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Abstract—This paper studies the radiation properties of aperture
antennas above imperfect ground using Discrete Complex Image
Method (DCIM). The present method is simple and has high
accuracy. In this approach, based on linear approximating a function
to an exponential series, equivalent complex images have been
obtained. Number, intensity and location of images are obtained using
Generalized Pencil Of Function (GPOF) technique. We assume current
distribution over the aperture be combination of electric and magnetic
currents in vertical and horizontal direction. The obtained results are
comparable with analytical computation in limited cases. In spite of
Sommerfeld integral based methods, this method is simple with lower
computational time.
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1. INTRODUCTION

Aperture antennas are frequently used in radar and communications.
Considering the special application of this kind of antennas
researchers have performed different studies and published the achieved
results. These antennas are frequenly used because of their unique
characteristics, such as high gain and wide bandwidth. These
important features, distinguish them from others and have provided
special applications in terrestrial radio links, satellite communication
and radar. As most of these antennas are located above the real
ground, so they are considerably effected by it. Up to now, the ground
has been considered as a perfect electric conductor so the relevant
effects can be easily calculated. But, the effect of the real ground which
is a lossy conductor has not been thoroughly studied yet. Therefore, in
our investigations, we were seeking the development of a new method
to model the ground’s effect. Finally, Discrete Complex Image Method
(DCIM) was selected as a suitable approach for analyzing the subject.
Different approximate methods have been applied for analyzing the
short dipole antennas; pointing out some limitations and deficiencies.
In previous articles [1, 2], we have mentioned that the new offered
method has almost an exact solution for a current element.

This method is applied for wire antennas with considerable length.
It was clarified that this method has also an acceptable accuracy [3, 4].
In this paper we extend this approach to two dimensional structures
and hereafter develop a new method to analyze the aperture antennas.
In addition, our aim is to introduce the simplicity and applicability in



Analysis of aperture antennas above lossy half-space 41

l

h

w

z00 , εµ

x

1

1

2
0 , εµ , σ

Figure 1. Sketch of aperture antenna above real ground.

pattern calculation above a lossy ground including variations in ground
parameters.

2. APERTURE ABOVE GROUND SURFACE

Fig. 1 shows the sketch of aperture antenna above an infinite ground
plane. The antenna has dimensions l × w and located at a height h
above the ground surface. Region (2) (z < 0) is assumed to be lossy
with parameters Er and σ.

The aperture is located in x-z plane and has the general current
distribution, �J . It is assumed that the current is of electric or magnetic
type and in an arbitrary direction.

Using the results of short dipole current element and superposition
principle, the radiation field of aperture distribution can be written as
follows [5]:

�E = C

∫ l
2

−l
2

∫ w
2

−w
2

(G) �Jdz′dx′ (1)

where G is the associated Green’s function and C is a constant. In
order to solve the above integral, we obtain the proper formula for an
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Figure 2. Vertical electric element above half-space.

electrical current element and then change the Green’s function to a
simple form.

3. CURRENT ELEMENT

A z-directed vertical electrical current element with length dl and at
a height h, above the ground surface is shown in Fig. 2.

Based on Sommerfeld presentation, the vector and scalar Green’s
functions for this source, respectively are as follow [5]:

Gzz
A =

µ0

4π

[
e−jk0r0

r0
+
n2 − 1
n2 + 1

e−jk0r′0

r′0
+

2n2

n2 + 1
U

]
(2)

and

Gq =
1

4πε0

[
e−jk0r0

r0
+
n2 − 1
n2 + 1

e−jk0r′0

r′0
− 2n2

n2 + 1
U

]
(3)

with U as the Sommerfeld integral term. The z-component of the
radiation electric field is obtained as:

