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Abstract—Rigorous Coupled Wave Analysis (RCWA) in bipolar
coordinates for the first time is used to study electromagnetic (EM)
scattering from eccentric, circular, multi-cylinder systems for which
spatially, non uniform material (dielectric permittivity) occupies the
regions between the interfaces of the cylinders. The bipolar RCWA
algorithm presented herein consists of three basic steps which are;
(1) solving Maxwell’s equations in bipolar coordinates using a state
variable (SV) formulation; (2) solving Maxwell’s equations in the
spatially uniform regions exterior to the inhomogeneous scattering
object in terms of circular, cylindrical Bessel-Hankel functions; and
(3) enforcement of EM boundary matching equations which leads to a
final matrix equation solution of the system. In the paper extensive use
of the residue theorem of complex variable theory was made in order
to find fast and exact evaluations of the EM boundary interaction
integrals that arose between the bipolar, SV solutions and the Hankel-
Bessel solutions.

In this paper very extensive reliance on the work of A. A. Kishk,
R. P. Parrikar and A. Z. Elsherbeni [22] who studied EM scattering
from uniform material multi-eccentric circular cylinders (called herein
the KPE algorithm) was made in order to validate the numerical results
of the bipolar RCWA algorithm. In this paper, two important system
transfer matrices, called the Bessel transfer matrix (based on the KPE
algorithm) and called the bipolar SV transfer matrix, were developed
in order to validate the numerical accuracy of the RCWA algorithm.
The Bessel and SV transfer matrices were very useful for validation
purposes because, from the way they were both formulated, they could
be meaningfully compared to one another, matrix element to matrix
element.
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In the paper extensive numerical results are presented for EM
scattering from spatially uniform and non uniform multi-eccentric,
composite cylinder systems, including calculation of three dimensional
plots of the electric and magnetic fields and including calculation of
the back and bistatic scattering widths associated with the scattering
systems. Also included are three tables of data documenting peak and
RMS errors that occur between the KPE and RCWA algorithms when
the number of modes are changed, the number of layers in the RCWA
algorithm are varied and when the angle of incidence is varied.
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1. INTRODUCTION

An important problem in the area of EM spectral domain analysis
is the problem of using rigorous coupled wave analysis (RCWA) to
determine the EM fields that result when an EM wave is incident
on an inhomogeneous material object, that is one whose dielectric
permittivity and magnetic permeability parameters are functions of
position. The RCWA algorithm which was originally designed to study
scattering from planar diffraction gratings [1–9], has been used to
study scattering from inhomogeneous objects when the inhomogeneous
object was a phi dependent circular cylinder [10–13], when the circular
cylinder was an anisotropic permeability [14], when the object was
a lossy biological material [15], when the object was an elliptical
inhomogeneous cylinder [16, 17], and when the scattering object was
an inhomogeneous sphere [18, 19]. A recent book [20] describes the
RCWA method and its application to scattering from inhomogeneous
objects.

A limitation of work of [13–15] was that it described circular
cylindrical materially inhomogeneous systems for which the interior
and exterior circular cylinders of the scattering object were concentric.
This is a limitation because scattering objects which have a
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significantly off center material inhomogeneity cannot easily be
analyzed in a concentric circular cylindrical system. Although
scattering objects with eccentric, cylindrical inhomogeneity can still
be theoretically studied as an inhomogeneous object in a centered
cylindrical system, if the difference in material values of eccentric
material object was large, a very high number of Fourier harmonics
would be required to achieve accurate numerical results. The purpose
of the present paper therefore will be to further extend the RCWA
method to describe EM scattering from inhomogeneous material
objects which are comprised of eccentric, circular, multi-cylinder
systems for which spatially, nonuniform material (the dielectric
permittivity) occupies the regions between the interfaces of the
cylinders. This analysis will be carried out in bipolar coordinates (see
Figs. 1 and 2) since the coordinates u and v and interfocal parameter
a of this coordinate system [21] can be chosen to define the off center
exterior and interior boundaries of the scattering object.

