S/m, T2 = 0.07 ps;
i.e., centered at the superior edge of the fourth band gap.

coefficient. Moreover by choosing the frequency of the conductivity
peak at the superior edge of the photonic band gap (Fig. 8), the
transmission coefficient reaches a peak value slightly smaller than
obtained when the conductivity peak is located at the inferior edge
(Fig. 7). By resuming, the best value for the transmission coefficient
is obtained choosing the frequency of maximum conductivity in
correspondence of the inferior edge of the band gaps. Moreover,
we have verified that, to parity of N , the photonic band structure
of 1D periodic stack shows nearly the same amplification properties
irrespective of the band position in frequency. These results are in
good agreement with those published in literature.

So far we have examined the dependence of the transmission
spectra on the Lorentzian conductivity shape. Now we will illustrate
the effects of the increase of the period number N . Our starting point
is the optimum transmission spectrum obtained for the N = 8 period
active stack, shown in Fig. 7 pertaining to the active medium having
the Lorentzian conductivity peak centered at the inferior edge of the
fourth band gap. By considering an active stack having N = 16
periods, the transmission peak increases from 2.6 (see Fig. 7) to 9,
as shown in Fig. 9. The effect is more evident if the number of active
layers is increased to N = 32 (see Fig. 10): the transmittance peak
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Figure 9. Transmission coefficient of the N = 16 period active stack;
other data as those in Fig. 7.

Figure 10. Transmittance of the N = 32 period active PBG structure
having an active Lorentzian material characterized by the following
parameters: ωn = 1.71, σ0 = −2853 S/m, T2 = 0.07 ps.
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Figure 11. Transmission and reflection coefficients of the N = 32
period active stack, obtained by the TMM-based code, by modeling
the active layer by a the complex dielectric constant ε = 2.0− j0.01.

reaches about 34 dB. The divergence of the T coefficient is indicative
of the onset of the laser oscillation as we will see in Fig. 13. On the
other hands, the stack having N = 8 periods is characterized by a
threshold conductivity value, which gives rise to a T singularity equal
to about 32 dB, σ0 = −19971 S/m, value seven times greater than that
considered for the 32-period active stack (σ0 = −2853 S/m).

To definitively validate the effectiveness of the developed FDTD-
based code, the same structure has been simulated by the TMM-based
code. Acting the TMM in the frequency domain, the properties of the
active material have been incorporated into the negative imaginary
part ε′′ of the dielectric constant of the active layers ε2 = ε′ + jε′′,
with ε′ = 2.0. The population inversion has been taken into account
into the negative imaginary part ε′′. The results obtained for the case
N = 32 period active stack layers with ε2 = 2.0− j0.01 (time operator
e−jωt), are shown in Fig. 11.

In the FDTD algorithm, we have then introduced the electric
current density expressed by means of an equivalent negative
conductivity given by σeq = ωε0ε

′′. Of course this model is exact
only at the frequency that defines the equivalent conductivity; for this
reason the analysis is applied to the third band gap that is narrower
than the others. The transmission and reflection coefficients for a stack
consisting of N = 32 layers of active material having σeq = 223.4 S/m



Finite difference time domain modeling 315

Figure 12. Transmission and reflection coefficients of the N = 32
period active stack, obtained by the FDTD-based code by assuming
in Maxwell’s propagator an equivalent conductivity σeq = ωε0ε

′′ =
223.4 S/m, ωn = 1.34.

at the normalized frequency ωn = 1.34, corresponding to ε′′ = 0.01
are shown in Fig. 12. At the normalized frequency value ωn = 1.34,
where the σeq has been evaluated, the results obtained by means
of both methods are in good agreement, within the bounds of the
different computation resolution. In fact the FDTD code accounts 480
samples in the examined range of normalized frequency while the TMM
simulation accounts 9999 samples in the same normalized frequency
range.

The lasing oscillation, observed by the FDTD simulator, is
depicted in Fig. 13 which shows the evaluated time evolution of the
electric field Ey in the output section of the 32-period Lorentzian
(λ0 = 0.58µm, σ0 = −2853 S/m, T2 = 0.07 ps) active stack. For these
data, the T coefficient exhibits a divergent peak at the lower edge of
the fourth band gap and all the electric and magnetic field component
amplitudes, but overall the Ey component, increase in time. The field
component Ey tends to level off to a sinusoidal steady-state oscillation
at the frequency that defines the maximum of the conductivity. This is
apparent in Fig. 13 where the final time steps are plotted in expanded
time scale.



316 D’Orazio et al.

Figure 13. FDTD-computed time evolution of the electric field
component Ey in the output section for the case N = 32, ωn =
1.71 (λ0 = 0.58µm), σ0 = −2853 S/m, T2 = 0.07 ps.