Ez =
Idl

j4πωε0

[
∂2

∂z2
+ k2

0

] [
g0(z, z′) +

n2 − 1
n2 + 1

g1(z, z′) +
2n2

n2 + 1
U

]
(4)

where I is current distribution and g0(z, z′) denotes the free space
Green function, i.e.,

g0(z, z′) =
e−jk0R1

R1
(5)
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While g1(z, z′) follows from image theory:

g1(z, z′) =
e−jk0R2

R2
(6)

in which k0 and k1 are the propagation constants of free space and
lossy ground, respectively, and R1 and R2 are the distances from the
antenna and from its image to the observation point. The medium of
lower half-space is taken to be lossy ground characterized by (n2ε0, µ0),
with n2 = k2

1/k
2
0 = εr − jσ/ωε0, where εr is the relative dielectric

constant, and σ is the conductivity of the medium.
The first two terms in Eq. (1) determine the dipole radiation

over a perfectly conducting half-space. The fact that the ground is
an imperfectly conducting medium is taken into account by means of
correction terms in the form of Sommerfeld integral. This integral
drives from Sommerfeld problem for infinitesimal current source
radiating above a lossy half-space [5]. The Sommerfeld integral U
is defined as:

U = k0

∫ ∞

0

1
u0

u0 − u1

n2u0 + u1
e−k0u0(z+h)J0(k0λρ)λdλ (7)

Where u0 =
√
λ2 − 1, u1 =

√
λ2 − n2, ρ = [(x−x′)2 +(y−y′)2]

1
2 , and

J0(k0λρ) is the zero-order Bessel function, while h is the distance from
the interface to the antenna.

3.1. Complex Image Formulation

The integrand in the Sommerfeld integral, U , is a weakly damped
quasi-oscillatory complex function, which greatly complicates accurate
numerical evaluation of the integral and makes it quite lengthy [5]. By
applying the Discrete Complex Image Method (DCIM) [6, 7] method
and Generalized Pencil Of Function (GPOF) [8, 9] technique, the
(u0 − u1)/(n2u0 + u1) term in U can be approximated by

u0 − u1

n2u0 + u1
=

N∑
i=1

aie
biu0 (8)

Therefore, using Sommerfeld equality, U is transformed to

U =
N∑

i=1

ai
e−jk0ri

ri
(9)
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Figure 3. Complex images of current element above lossy ground.

where

ri =

√
ρ2 +

(
z + h− bi

k0

)2

, z ≥ 0

The physical picture of Eq. (9) is clear. It represents N complex images
located at the complex locations (x′, y′,−h + bi/k0)(i = 1, 2, . . . , N),
as shown in Fig. 3.

3.2. Complex Coefficients

The coefficients, ai, bi, are obtained by using a nonlinear approximation
scheme to put a complex function of the real argument into exponential
functions. There are several techniques for this transformation, such
as Prony method, modified Prony, and GPOF techniques. Prony is
a noise sensitive method and therefore it has a lower accuracy. In
this paper we use GPOF to obtain the complex coefficients. To use
these methods, it is necessary to find an approximation path, along
which the complex argument u0 is linearly related to the real argument.
Therefore the following variable change is done [6].

u0 = t+ j

(
1 − t

T0

)
t ∈ [0, T0] (10)
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Figure 4. Approximate paths in u0 and λ planes.

if we define f(t) function as

f(t) =
N∑

i=1

Aie
Sit t ∈ [0, T0] (11)

then we can obtain the complex coefficients

ai = Ai exp
(
− jsi

1 − j/T0

)

bi =
si

1 − j/T0

(12)

where, si, Ai can be obtained from Eq. (11) using the GPOF method.

3.3. Selection of T0 and N

T0 is the truncation point of definition process of complex images. The
approximate paths will be changed according to different T0 parameter.
These approximate paths in u0 and λ planes are shown in Fig. 4(a) and
Fig. 4(b). The error value occurred from different paths isn’t similar to
each other. The error values in spectral domain may cause high error
in space domain for far zone fields. Therefore for defining the value of
T0 for far region, it is necessary to consider it with high attention. By
repeatition and recursive iterations, we can achieve the suitable value
of T0.