The study of EM scattering from an object which is composed
of N non concentric, completely enclosed, circular cylinders of radius
r1 > r2 >, . . . , > rN where the material parameters of dielectric
permittivity and magnetic permeability are homogeneous (or non
varying with spatial position) between the adjacent circular boundaries
rj > rj+1, j = 1, . . . , N−1, has been studied and solved by A. A. Kishk,
R. P. Parrikar and A. Z. Elsherbeni [22]. This method will be referred
to as the KPE algorithm of [22] herein. By completely enclosed
it is meant that cylinder r1 completely encloses cylinder r2 which
completely encloses cylinder r3, etc.. The solution of this problem
by the KPE algorithm [22] is extremely important to the present work
for two reasons. First, the study of EM scattering from eccentric,
circular, multi-cylinder systems by the KPE method [22] provides
many, very good examples for which the bipolar RCWA algorithm may
be validated and tested against with respect to numerical accuracy
and convergence. Fig. 1 shows the general bipolar geometry and
Fig. 2 shows a specific scattering example involving three eccentric
enclosed cylinders which will be studied extensively in the present
work. In Fig. 2 the interior and exterior cylinders have the same
bipolar coordinates as Fig. 1. One notices from Fig. 2 that because
of the geometry and conditions stated earlier, that the solution of the
EM scattering problem displayed in this figure is exactly amenable
to an exact solution by the KPE algorithm [22] in the case when
the material regions between cylinder interfaces are uniform (∆ε = 0
in Fig. 2). On the other hand, picking the inner and outer circular
cylinder boundaries as the interior (u = u0 = 2.211) and exterior
(u = uL = 1.551) interfaces of the bipolar scattering geometry (see Fig.
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Figure 1. The geometry of the combined bipolar, cylindrical,
rectangular coordinate system of the paper is shown. The
inhomogeneous region which is described by bipolar coordinates, is
divided into L thin layers with interfaces located at u = u�, � =
0, . . . , L with the innermost layer at u = u0 and outermost at u = uL.
The X1, Y1 rectangular coordinate system shown is centered on the
outer R1, u = uL circle. The figure corresponds to the main scattering
example of the paper (see Fig. 2) and the figure is drawn to the
exact scale of the numerical values displayed. The interfocal distance
a = k̃f ã = 28.32451318. X1 (wavelengths), here and in Figs. 2–9,
and Y1 (wavelengths) in Figs. 3–9 represent the number of wavelengths
(positive or negative) from the origin. (X1 = x̃1/λ̃f , Y1 = ỹ1/λ̃f are
dimensionless.)

1), the middle circular cylinder of Fig. 2 represents an inhomogeneous,
uniform-step profile for the RCWA algorithm, if the bulk, relative
dielectric permittivities ε1 and ε2 are different from one another. To
clarify this statement, if the u = 1.773 bipolar circle of Fig. 1 (middle
u circle) is placed in Fig. 2, and one traces the dotted circle from
v = −180◦ to v = 0◦, one would first be in Reg. 2 (ε(u, v) = ε2),
then for some v value (v = −108.8◦ for u = 1.773) cross over to Reg. 1
ε(u, v) = εf1. Going from Reg. 2 (ε2) to Reg. 1 (εf1) represents the step
profile for the range −180◦ ≤ v ≤ 0◦. Because it is necessary to use a
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Figure 2. The geometry of the main scattering example of the paper
is shown. The relative bulk permittivities in Regs. 0, 1, 2, 3 which are
displayed in the figure are assumed to have values ε0 = 1, ε1 = 2, ε2 =
3, ε3 = 4. The direction of the φ0 = 0◦ incident planewave is shown.
The φ0 = 180◦ incident planewave (not shown) would impinge of the
scattering object from the from the left side of figure. In the case when
∆ε = 0, the permittivity inside Reg. 1 and Reg. 2 is uniform, and this
case thus represents a case for which the KPE algorithm [22] can find
an exact solution.

Fourier series to represent this step profile, this type of inhomogeneity
provides a severe test of the RCWA algorithm since the Fourier series of
step profiles tends to converge slowly and have a high spectral content.

The second reason the study of this problem by the KPE algorithm
[22] is useful is because the KPE method [22] after a small amount
of mathematical manipulation (Appendix B), can be placed in an
algebraic form for which a direct numerical comparison of the system
transfer matrices as result using the KPE method [22] and as using
the bipolar RCWA method can be made. The transfer matrices were
useful for validation purposes because, from the way they were both
formulated, they could be meaningfully compared to one another,
matrix element to matrix element.