4. 2D PBG STRUCTURE NUMERICAL RESULTS

The 2D PBG structure, under investigation, consists of M columns of
active material in air, located along the x direction and N columns
along the propagation direction z, the infinitely long column axis lying
along the y-axis. The relative dielectric constant ε2 of the active layers
is assumed equal to 2.0 throughout the paper. The columns have a
square cross-section and are arranged in a square lattice (see Fig. 14a)
having lattice constant a, equal to 1µm. The square column side d,
normalized by a, is taken equal to 0.53. The light normalized frequency
ωn is assumed in the frequency range of 0 < ωn < 2.0.

The band structures for the corresponding M = N = ∞ passive
2D photonic crystal, evaluated for TE and TM polarizations, show
total band gaps in the ranges of normalized frequency 0.44 < ωn < 0.56
and 0.82 < ωn < 0.9, for the wave vector component kz ranging from
0 to 0.5. For the considered lattice, the TE polarization accounts for
the Ey, Hx and Hz field components, while the TM polarization is
characterized by the Hy, Ex and Ez field components.

To evaluate the spectral characteristics of the 2D PBG structures,
the proprietary FDTD simulator has been used under the following
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(a)

(b)

Figure 14. Cross section of the elementary cell of a two-dimensional
PBG structure characterized by: (a) a square lattice and (b) a chess-
board lattice.

conditions. The 2D PBG structure is excited with a single-cycle
Gaussian pulse (no = 50, nd = 5), located to a distance from the
first discontinuity equal to zi = a/2 = 500 nm. The FDTD grid
accounts space steps equal to ∆x = ∆z = λc/25 = 40 nm, and time
step ∆t = ∆z/(c ·

√
2) = 9.42 10−2 fs. The UPML parameter values

are the same assumed in Sect. 3.
The first aim of this investigation consists of illustrating the
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influence of a finite number of periods N along the z direction on
the spectral characteristics, having fixed M = 16 columns along the x
axis. For this reason, a square lattice of M ×N = 16 × 2 columns of
dielectric passive material (ε2 = 2.0) in air is at first considered. Fig. 15
shows the FDTD evaluated transmission T and reflection R coefficients
for: (a) TE and (b) TM polarizations. These results resemble the
ones evaluated for the infinite passive square lattice; in fact a well
defined photonic band gap is observable for a normalized frequency of
ωn = 0.9 in the case of TE polarization while the transmission dip
of TM polarization reaches only the value of 0.5. Moreover the first
band gap near the normalized frequency ωn = 0.4, visible in the band
structure of the infinite passive PBG structure, is not so pronounced,
showing the strong influence of the limited number of M ×N columns
of the investigated lattice with respect to the case of M = N =∞.

We consider now the corresponding active PBG structures: of
course the transmittance and reflectance significantly change. Since
the spectral characteristics depend on the polarization, throughout
all the paper, the results will be illustrated for both TE and TM
polarizations. We start our simulations by considering a Lorentzian
active material with a spectral gain profile centered in correspondence
of the inferior edge of the second photonic band gap, identified
by the following parameters: normalized frequency ωn = 0.82
(corresponding to conductivity peak wavelength value λ0 = 1.22µm),
σ0 = −13685 S/m, T2 = 0.07 ps. Fig. 16 depicts the TE and
TM evaluated transmission and reflection coefficients for the 16 × 2
active 2D lattice. As expected, the peak value of the transmission
coefficient is localized in correspondence of the frequency ωn = 0.82
that identifies the conductivity maximum value and it reaches the value
of about 3.38 for TE polarization and 1.92 for the TM one. These
spectra show that the square lattice exhibits better performance for
TE polarization. Moreover, it is interesting to outline that even the
reflection coefficient spectrum for TE-polarization exhibits a peak just
at the normalized frequency value corresponding to the conductivity
peak: this occurrence will assume a significant role in the onset of the
lasing oscillation.

Let us consider now the effect on the transmission and
reflection coefficients of the active period number increasing along the
propagation direction, to parity of the other data and, in particular, of
conductivity Lorentzian shape. In the case of a 16×4 active lattice, the
T peak remarkably increases, reaching the value of about 39 and 4.7 for
TE and TM polarization, respectively. The reflection coefficient R for
TE polarization increases till to 104 while for TM polarization the R
peak is only 0.7. The examined structure gives rise to the stimulated



Finite difference time domain modeling 319

(a)

(b)

Figure 15. Transmission and reflection coefficients for the square
lattice of 16 × 2 columns of dielectric passive materials (ε2 = 2.0) in
air: (a) TE polarization, (b) TM polarization.
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(a)

(b)

Figure 16. Transmission and reflection coefficients of the active 16×2
square lattice. The active Lorentzian material is characterized by the
following parameters: ωn = 0.82, σ0 = −13685 S/m, T2 = 0.07 ps: (a)
TE polarization, (b) TM polarization.
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emission phenomenon as we can infer from Fig. 17 where the time
evolution of the electric field component Ey at the output section z = L
is depicted: a sinusoidal oscillation just at the frequency ωn = 0.82,
that defines the maximum of the conductivity, is apparent: however its
normalized amplitude reaches only the maximum value equal to 0.2.
We notice that the field is well confined in the active columns which are
denser than the air. This occurrence is more evident in Fig. 17b which
shows the magnified plot of the Ey evolution in the output section,
restricted to a small range of time steps.