Number of exponential terms or complex images is denoted with
N . For achieving more accuracy, the value of N may be increased. For
an acceptable accuracy, N = 5 is enough.
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4. THE EQUIVALENT IMAGES FOR CURRENT
SOURCES (VED, VMD, HED, AND HMD)

Based on the above mentioned discrete complex image theory, the
equivalent images of short dipole can be determined considering the
relevant Green’s function. The results of vertical and horizontal dipoles
are as follows:

4.1. Vertical Electric Dipole (VED)

Assume a z directed current distribution, i.e.,
�J = Jzâz (13)

The equivalent discrete complex images will result in the form of

�I0 =
n2 − 1
n2 + 1

Jzâz at z = −h (14)

and

�Ii =
2n2

n2 + 1
aiJzâz at z = −h+

bi
k0

i = 1, 2, . . . , N (15)

where ai and bi are complex coefficients obtained from DCIT.

4.2. Horizontal Electric Dipole (HED)

In this case, the current distribution is assumed as
�J = Jxâx (16)

which yields the Green’s potentials as

Gxx
A =

µ0

4π

[
e−jk0r0

r0
+ V

]
(17)

and

Gq =
1

4πε0

[
e−jk0r0

r0
− n2 − 1
n2 + 1

e−jk0r′0

r′0
+

2
n2 + 1

U

]
(18)

and the equivalent discrete images are denoted by

�Ii = a′iJxâx z = −h+
b′i
k0

i = 1, 2, . . . , N (19)

where a′i and b′i are the complex coefficients and V is defined as

V = k0

∫ ∞

0

1
u0

u0 − u1

u0 + u1
e−k0u0(Z+h)J0(k0λρ)λdλ (20)
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4.3. Vertical Magnetic Dipole (VMD)

The magnetic current source is assumed as

�M = Mzâz (21)

and the corresponding Green’s potentials are derived as

Gzz
Am =

ε0

4π

[
e−jk0r0

r0
+ V

]
(22)

and

Gqm =
1

4πµ0

[
e−jk0r0

r0
− V

]
(23)

the discrete complex images will therefore be reduced to:

�Ii = a′iMzâz at z = −h+
b′i
k0

(24)

4.4. Horizontal Magnetic Dipole (HMD)

We assume the corresponding distribution as

�M = Mxâx (25)

in which the Green’s potentials are derived as

Gxx
Am =

ε0

4π

[
e−jk0r0

r0
+
n2 − 1
n2 + 1

e−jk0r′0

r′0
+

2n2

n2 + 1
U

]
(26)

and

Gqm =
1

4πµ0

[
e−jk0r0

r0
+ 2U − V

]
(27)

the complex images are determined as

�I0 =
n2 − 1
n2 + 1

Mxâx at z = −h (28)

and

�Ii =
2n2

n2 + 1
aiMxâx at z = −h+

bi
k0

i = 1, 2, . . . , N (29)
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5. CURRENT DISTRIBUTION ON THE APERTURE
ANTENNA

The current distribution on the aperture surface is considered as
a continuous array of short dipole elements which are continuously
located across the aperture.

Applying the above mentioned nonclassical image theory which
was introduced for dipole and wire antennas in previous articles [1–3],
known as discrete complex image theory (DCIT), the complex images
of the mentioned dipole elements can be determined.

Considering the linear behavior of the subject and the possibility
of using the superposition principle, the obtained images are in fact
in the form of some planes appeared in the complex locations. Fig. 5
shows the sketch of these images.

l

w

h

h

X

Figure 5. Sketch of complex image planes.

We denote the tangential components of the aperture fields by �Ea

and �Ha. The equivalent current sources according to the equivalence
principle are achieved as follow

�J = n̂× �Ha (30)

and
�M = −n̂× �Ea (31)
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Using the proposed method to evaluating the complex images of this
current distribution, the fields of aperture antennas can be determined.

As an example; consider a uniform aperture distribution:

�Ea = E0âx (32)

and

�Ha = H0âz (33)

The complex image sources associated with this current distribution
are obtained as:

Ii = a′iJx =a′iH0 i=1, 2,. . . , N − h+
b′i
k0

−w

2
≤z≤ −h+

b′i
k0

+
w

2
and (34)

Imi = a′iMz =a′iE0 − l

2
≤ x ≤ l

2

As the program is running in first time these complex images will be
determined in a short time.