This problem of scattering from inhomogeneous eccentric circular,
cylindrical composite objects is important, for example in the areas of
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bioelectromagnetics [15], (where one might want to know EM field
levels in biological materials (for example EM field penetration in
a limb or torso); terrain clutter where one might want to model
EM scattering from eccentric, cylindrical shaped vegetation; study
of inhomogeneous radar absorbing materials (RAM); as an exact or
approximate solution to validate other mathematical methods; and
many other applications as well. It is felt that the work to be
presented, could be particularly important to validation of other EM
methods (i.e., finite element method (FEM), finite difference-finite time
(FD-TD), method of moments (MoM), etc.), since eccentric circular
cylindrical systems which possess non spatially uniform material
between the interfaces of the cylinders (for example, please see
Figs. 2, 3b, and 3c, ∆ε �= 0, of this paper) present a nontrivial
scattering geometry (which thus requires non spatially uniform
gridding) for which to test the given algorithm (i.e., FEM, FD-TD,
MoM).

The analysis to be presented assumes that source excitation and
scattering objects are symmetric with respect to the y coordinate (see
Figs. 1 and 2). The extension of the RCWA algorithm to the case
where the EM fields and a scattering object have arbitrary symmetry
is straight forward.

2. RCWA BIPOLAR COORDINATE FORMULATION

This paper is concerned with the problem of determining the EM fields
that arise when a plane wave excites EM fields in an inhomogeneous,
bipolar system as shown in Figs. 1 and 2. The EM analysis will be
carried out by solving Maxwell’s equations in all regions and then
matching EM boundary conditions at the interfaces. We will use
a combination of rectangular, cylindrical and bipolar coordinates to
represent the position of all field variables in the paper, and then
normalize these coordinates which are in meters, with respect to
either the free space wavenumber k̃f when presenting equations (i.e.,
x = k̃f x̃, y = k̃f ỹ, etc., where k̃f = 2π/λ̃f and where λ̃f is free
space wavelength) or when displaying graphical results, normalizing
them to the free space wavelength λ̃f (i.e., X ≡ x/2π, Y ≡ y/2π,
etc.). The bipolar coordinates which are used in this paper to
represent the inhomogeneous region shown in Fig. 1 are defined by
an interfocal distance a = k̃f ã [21], a “radial” angular coordinate
u (−∞ < u < ∞) and an angular coordinate v (−π ≤ v ≤ π). The
rectangular coordinates x, y are the related to bipolar coordinates u, v
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Figure 3. Figs. a, b, and c show the relative dielectric permittivity
function of ε(X1, Y1) (from ε(u, v) of Eq. (89)) as a function of the
rectangular coordinates X1, Y1 for the parameters listed in each figure.

and interfocal distance a by the equations

x =
a sinh(u)

cosh(u)− cos(v)
, y =

−a sin(v)
cosh(u)− cos(v)

(1)

These equations have been obtained from [21], with the minor
modification that the angular bipolar coordinate used in [21] (call it
v′ in [21] for the moment), was defined on the interval 0 ≤ v′ ≤ 2π in
[21], whereas herein, the angular coordinate v is defined on the interval
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−π ≤ v ≤ π. Thus the coordinate v′ of [21] and the coordinate v used
here are related by v = v′ − π. Substitution of v = v′ − π in Eq. (1)
gives the bipolar coordinate formulas used in [21]. As mentioned in
the Introduction we assume that the system is symmetric with respect
to y coordinate. In bipolar coordinates, the locus of points defined by
setting the “radial” coordinate to a constant value u with −π ≤ v ≤ π,
traces out a circle whose center is on the x-axis at xcu = a/ tanh(u) and
whose radius is ru = a/ sinh(|u|). When u→ ±∞ the circle of constant
u’s center approaches the interfocal points x = ±a respectively and
the radius of this circle ru approaches zero. In bipolar coordinates, the
locus of points defined by setting the angular coordinate to a constant
value v with −∞ < u < ∞, traces out a circle whose center is on the
y-axis at ycv = −a/ tan(v) and whose radius is rv = a[1 + cot2(v)]1/2.
All circles of constant v pass through both interfocal points x = ±a.
In bipolar coordinates the scale factors of the system are for the u, v
coordinates defined here are given by

hu(u, v) = hv(u, v) = h(u, v) ≡ a

cosh(u)− cos(v)
(2)