More interesting effects are observable when the number of
periods along the z direction is increased. Fig. 18 shows the sum of
transmittance and the reflectance for a TE polarized wave propagating
in a 16 × N lattice with N = 2 (dashed-dotted line), N = 4 (dashed
line), N = 8 (solid line). For N = 2 and 4 the sum is equal to
about the unity (like for a lossless or a gain less material) in the whole
examined spectral large except in correspondence of the inferior edge of
the band gap where we superimposed the conductivity peak and a large
enhancement, due to the stimulated emission, is apparent. By further
increasing the number of the active lattice periods to N = 8 the sum
of transmittance and reflectance assumes a value equal to 30 dB in a
small range of low normalized frequencies near the origin, it settles in a
value a bit lower than 103 dB in the whole spectral range and the peak
at the band edge reaches a noticeable large value, the enhancement
factor being four orders of magnitude greater. This effect seems to
be a phenomenon of saturation due to the high value of the assumed
conductivity peak. In fact, in this case the transmission and reflection
spectra do not exhibit the usual band structure and, therefore, the
periodic lattice behaves as a bulk active medium. In the case of TM
polarization, the sum of transmittance and reflectance exhibits a more
regular shape well settled equal to unit in the whole spectral range with
the peak fixed in correspondence of the conductivity peak, for all the
considered N values. The peak value, obtained for the N = 8 period
lattice along the z direction reaches 200 dB. The effect of saturation
for this type of polarization does not turn up.

Fig. 19 illustrates the time evolution of the TE-polarized field
component Ey at the output section z = L of the 16× 8 square lattice
and other data as those in Fig. 16. By increasing the number of the
active layers along the propagation direction, the normalized amplitude
of the field component increases being two order of magnitude greater
than the field amplitude evaluated for the 16× 4 lattice. Moreover, a
lasing oscillation is established just at the frequency that defines the
maximum of the conductivity. The maximum amplitude of oscillation
is localized in correspondence of the central section along the x-axis.
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(a)

(b)

Figure 17. Time evolution of the electric field component Ey at the
output section of 16×4 active square lattice; (b) expanded time scale of
the steady-state region showing a single mode oscillation at λ0. Other
data as those in Fig. 16.
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Figure 18. Sum of transmittance and reflectance for a TE polarized
wave propagating in a 16 × N square lattice: N = 2 (dashed-dotted
line), N = 4 (dashed line), N = 8 (solid line).

Another parameter that influences the characteristics of the PBG
structure is the lattice shape. We now investigate the passive photonic
crystal having a chess-board lattice (see Fig. 16b) characterized by
the presence of a dielectric active column in the center of the cross
section of the square elementary cell. The band structure of the infinite
passive PhC, with respect to the square lattice, is characterized by the
absence of the band gap localized in correspondence of the normalized
frequency value equal to 0.4 for both polarizations. Moreover the band
gap centered at 0.75 is completely open only for the TE polarization.

As for the square lattice, we consider the PGB structure made
of an optical gain medium having a Lorentzian spectral gain profile,
characterized by the following parameters: ωn = 0.82 (λ0 = 1.22µm),
σ0 = −13685 S/m, T2 = 0.07 ps. For a 16 × 2 chess-board lattice,
the evaluated transmission peak is 76.43 for TE polarization and
18.98 for TM polarization, much higher than those evaluated for the
square lattice: this occurrence is due to the shape of lattice which is
characterized by a greater filling factor. In the case of the 16×4 chess-
board lattice, the transmittance increases till to 26 dB and 8.6 dB for
TE and TM polarizations, respectively.
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(a)

(b)

Figure 19. (a) Time evolution of the electric field component Ey
at the output section of the 16 × 8 period square active lattice; (b)
expanded time scale of the steady-state region:a single mode oscillation
at λ0 is apparent.
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Figure 20. Sum of transmittance and reflectance for a TE polarized
wave propagating in a 16×N chess-board lattice: N = 4 (dashed line),
N = 8 (solid line), being the active Lorentzian material characterized
by the following parameters: ωn = 1.22µm, σ0 = −1368 S/m, T2 =
0.07 ps.