6. RADIATION FIELDS

Considering the complex images and the original source, they construct
a linear array. Based on the principle of pattern multiplication and
using the similarity property of the array elements the resultant array
factor can be defined as

Etotal = EElement ·AF (35)

the aperture fields formulas have been introduced in text books. Array
factor for our geometry can be determined as:

AF =
N+1∑
i=1

Ine
jk0zn cos θ = ejk0(h+ l

2
) cos θ +

N∑
i=1

a′ie
−jk0(h+ l

2
− b′i

k0
) cos θ

(36)

where, In is the relative current for each element, zn corresponds to the
center of each element, and N is number of elements. The far region
fields can be calculated easily by

Eθ = −jk0e
−jk0r(Lφ + ηNθ)/(4πr)

Eφ = jk0e
−jk0r(Lθ − ηNφ)/(4πr)

(37)
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Figure 6. Comparison of results for the perfect electric ground and
free space.

6.1. Numerical Results

As the first example, we consider the uniform current distribution on
the aperture. We assume the field distribution as

�Ha = H0âx − w

2
≤ x′ ≤ w

2
− l

2
≤ z′ ≤ l

2
(38)

Therefore the equivalent current on the surface of aperture will be
obtained as follows:

�J = H0âz (39)

the array factor of the equivalent array will then be obtained as

AF =ejk0(h+ l
2
)cos θ+

n2−1
n2+1

e−jk0(h+ l
2
)cos θ+

N∑
n=1

2n2

n2+1
e
−jk0

[
(h+ l

2
)− bi

k0

]
cos θ

(40)

Using Eqs. (35) and (37), the radiation fields of the aperture
will be obtained. To verify the validity of the proposed approach we
consider the limiting cases. For perfect electric ground (σ → ∞) and
for free space (n = 1), we calculate the radiation field and compare it
to the analytical results. Fig. 6 shows such a comparison.

Consider a lossy ground with εr = 10 and σ = 10 mS/m. We
calculate the radiation field, Eθ, for the aperture above earth. Fig. 7
shows the obtained results.

This figure illustrates the effect of finite conductivity on the
pattern. It affects the angle of mainlobe, SLL and sidelobes. The
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Figure 7. Radiation pattern of aperture with l = 3λ, w = 2λ, and
the height h = λ above a perfect electric conductor and lossy ground
with εr = 10, and σ = 10 mS/m.

Table 1. Relative permittivity and conductivity for water and earth.

εr σ, s/m

Sea Water 80 1
Fresh Water 80 10−3

Wet Earth 20 10−2

Dry Earth (Sand) 4 10−3

mainlobe angle changes from 90 degrees to 85 degrees and the first
sidelobe reduce from −5.2 dB to −17.3 dB.

To illustrate the effect of lossy earths, we consider the real earths
which their parameters listed in Table 1.

Fig. 8 shows the effect of real earths on the pattern of aperture
antennas. It is observed that the gain, mainlobe and sidelobes
of radiation patterns is affected by the conduction coefficients and
dielectric constants.

The second example is an aperture with a tapered distribution.
Consider a cosine distribution over the aperture as follow

�E = azE0 cos
( π
w
x′

)
− w

2
≤ x′ ≤ w

2
− l

2
≤ z′ ≤ l

2
(41)

The equivalent current on the surface of aperture is therefore, a
horizontal magnetic current as

�M = âxE0 cos
( π
w
x′

)
(42)
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Figure 8. Radiation pattern of aperture antennas of Fig. 7 located
above real earths of Table 1.

Figure 9. Radiation patterns of apertures of Fig. 7 located above dry
earth, PEC, and free space.