Ref. [21] shows a complete geometry of bipolar coordinates u and v′.
Fig. 1 shows the rectangular, cylindrical and bipolar coordinates

of a general type of scattering example that one might solve using
the bipolar RCWA algorithm whereas Fig. 2 shows the details of the
particular scattering example that we will be most concerned with
in this paper. Figs. 1 and 2 are drawn to the exact scale of the
scattering examples which will be presented in the paper. In this
paper we use bipolar coordinates to describe the inhomogeneous region
of the scattering object and we use the eccentric, circular, cylindrical
coordinate system used by KPE [22] (ρj , φj , j = 1, 3 with the origin
Oj at the center of each eccentric cylinder in Fig. 1) to describe the EM
fields and geometry outside the inhomogeneous region. The interfaces
shown in Fig. 2 satisfy ρj = rj , rj = k̃f r̃j , Rj = rj/2π, j = 1, 2, 3.
In applying the RCWA algorithm to the geometry of Fig. 1, it is
assumed that the inhomogeneous region displayed there, is divided
into L thin layers of uniform width and that the interfaces of the thin
layers are located on the circles at u� = u0−�∆u, � = 0, 1, . . . , L, where
∆u = (u0 − uL)/L > 0, where u = u0 is located on the circle ρ3 = r3
and where u = uL is located on the circle ρ1 = r1. In Figs. 1 and 2 the
rectangular coordinates X1 = x1/2π, Y1 = y1/2π, which are centered
on the scattering objects exterior boundary interface ρ1 = r1 (u = uL),
are related to the bipolar rectangular coordinates of Eq. (1) by the
relations x1 = x − xc1, y1 = y where xc1 = a/ tanh(uL). In Figs.
1 and 2 the exterior boundary has a radius r1 = a/ sinh(uL) and
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the interior boundary a radius r3 = a/ sinh(u0) with r3 < r1. The
rectangular coordinates, call them xu(u, v), yu(u, v), whose origin is
located at the center of a circle of constant u, call it Ou, are related to
the rectangular coordinates x(u, v), y(u, v), of Eq. (1) by the relations
xu(u, v) = x(u, v) − xcu, yu(u, v) = y(u, v) where xcu = a/ tanh(u).
The cylindrical coordinates, call them ρu(u, v), φu(u, v), whose origin
is located at Ou, are related to x(u, v) and y(u, v) coordinates Eq. (1)
of the overall coordinate system, by the cylindrical coordinate relations

ρu(u, v) =
√
x2
u(u, v) + y2

u(u, v), φu(u, v) = tan−1(yu(u, v)/xu(u, v))
(3)

Please note ρu(u, v) = ru = a/ sinh(|u|).
The EM solution in the inhomogeneous dielectric region, following

the procedure in [16, 17, 20], is obtained by solving Maxwell’s equations
in bipolar coordinates by a state variable approach in each thin
layer u�+1 ≤ u ≤ u�, � = 0, . . . , L − 1. Making the substitutions
Uhu(u, v) = η̃fh(u, v)Hu(u, v), and Uhv(u, v) = η̃fh(u, v)Hv(u, v)
where Hu(u, v) and Hv(u, v) represent the magnetic fields in each thin
shell region, η̃f = 377 Ω, we find that Maxwell’s equations in each
bipolar, cylindrical shell are given by

∂Ez(u, v)
∂v

= −jµUhu(u, v) (4)

∂Ez(u, v)
∂u

= jµUhv(u, v) (5)

∂Uhv(u, v)
∂u

− ∂Uhu(u, v)
∂v

= jε(u, v)h2(u, v)Ez(u, v) (6)

In these equations ε(u, v) represents the inhomogeneous relative
permittivity in the inhomogeneous region (shown in Fig. 1).

To solve Eqs. (4)–(6), we expand in the Floquet harmonics −π ≤
v ≤ π:

Ez(u, v) =
∞∑

i=−∞
Szi(u) exp(jiv),

Uhu(u, v) =
∞∑

i=−∞
Uhui(u) exp(jiv),

Uhv(u, v) =
∞∑

i=−∞
Uhvi(u) exp(jiv),

εh(u, v)Ez(u, v) =
∞∑

i=−∞


 ∞∑
i′=−∞

εh,i−i′Szi′


 exp(jiv),
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εh(u, v) ≡ ε(u, v)h2(u, v) =
∞∑

i=−∞
εhi(u) exp(jiv) (7)