Because we obtain substantially high transmission peak values in
the structure with a low number of periods along the z direction, and
to avoid the saturation effects, we consider a Lorentzian conductivity
having the peak value one order of magnitude lower than that assumed
for the square lattice, σ0 = −1368 S/m, centered in correspondence of
the inferior edge of the first photonic band gap for TE modes. Fig. 20
shows the sum of transmission and reflection coefficients evaluated for
the 16×4 and 16×8 chess-board lattices. The peak of (R+T ) assumes
values equal to 1.3 and 2, respectively. In this case no saturation
effect is evident but the evaluated T coefficient values are greater than
those evaluated in the case of the square lattice. Of course, the T
coefficient values are greater than those evaluated for a 1D structure,
to parity of other geometrical and physical parameters, showing the
better performance of the 2D active lattice.

To conclude, Tab. 1 shows the evaluated Q-factor, defined as
Q = ωc/∆ω where ωc is the resonant angular frequency (in our case,
practically equal to ω0) and ∆ω is the full-width at half power of the
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Table 1. Q-factor for square and chess-board 2D active lattices
consisting of 16×N rods.

N=2 N=4 N=8

Square lattice
(σ0=13685  S/m)

TE modes: Q=0.027
TM modes: Q=0.025

TE modes: Q=0.038
TM modes: Q=0.023

TE modes: Q=0.110
TM modes: Q=0.022

Chess-board lattice
(σ0=13685  S/m)

TE modes: Q=0.081
TM modes: Q=0.055

TE modes: Q=0.126
TM modes: Q=0.027

TE modes: Q=1.712
TM modes: Q=0.020

transmitted peak, inherent in two different lattice shapes and crystal
sizes. For the square lattice, when the crystal size increases from N = 2
to N = 8, the Q-factor increases by about an order of magnitude
(from 0.027 to 0.110) for TE polarization while for TM polarization it
slightly decreases from 0.025 to 0.022. It is interesting to note that the
Q-factor for the chess-board lattice, in the same conditions, assumes
greater values and already for N = 4 the Q-factors for both TE and
TM polarizations reach the values obtained for the 16×8 square lattice.

5. CONCLUSION

This paper shows the strength of a proprietary FDTD simulator to
model 1D and 2D active photonic crystals. In particular, the effects
on the transmission spectrum due to the introduction into the PBG
structure of Lorentzian gain materials, have been examined. In the
case of 1D active structure an enhancement of the peak value of the
transmission coefficient and the onset of lasing in the PBG active stack
are obtained by increasing the number of periods of active stack and
by setting the maximum value of the conductivity in correspondence
of the lower edge of a band gap. Moreover the performance of the
active 2D PBG structures depends on the lattice shape and, of course,
is better than that of the 1D ones.

APPENDIX A. 2D FDTD ALGORITHM FOR ACTIVE
MATERIALS

For self-consistency, we develop here the basic equations of the
applied method, devoted to the analysis of two-dimensional structures
in presence of active media. The frequency dependent gain is
incorporated into the electric current density term in Maxwell’s
equations by means of a Lorentzian frequency-dependent negative
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conductivity. To avoid confusion with respect to other already
published papers and books, we exactly follow the notation of Ref.
[19] where the guide-lines of the propagation algorithms are discussed.

Two-dimensional (∂/∂y = 0) Maxwell’s equations in rectangular
frame coordinates (see Fig. 1), describing the electric and magnetic
field components propagating through a nonmagnetic (µ = µ0),
isotropic medium, are:

∂Hx

∂t
=

1
µ0

∂Ey
∂z

∂Hy

∂t
=

1
µ0

[
∂Ez
∂x
− ∂Ex

∂z

]
∂Hz

∂t
= − 1

µ0

∂Ey
∂x

∂Ex
∂t

=
1
ε

[
−∂Hy

∂z
− Jx

]
∂Ey
∂t

=
1
ε

[
∂Hx

∂z
− ∂Hz

∂x
− Jy

]
∂Ez
∂t

=
1
ε

[
∂Hy

∂x
− Jz

]

(A1)

The scalar frequency-dependent conductivity that links the
electric field and the current density is given by [19]:

σ(ω) =
Jx(ω)
Ex(ω)

=
Jy(ω)
Ey(ω)

=
Jz(ω)
Ez(ω)

=
1

1 + I/Is

(
σ0/2

1 + j(ω − ω0)T2
+

σ0/2
1 + j(ω + ω0)T2

)
(A2)

In this expression the Hermitian symmetry is used for the Lorentzian
profile and σ0 is the peak value of the conductivity, linked to the
peak value of the gain set by the pumping level and the resulting
population inversion; ω0 is the frequency pertaining to the peak value
of the conductivity; T2 is a time constant which defines the spreading
of the Lorentzian spectral profile, S = (1 + I/Is)−1 is the saturation
coefficient while Is is the saturation intensity. The explicit finite-
difference equations for the electric field components are:

En+1
x (i, k) = En

x (i, k) +
∆t

ε∆z

[
Hn+1/2
y (i, k−1/2)−Hn+1/2

y (i, k+1/2)
]