Based on the duality and Eqs. (28) and (29), the array factor is
similar to the Eq. (40) and the radiation fields can be obtained from
the Eqs. (35) and (37). As a result, we compare the radiation pattern
of the aperture with the above mentioned distribution while located
above perfect electric conductor, dry earth and in free space. Fig. 9
shows this radiation patterns in the φ = 0 plane.
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Figure 10. The radiation patterns of aperture of Fig. 7 located above
real earths of Table 1.

As is observed, tapered distribution cause to reduce the sidelobes
similar to PEC and free space. The effect of finite conductivity of an
imperfect earth can be illustrated for the entries of Table 1. Fig. 10
shows the obtained radiation pattern in φ = 90 degrees plane.

We can select any electric or magnetic distribution on the
surface of aperture and apply the proposed approach. The present
problem assumes infinite, flat, and homogeneous lossy half-space with
parameters εr and σ. Comparison of the resulted image with those
obtained from Sommerfeld integral formulation shows that for h >
0.01λ the differences are negligible. The method is applicable for all
bands and can be used for high or low frequencies. The important
feature of the image method is in less computational time and better
convergence.

7. CONCLUSION

The proposed complex image method for analyzing aperture antennas
yields satisfactory results and accuracy. This method conceptually is
very simple and less time consuming because the complex images will
be computed in a very shorter time than the Sommerfeld integrals.
Using this method in analyzing aperture antennas above real ground is
a new and interested achievement. Contrary to other image methods,
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for each pair of εr and σ, we have to find a specific set of complex
images independent of source or field point locations. Since the
complex-image coefficients are independent of the spatial co-ordinates,
numerical integration of the Sommerfeld integrals for the entire field
and source locations are not needed. The numerical implementation is
easily performed on a personal computer.

Although, due to the complexity of Sommerfeld integrals, a
simple method for the analysis of aperture antennas above ground
is not reported, the proposed DCIM with proper number of images
is practically accurate for aperture antennas. The radiation pattern
of this type antennas and scatterers above or below real or multilayer
ground can be obtained with a little additional computation compared
to the free space radiation.

ACKNOWLEDGMENT

The authors would like to thank the Iran Telecommunication Research
Center for its support of this work.

REFERENCES

1. Abbasi, B. and M. Hakkak, “Analysis of electromagnetic radiation
with an electric dipole above lossy ground using complex image
theory,” ICT2002 Conference, Vol. 3, Beijing, June 2002.

2. Abbasi, B. and M. Hakkak, “Analysis of vertical electric dipole
above lossy half-space using discrete complex image method,”
IEEE APS/URSI Symposium, AT&M Texas University, June
2002.

3. Hakkak, M. and B. Abbasi, “Analysis of vertical wire antenna
above imperfect ground using discrete complex image method,”
MMET 02 Conference, Ukraine, Sept. 2002.

4. Popovic, B. D. and V. V. Petrovic, “Vertical wire antenna above
ground: Simple near exact Image solution,” IEE Proceedings-H,
Vol. 140, No. 6, 501–507, Dec. 1993.

5. Banos, A., Dipole Radiation in the Presence of a Conducting
HalfSpace, Pergamon, New York, 1966.

6. Fang, D. G., J. J. Yang, and G. Y. Delisle, “Discrete image theory
for horizontal electric dipoles in multilayered medium,” IEE Proc.-
H, Vol. 135, No. 5, 297–303, 1988.

7. Chow, Y. L., et al., “A closed form spatial Green’s function for
the thick microstrip substrate,” IEEE, Trans. Microwave Theory
Technique, Vol. 39, No. 3, 588–592, 1991.



Analysis of aperture antennas above lossy half-space 55

8. Sarkar, T. K. and O. Pereira, “Using the matrix pencil method to
estimate the parameters of a sum of complex exponentials,” IEEE
AP Magazine, Vol. 37, No. 1, 48–55, Feb. 1995.

9. Hue, Y. and T. K. Sarkar, “Generalized pencil-offunction method
for extracting poles of an EM system from its transient response,”
IEEE Trans. Antennas Propagat., Vol. 37, 229–234, Feb. 1989.