If these expansions are substituted in Eqs. (4)–(6), and after letting
Sz(u) = [Szi(u)], Uhu(u) = [Uhui(u)], and Uhv(u) = [Uhvi(u)] be
column matrices and letting I = [δi,i′ ], εh(u) = [εh,i,i′(u)], εh,i,i′(u) =
εh,i−i′(u), K = [iKδi,i′ ], K = 2π/Λv, Λv = 2π (Λv may be called
the v-angular grating period and δi,i′ is the Kronecker delta) be square
matrices, we find after manipulation [16, 17, 20]

∂V

∂u
= AV , V =

[
Sez(u)
U e
hv(u)

]
, A =

[
A11 A12

A21 A22

]
(8)

where

A11 = 0, A12 = jµI, A21 = j

[
εh −

1
µ
K2

]
, A22 = 0 (9)

After truncating Eqs. (8), (9) with i = −I, . . . , I, one may determine
the eigenvalues and eigenvectors of the matrix A and thus obtain a SV
solution in each thin layer of the system.

An alternate equation for the SV analysis, as presented in [6]
and [7] (and as reviewed and discussed in [20]) for planar diffraction
gratings, is to reduce Eq. (8) to a second order differential matrix
equation and perform an eigenanalysis of the resulting equations.
Following this procedure we have, for a given thin layer,

d

du
Sez = A12 U

e
hv,

d

du
U e
hv = A21 S

e
z (10)

or
d2

du2
Sez = A12A21 S

e
z (11)

Letting
Sez(u) = Sz(u�) exp(qu′) (12)

where u′ = u − u� ≤ 0, u�+1 ≤ u ≤ u�, � = 0, . . . , L − 1, letting
C = −A12A21, we find after substituting Eq. (11) into Eq. (12) and
differentiating that

C Sez = QSez (13)

where Q ≡ −q2. When taking into account the symmetry with
respect to the y-axis as discussed earlier, it was found that I + 1
distinct eigenvalues and eigenvectors were associated with the matrix



Coupled wave analysis of bipolar cylindrical systems 191

C and it was also found that the eigenvalues Qn were purely real,
with some of them assuming positive values and some them assuming
negative values. In the present work the eigenvalues (and eigenvectors
associated with Qn) were ordered for each thin layer, such that
Q1 > Q2 > . . .. Positive values of the eigenvalue Qn correspond to
propagating eigenmodes (since q2

n = −Qn) and negative values of Qn

correspond to nonpropagating or evanescent modes.
Letting Qn� and Szn� (with the subscript � now included) be

the eigenvalues and eigenvectors at u = u�, � = 0, . . . , L − 1 of the
matrix C� (i.e., C� Szn� = Qn�Szn�), we find that there are two matrix
eigensolutions of the original SV matrix A of Eq. (8) which may be
expressed in terms of the just mentioned eigenvalues and eigenvectors
Qn� and Szn�. The electric field and magnetic field portions of these
matrix eigensolutions are given by

Se+zn�(u
′) = Szn� exp

(
−

√
−Qn�u

′
)
≡ Szn� exp(−qn�u′)

U e+
hvn�(u

′) =
1
jµ

∂Se+zn�(u
′)

∂u′
= −Zn�Se+zn�(u′)

Se−zn�(u
′) = Szn� exp

(√
−Qn�u

′
)
≡ Szn� exp(qn�u′)

U e−
hvn�(u

′) =
1
jµ

∂Se−zn�(u
′)

∂u′
= Zn�S

e−
zn�(u

′) (14)

where

qn� =
√
−Qn� =

{
j
√
Qn�, Qn� ≥ 0√−Qn�, Qn� < 0

(15)

Zn� =
qn�
jµ

(16)

where u′ = u − u� ≤ 0, u�+1 ≤ u ≤ u�, � = 0, . . . , L − 1. The
eigenmodes (or eigenfunctions) at u = u� (or u′ = 0) associated
with the eigenvalues and eigenvectors Qn� and Szn� of the matrix
C� respectively, are obtained by summing the Fourier coefficients
contained in the matrix Szn� = [Szin�] and are given by

Szn�(v) =
I∑

i=−I
Szin� exp(jiv) (17)

These eigenmodes which have been normalized to unity, were found
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numerically to satisfy the orthogonality relation