−∆t

2ε

[
Jn+1
x (i, k) + Jnx (i, k)

]
(A3a)
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En+1
y (i, k) = En

y (i, k) +
∆t

ε∆z

[
Hn+1/2
x (i, k+1/2)−Hn+1/2

x (i, k−1/2)
]

− ∆t

ε∆x

[
Hn+1/2
z (i+ 1/2, k)−Hn+1/2

z (i− 1/2, k)
]

−∆t

2ε

[
Jn+1
y (i, k) + Jny (i, k)

]
(A3b)

En+1
z (i, k) = En

z (i, k) +
∆t

ε∆x

[
Hn+1/2
y (i+1/2, k)−Hn+1/2

y (i−1/2, k)
]

−∆t

2ε

[
Jn+1
z (i, k) + Jnz (i, k)

]
(A3c)

where:

Jn+1
x (i, k) = Jnx (i, k) +

∆t

2

[
Fn+1
x (i, k) + Fnx (i, k)

]

Jn+1
y (i, k) = Jny (i, k) +

∆t

2

[
Fn+1
y (i, k) + Fny (i, k)

]

Jn+1
z (i, k) = Jnz (i, k) +

∆t

2

[
Fn+1
z (i, k) + Fnz (i, k)

]
and

Fn+1
x (i, k) = A1x(i, k)

[
Hn+1/2
y (i, k − 1/2)−Hn+1/2

y (i, k + 1/2)
]

+A2x(i, k)En
x (i, k) +A3x(i, k)Jnx (i, k) +A4x(i, k)Fnx (i, k)

A1x(i, k) =
4∆tSx(i, k)σ0(∆t+ 2T2)

βx(i, k)∆z

A2x(i, k) =
8εSx(i, k)σ0∆t

βx(i, k)

A3x(i, k) = −4∆t
[
2ε

(
1 + ω2

0T
2
2

)
+ Sx(i, k)σ0(∆t+ 2T2)

]
βx(i, k)

A4x(i, k) = −8εT2(∆t−T2)
βx(i, k)

− (∆t)2[2ε(1+ω2
0T

2
2 )+Sx(i, k)σ0(∆t+2T2)]
βx(i, k)

βx(i, k) = 8εT2(∆t+T2)+(∆t)2
[
2ε

(
1+ω2

0T
2
2

)
+Sx(i, k)σ0(∆t+2T2)

]

Sx(i, k) =
[
1 +

Ix(i, k)
Is

]−1

, Ix(i, k) = 0.5cnε0
(
Epeak
x (i, k)

)2

Here Sx is the saturation coefficient that contains feedback information
of the latest peak electric field component Ex. Moreover:
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Fn+1
y (i, k) = A11y(i, k)

[
Hn+1/2
x (i, k + 1/2)−Hn+1/2

x (i, k − 1/2)
]

+A12y(i, k)
[
Hn+1/2
z (i− 1/2, k)−Hn+1/2

z (i+ 1/2, k)
]

+A2y(i, k)En
y (i, k) +A3y(i, k)Jny (i, k) +A4y(i, k)Fny (i, k)

where

A11y(i, k) =
4∆tSy(i, k)σ0(∆t+ 2T2)

βy(i, k)∆z

A12y(i, k) =
4∆tSy(i, k)σ0(∆t+ 2T2)

βy(i, k)∆x

A2y(i, k) =
8εSy(i, k)σ0∆t

βy(i, k)

A3y(i, k) = −4∆t
[
2ε

(
1 + ω2

0T
2
2

)
+ Sy(i, k)σ0(∆t+ 2T2)

]
βy(i, k)

A4y(i, k) = −8εT2(∆t−T2)
βy(i, k)

− (∆t)2[2ε(1+ω2
0T

2
2 )+Sy(i, k)σ0(∆t+2T2)]
βy(i, k)

βy(i, k) = 8εT2(∆t+T2)+(∆t)2
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2ε

(
1+ω2

0T
2
2

)
+Sy(i, k)σ0(∆t+2T2)

]

Sy(i, k) =
[
1 +

Iy(i, k)
Is

]−1

, Iy(i, k) = 0.5cnε0
(
Epeak
y (i, k)

)2

and

Fn+1
z = A1z(i, k)

[
Hn+1/2
y (i+ 1/2, k)−Hn+1/2

y (i− 1/2, k)
]

+A2z(i, k)En
z (i, k) +A3z(i, k)Jnz (i, k) +A4z(i, k)Fnz (i, k)

A1z(i, k) =
4∆tSz(i, k)σ0(∆t+ 2T2)

βz(i, k)∆x

A2z(i, k) =
8εSz(i, k)σ0∆t

βz(i, k)

A3z(i, k) = −4∆t
[
2ε

(
1 + ω2

0T
2
2

)
+ Sz(i, k)σ0(∆t+ 2T2)