π∫
−π

Szn�(v)Szn′�(v)dv = δn,n′ (18)

where (n, n′) = 1, . . . , N and N is the number of orthogonal
eigenmodes under consideration to a high degree of accuracy. This
orthogonality relation proved to be very helpful for enforcing EM
boundary conditions at different thin layer interfaces and at the interior
and exterior boundaries of the system. We note at this point, that
when using the eigensolutions of Eq. (17) to either expand unknown
EM fields or using them to enforce EM boundary conditions at the
interfaces of the system, that it is not necessary to always use the
full set of n = 1, . . . , I + 1 eigenfunctions which are available from
the eigen matrix analysis, but if one desires, one may use a smaller
set with N < I + 1. Using a set of eigensolutions with N < I + 1,
may be useful as one then avoids using the highest order modes which
may suffer truncation error. Or put another way, if it is desired to
use N orthogonal modes of a given accuracy, one may use a larger I
truncation order to generate those N orthogonal modes.

An important requirement of the bipolar RCWA formulation
concerns the fast and accurate numerical calculation of the Fourier
series coefficients εhi(u) in Eq. (7). Fast calculations of εhi(u) are
needed because the bipolar SV solution must be found separately in a
possibly large number L of thin layers, and accurate calculation of the
Fourier harmonics of εhi(u) is needed because these Fourier coefficients
are used to form the SV matrices of Eqs. (8), (9). Inaccurate matrix
values SV matrices will naturally lead to inaccurate and incorrect SV
solutions. It turns out that in the present paper that the Fourier
coefficients εhi(u) can be calculated almost exactly provided that the
Fourier coefficients of the inhomogeneous ε(u, v) can be calculated
exactly (for example, in this paper, Figs. 2 and 3 corresponds to ε(u, v)
step-cosine profiles which can be done exactly). This follows because
the Fourier coefficients of the h2(u, v) function can be calculated
exactly using the residue theorem of complex variable theory [23]
and thus the εhi(u) Fourier coefficients of the product εh(u, v) ≡
ε(u, v)h2(u, v) can be calculated from a discrete Fourier convolution
of the Fourier coefficients of the two product functions ε(u, v) and
h2(u, v). Details of the determination of the Fourier coefficients of
h2(u, v) by the residue theorem are given in Appendix A.

We will now present the EM fields in the Regs. 0 and 3 (shown
in Figs. 1 and 2) which are outside of the inhomogeneous material
region of the scattering object and which are assumed to have spatially
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uniform relative permittivities ε0 and ε3 respectively. In these regions
we will use exactly the same coordinates and Bessel functions EM
field expansions as were by KPE [22], but specialized to the symmetric
problem under consideration. In Reg. 3 the electric and magnetic fields
are given by in general

E(3)
z (ρ3, φ3) =

N−1∑
m′=0

{
A

(3)
m′Jm′(k3ρ3) +BI

m′H
(2)
m′ (k3ρ3)

}
cos(m′φ3)

≡
N−1∑
m′=0

E
(3)
m′ (ρ3) cos(m′φ3) (19)

η̃fH
(3)
φ3

(ρ3, φ3) ≡ U
(3)
φ3

(ρ3, φ3)

=
N−1∑
m′=0

{[
k3

jµ3

] [
A

(3)
m′J

′
m′(k3ρ3) +BI

m′H
(2)
m′
′
(k3ρ3)

]}

· cos(m′φ3)

≡
N−1∑
m′=0

U
(3)
m′ (ρ3) cos(m′φ3), ρs3 < ρ3 ≤ r3 (20)

where η̃f = 377Ω, k3 =
√
µ3ε3, µ3 = µ0 = 1 and where it is assumed

that ρs3 encloses a symmetric source which gives rise to the symmetric
incident field which is associated with the BI

m′ coefficients. In Reg. 0
the EM fields are given by

E(1)
z (ρ1, φ1) =

N−1∑
m′=0

{
AIm′Jm′(k0ρ1)+B

(0)
m′H

(2)
m′ (k0ρ1)

}
cos(m′(φ1 − φ0))

≡
N−1∑
m′=0

E
(1)
m′ (ρ1) cos(m′φ1) (21)

η̃fH
(1)
φ1

(ρ1, φ1) ≡ U
(1)
φ1

(ρ1, φ1)

=
N−1∑
m′=0

{[
k0

jµ0

] [
AIm′J

′
m′(k0ρ1) +B

(0)
m′H

(2)
m′
′
(k0ρ1)

]}

· cos(m′(φ1 − φ0))

≡
N−1∑
m′=0

U
(1)
m′ (ρ1) cos(m′φ1) (22)

where k0 =
√
µ0ε0, µ0 = 1, r1 < ρ1 ≤ ρs0, where φ0 = 0 or φ0 = π,

(note sinm′φ0 = 0) and where it is assumed that a symmetric source
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which is exterior to ρs0, that is, ρ1 > ρs0, gives rise to a symmetric
incident field which is associated with the AIm′ coefficients. In this
paper we will be concerned with numerical results for which BI

m′ will
be taken to be zero, for which ρs0 → ∞ and the AIm′ coefficients are
taken to those coefficients which correspond to an incident plane wave
from the direction where φ0 = 0 or φ0 = π. In Eqs. (19)–(22) the
number of expansion modes in Regs. 0 and 3 has been set equal to the
number of SV expansion modes N used in each thin layer.

The EM field solutions in the inhomogeneous region (see Fig. 1)
in bipolar coordinates in a small range −∆u ≤ u′ ≤ 0 (∆u = u0−uL

L >
0, u′ = u − u� ≤ 0, u�+1 ≤ u ≤ u�, � = 0, . . . , L − 1) (pl. recall that
u = u0 corresponds to the inner boundary r3 and u = uL corresponds
to the outer boundary r1 (Fig. 1)) using the SV eigenvector EM
solutions Se+zn�(u

′), Se−zn�(u
′), U e+

hvn�(u
′), and U e−

hvn�(u
′) of Eqs. (14)–(18)

are given by

E(2)
z (u′, u�, v) =

N∑
n′=1

{
C+
n′� exp(−qn′�u′) + C−n′� exp(qn′�u′)

}
Szn′�(v)

≡
N∑

n′=1

En′�(u′)Szn′�(v) (23)

U
(2)
hv (u′, u�, v) =

N∑
n′=1

{
−C+

n′� exp(−qn′�u′)+C−n′� exp(qn′�u′)
}
Zn′�Szn′�(v)

≡
N∑

n′=1

Uhn′�(u′)Szn′�(v) (24)

where Szn′�(v) has been defined in Eq. (17). In these equations
C+
n′� and C−n′� represent the unknown expansion coefficients in the

u�+1 ≤ u ≤ u�, � = 0, . . . , L− 1 thin layer.
Before matching boundary conditions, we would like to relate the

cylindrical bipolar coordinate φu(u, v) defined in Eq. (3) to the to
the cylindrical coordinates φ1 and φ3 of the Reg. 0 and 3 boundaries
respectively. Using Eq. (3) at u = uL (Reg. 0, exterior boundary) and
at u = u0 (Reg. 3, interior boundary) and we have respectively

φ1(v) = φu(uL, v) = tan−1 [(y(uL, v)/(x(uL, v)− xcuL ] (25)
φ3(v) = φu(u0, v) = tan−1 [(y(u0, v)/(x(u0, v)− xcu0 ] (26)

In matching boundary conditions at the exterior and interior
boundaries to the inhomogeneous material region, using Eqs. (25),
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(26), it is important to relate the complicated, cosine functions
cos(mφ1(v)) and cos(mφ3(v)) in Eqs. (19)–(22) to the exp(jiv) Fourier
series expansions which occur in Eqs. (23), (24) (after Eq. (17) has
been substituted in Eqs. (23), (24)) in a manner which is as accurate
and efficient as possible. This may be accomplished by expressing
the exponentials exp(±jmφ1(v)) and exp(±jmφ3(v)) which make up
the functions cos(mφ1(v)) and cos(mφ3(v)), respectively, as a complex
exponential Fourier series, namely

exp(jpφ(u, v)) =
∞∑

i=−∞
α

(p)
i (u) exp(jiv) (27)

where p = ±m, u = uL or u = u0, and then determining the
exponential Fourier coefficients α(p)

i (u). It turns out that the Fourier
coefficients α(p)

i (u) of this series may be calculated exactly using the
residue theorem of complex variable theory [23]. Appendix A of this
paper gives details on how these coefficients are calculated and what
values these coefficients assume.