]
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A4z(i, k) = −8εT2(∆t−T2)
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− (∆t)2[2ε(1+ω2
0T

2
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2ε

(
1+ω2
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2
2
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]
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Ix(i, k)
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]−1

, Iz(i, k) = 0.5cnε0
(
Epeak
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)2
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The explicit update equations for the magnetic field components are:

Hn+1/2
x (i, k) = Hn−1/2

x (i, k) +
∆t

µ0

[
En
y (i, k + 1/2)− En

y (i, k − 1/2)
∆z

]

(A4a)

Hn+1/2
y (i, k) = Hn−1/2

y (i, k)+
∆t

µ0



En
z (i+1/2, k)− En

z (i−1/2, k)
∆x

+

−E
n
x (i, k+1/2)− En

x (i, k−1/2)
∆z




(A4b)

Hn+1/2
z (i, k) = Hn−1/2

z (i, k)− ∆t

µ0

[
En
y (i+ 1/2, k)− En

y (i− 1/2, k)
∆x

]

(A4c)

Equations (A3)–(A4) constitute the complete FDTD time-stepping
algorithm for a Lorentzian dispersive gain medium. This algorithm is
second-order accurate in the grid space and time increments, and it
reduces to the normal FDTD update equations if T2 = 0.

APPENDIX B. PML TERMINATION FOR
CONDUCTIVE DISPERSIVE MEDIA

For simulating Lorentzian optical gain material extending to infinity,
the Uniaxial Perfectly Matched Layer (UPML) along a plane boundary
has to be matched to the Lorentzian half-space of parameters εr and
σ(ω).

Hence, Ampere’s law in the PML can be expressed as:




∂

∂y
Hz −

∂

∂z
Hy

∂

∂z
Hx −

∂

∂x
Hz

∂

∂x
Hy −

∂

∂y
Hx




= jωε0

(
εr +

σ(ω)
jωε0

)



sysz
sx

0 0

0
sxsz
sy

0

0 0
sxsy
sz





 Ex
Ey
Ez




(B1)
where sx, sy and sz are [8]:

si = ki +
σPML
i

jωε0
with i = x, y, z
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In order to derive a time-dependent representation we introduce some
additional auxiliary variables:

Px =
sz
sx
Ex, Py =

sx
sy
Ey, Pz =

sy
sz
Ez

P ′x = syPx, P ′y = szPy, P ′z = sxPz

P ′′x = σ(ω)P ′x, P ′′y = σ(ω)P ′y, P ′′z = σ(ω)P ′z

Using these expression, Eq. (B1) is decoupled into the set of differential
equations:




∂

∂y
Hz −

∂

∂z
Hy

∂

∂z
Hx −

∂

∂x
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∂

∂x
Hy −

∂

∂y
Hx




=
∂

∂t
ε0εr



P ′x
P ′y
P ′z


 +



P ′′x
P ′′y
P ′′z


 (B2a)

(
1 + ω2

0T
2
2 + 2T2

∂

∂t
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∂2

∂t2

) 

P ′′x
P ′′y
P ′′z


 =

(
σ0 + σ0T2

∂

∂t

) 

P ′x
P ′y
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(B2b)
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(B2c)

d

dt
(kxPx) +

σPML
x

ε0
Px =

d

dt
(kzEx) +

σPML
z

ε0
Ex (B2d)

d

dt
(kyPy) +

σPML
y

ε0
Py =

d

dt
(kxEy) +

σPML
x

ε0
Ey (B2e)

d

dt
(kzPz) +

σPML
z

ε0
Pz =

d

dt
(kyEz) +

σPML
y

ε0
Ez (B2f)

These equations are discretized, by applying central-difference
approximations to space and time derivatives. The update equations



332 D’Orazio et al.

for the variables P ′′ are:

P
′′n+1
x (i+ 1/2, j, k) = C1P

′′n
x (i+ 1/2, j, k) + C2P

′′n−1
x (i+ 1/2, j, k)

+C3P
′n+1
x (i+ 1/2, j, k) + C4P

′n
x (i+ 1/2, j, k)

(B3a)

P
′′n+1
y (i, j + 1/2, k) = C1P

′′n
y (i, j + 1/2, k) + C2P

′′n−1
y (i, j + 1/2, k)

+C3P
′n+1
y (i, j + 1/2, k) + C4P

′n
y (i, j + 1/2, k)

(B3b)

P
′′n+1
z (i, j, k + 1/2) = C1P

′′n
z (i, j, k + 1/2) + C2P

′′n−1
z (i, j, k + 1/2)
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(B3c)
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From (B2a) we obtain the update equations for P ′x, P
′
y and P ′z:

P
′n+1
x (i+ 1/2, j, k) =[
ε0εr
∆t
− C3 + C4

2

]
[
ε0εr
∆t

+
C3

2

] P
′n
x (i+1/2, j, k)−

[
C4

2

]
[
ε0εr
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+
C3

2

]P ′n−1
x (i+1/2, j, k)
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−
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]P ′′nx (i+ 1/2, j, k)−

[
C1 + C2

2

]
[
ε0εr
∆t

+
C3

2

]P ′′n−1
x (i+ 1/2, j, k)

−

[
C2

2

]
[
ε0εr
∆t

+
C3

2

]P ′′n−2
x (i+ 1/2, j, k) +

1[
ε0εr
∆t

+
C3

2

]

·




[
H
n+1/2
z (i+ 1/2, j + 1/2, k)−H

n+1/2
z (i+ 1/2, j − 1/2, k)

∆y

]

−
[
H
n+1/2
y (i+ 1/2, j, k + 1/2)−H

n+1/2
y (i+ 1/2, j, k − 1/2)

∆z

]




P
′n+1
y (i, j + 1/2, k) =[
ε0εr
∆t
− C3 + C4

2

]
[
ε0εr
∆t

+
C3

2

] P
′n
y (i, j+1/2, k)−

[
C4

2

]
[
ε0εr
∆t

+
C3

2

]P ′n−1
y (i, j+1/2, k)

−

[
C1

2

]
[
ε0εr
∆t

+
C3

2

]P ′′ny (i, j + 1/2, k)−

[
C1 + C2

2

]
[
ε0εr
∆t

+
C3

2

]P ′′n−1
y (i, j + 1/2, k)

−

[
C2

2

]
[
ε0εr
∆t

+
C3

2

]P ′′n−2
y (i, j + 1/2, k) +

1[
ε0εr
∆t

+
C3

2

]

·




[
H
n+1/2
x (i, j + 1/2, k + 1/2)−H

n+1/2
x (i, j + 1/2, k − 1/2)

∆z

]

−
[
H
n+1/2
z (i+ 1/2, j + 1/2, k)−H

n+1/2
z (i− 1/2, j + 1/2, k)

∆x

]




P
′n+1
z (i, j, k + 1/2) =[
ε0εr
∆t
− C3 + C4

2

]
[
ε0εr
∆t

+
C3

2

] P
′n
z (i, j, k+1/2)−

[
C4

2

]
[
ε0εr
∆t

+
C3

2

]P ′n−1
z (i, j, k+1/2)
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−

[
C1

2

]
[
ε0εr
∆t

+
C3

2

]P ′′nz (i, j, k + 1/2)−

[
C1 + C2

2

]
[
ε0εr
∆t

+
C3

2

]P ′′n−1
z (i, j, k + 1/2)

−

[
C2

2

]
[
ε0εr
∆t

+
C3

2

]P ′′n−2
z (i, j, k + 1/2) +

1[
ε0εr
∆t

+
C3

2

]

·




[
H
n+1/2
y (i+ 1/2, j, k + 1/2)−H

n+1/2
y (i− 1/2, j, k + 1/2)

∆x

]

−
[
H
n+1/2
x (i, j + 1/2, k + 1/2)−H

n+1/2
x (i, j − 1/2, k + 1/2)

∆y

]




From (B2c) we obtain the update equations for Px, Py and Pz:

Pn+1
x (i+ 1/2, j, k) =

ky
∆t
−
σPML
y

2ε0
ky
∆t

+
σPML
y

2ε0

Pnx (i+ 1/2, j, k)

+
1

∆t

(
ky
∆t

+
σPML
y

2ε0

) · [P ′n+1
x (i+ 1/2, j, k)− P

′n
x (i+ 1/2, j, k)

]

Pn+1
y (i, j + 1/2, k) =

kz
∆t
− σPML

z

2ε0
kz
∆t

+
σPML
z

2ε0

Pny (i, j + 1/2, k)

+
1

∆t

(
kz
∆t

+
σPML
z

2ε0

) · [P ′n+1
y (i, j + 1/2, k)− P

′n
y (i, j + 1/2, k)

]

Pn+1
z (i, j, k + 1/2) =

kx
∆t
− σPML

x

2ε0
kx
∆t

+
σPML
x

2ε0

Pnz (i, j, k + 1/2)

+
1

∆t

(
kx
∆t

+
σPML
x

2ε0

) · [P ′n+1
z (i, j, k + 1/2)− P

′n
z (i, j, k + 1/2)

]
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From Eqs. (B2d)—(B2f) we obtain the update equations for
Ex, Ey, Ez:

En+1
x (i+1/2, j, k) =

(
kz
∆t
− σPML

z

2ε0

)
(
kz
∆t

+
σPML
z

2ε0

)En
x (i+1/2, j, k) +

1(
kz
∆t

+
σPML
z

2ε0

)

·
{[

kx
∆t

+
σPML
x

2ε0

]
Pn+1
x (i+1/2, j, k)−

[
kx
∆t
− σPML

x

2ε0

]
Pnx (i+1/2, j, k)

}

(B4a)

En+1
y (i, j+1/2, k) =

(
kx
∆t
−σ

PML
x

2ε0

)
(
kx
∆t

+
σPML
x

2ε0

)En
y (i, j+1/2, k) +

1(
kx
∆t

+
σPML
x

2ε0

)

·
{[

ky
∆t

+
σPML
y

2ε0

]
Pn+1
y (i, j+1/2, k)−

[
ky
∆t
−
σPML
y

2ε0

]
Pny (i, j+1/2, k)

}

(B4b)

En+1
z (i, j, k+1/2) =

(
ky
∆t
−
σPML
y

2ε0

)
(
ky
∆t

+
σPML
y

2ε0

)En
y (i, j, k+1/2) +

1(
ky
∆t

+
σPML
y

2ε0

)

·
{[

kz
∆t

+
σPML
z

2ε0

]
Pn+1
z (i, j, k+1/2)−

[
kz
∆t
− σPML

z

2ε0

]
Pnz (i, j, k+1/2)

}

(B4c)

Equations (B4) constitute the second-order accurate update for the
electric field. The magnetic field update within the PML is identical
to that obtained for a non conductive media:

Hn+1/2
x (i, j+1/2, k + 1/2) =(
kz −

σPML
z ∆t

2ε0

)
(
kz +

σPML
z ∆t

2ε0

)Hn−1/2
x (i, j+1/2, k + 1/2) +

1

µ0µr

(
kz+

σPML
z ∆t

2ε0

)
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·




[
kx +

σPML
x ∆t

2ε0

]
B
n+1/2
x (i, j + 1/2, k + 1/2)−

[
kx −

σPML
x ∆t

2ε0

]

·Bn−1/2
x (i, j + 1/2, k + 1/2)




(B5a)

Hn+1/2
y (i+ 1/2, j, k + 1/2) =(
kx −

σPML
x ∆t

2ε0

)
(
kx +

σPML
x ∆t

2ε0

)Hn−1/2
y (i+1/2, j, k + 1/2) +

1

µ0µr

(
kx+

σPML
x ∆t

2ε0

)

·




[
ky +

σPML
y ∆t

2ε0

]
B
n+1/2
y (i+ 1/2, j, k + 1/2)−

[
ky −

σPML
y ∆t

2ε0

]

·Bn−1/2
y (i+ 1/2, j, k + 1/2)




(B5b)

Hn+1/2
z (i+ 1/2, j + 1/2, k) =(
ky −

σPML
y ∆t

2ε0

)
(
ky +

σPML
y ∆t

2ε0

)Hn−1/2
z (i+1/2, j + 1/2, k) +

1

µ0µr

(
ky+

σPML
y ∆t

2ε0

)

·




[
kz +

σPML
z ∆t

2ε0

]
B
n+1/2
z (i+ 1/2, j + 1/2, k)−

[
kz −

σPML
z ∆t

2ε0

]

·Bn−1/2
z (i+ 1/2, j + 1/2, k)




(B5c)

with

Bn+1/2
x (i, j + 1/2, k + 1/2) =[

ky
∆t
−
σPML
y

2ε0

]
[
ky
∆t

+
σPML
y

2ε0

]Bn−1/2
x (i, j+1/2, k + 1/2) +

1[
ky
∆t

+
σPML
y

2ε0

]
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·




[
En
y (i, j + 1/2, k + 1)− En

y (i, j + 1/2, k)
∆z

]

−
[
En
z (i, j + 1, k + 1/2)− En

z (i, j, k + 1/2)
∆y

]



Bn+1/2
y (i+ 1/2, j, k + 1/2) =[

kz
∆t
− σPML

z

2ε0

]
[
kz
∆t

+
σPML
z

2ε0

]Bn−1/2
y (i+ 1/2, j, k + 1/2) +

1[
kz
∆t

+
σPML
z

2ε0

]

·




[
En
z (i+ 1, j, k + 1/2)− En

z (i, j, k + 1/2)
∆x

]

−
[
En
x (i+ 1/2, j, k + 1)− En

x (i+ 1/2, j, k)
∆z

]



Bn+1/2
z (i+ 1/2, j + 1/2, k) =[

kx
∆t
− σPML

x

2ε0

]
[
kx
∆t

+
σPML
x

2ε0

]Bn−1/2
z (i+ 1/2, j + 1/2, k) +

1[
kx
∆t

+
σPML
x

2ε0

]

·




[
En
x (i+ 1/2, j + 1, k)− En

x (i+ 1/2, j, k)
∆y

]

−
[
En
y (i+ 1, j + 1/2, k)− En

y (i, j + 1/2, k)
∆x

]
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