The objective now is match EM boundary conditions at all
interfaces and determine all unknown expansion coefficients of the
system as defined by Eqs. (19)–(24). Starting at the u = u0 (r3 interior
boundary) we have using Eqs. (19)–(24)

E(2)
z (u′, u�, v)

∣∣∣
u�=u0,u′=0,�=0

=

[
N∑

n′=1

En′�(u′)Szn′�(v)

] ∣∣∣
u�=u0,u′=0,�=0

= E(3)
z (ρ3, φ3)

∣∣∣
ρ3=r−3

=

[
N−1∑
m′=0

E
(3)
m′ (ρ3) cos(m′φ3)

] ∣∣∣
ρ3=r−3

(28)

[ −1
h(u, v)

U
(2)
hv (u′, u�, v)

] ∣∣∣
u�=u0,u′=0,�=0

=

[
−1

h(u, v)

N∑
n′=1

Uhn′�(u′)Szn′�(v)

] ∣∣∣
u�=u0,u′=0,�=0

= U
(3)
φ3

(ρ3, φ3)
∣∣∣
ρ3=r−3

=
N−1∑
m′=0

[
U

(3)
m′ (ρ3) cos(m′φ3)

] ∣∣∣
ρ3=r−3

(29)

where ρ3 = r−3 means just inside the Reg. 3 interior. The minus sign
in Eq. (29) in the square bracket is present because at ρ3 = r3, u = u0
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interface at each point on this circle, the unit vectors âv(u = u0)
and âφ3(ρ3 = r3) are in opposite directions or satisfy âv(u = u0) =
−âφ3(ρ3 = r3) thus opposite signs of the tangential magnetic field
components must be included for a correct boundary matching at the
interior boundary.

To enforce the electric field boundary condition of Eq. (28) at the
ρ3 = r3, u = u0 interface, Eq. (28) is multiplied on both sides by the
weighting or testing functions {cos(mφ3)}, m = 0, . . . , N − 1 and then
integrated over the range −π ≤ φ3 ≤ π. This results in the equation

 N∑
n′=1

En′�(u′)
π∫
−π

Szn′�(v) cos(mφ3(v))dφ3(v)


 ∣∣∣

u�=u0,u′=0,�=0

=


N−1∑
m′=0

E
(3)
m′ (ρ3)

π∫
−π

cos(mφ3) cos(m′φ3)dφ3


 ∣∣∣

ρ3=r−3

=
N−1∑
m′=0

E
(3)
m′ (r3)π[1 + δm,0]δm,m′ (30)

The integral on the left hand side, after a change of variables on the
interior circle ρ3 = r3, u = u�|�=0 = u0 from integration with respect
to the φ3(v) variable (see Eq. (26)) to integration with respect to the v
variable, noting that φ3(v)|v=π = −π and φ3(v)|v=−π = π (see Fig. 1),
becomes substituting � = 0 in Szn′�(v),

ZcE3
m,n′ =

−π∫
π

[
Szn′0(v) cos(mφ3(v))

dφ3(v)
dv

]
dv (31)

This integral and may evaluated exactly by: (1) substituting for
cos(mφ3(v))

dφ3(v)
dv in Eq. (31) the Fourier series (ρ3 = r3, u = u�|�=0 =

u0)

cos(mφ3(v))
dφ3(v)
dv

=
∞∑

i=−∞

1
2

[
ζ
(m)
i (u0) + ζ

(−m)
i (u0)

]
exp(jiv) (32)

where the Fourier coefficients ζ(p)
i (u) are defined by

exp(jpφu(u, v))
dφu(u, v)

dv
=

∞∑
i=−∞

ζ
(p)
i (u) exp(jiv) (33)

where p = ±m and where φ3(v) is given in Eq. (26); (2) substituting the
exponential Fourier series expansion for Szn′�(v), � = 0 as defined by
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Eq. (17); and (3) integrating, in a straight forward way, the product of
the two just described exponential Fourier series over the limits defined
by the integral in Eq. (32). The result of the integration is

ZcE3
m,n′ = −π

I∑
i=−I

(
ζ
(m)
i (u0) + ζ

(−m)
i (u0)

)
Sz,−i,n′,0 (34)

In Eqs. (32)–(34), the Fourier coefficients ζ(p)
i (u) of Eq. (33), like the

Fourier coefficients α(p)
i (u) of Eq. (27), may be evaluated exactly using

the residue theorem, and the details are given in Appendix A. The final
electric field equation becomes after substituting � = 0, evaluating the
Knronecker delta function δm,m′ in Eq. (30),

N∑
n′=1

ZcE3
m,n′En′0(0) ≡

N∑
n′=1

ZcE3
m,n′E

SV 3
n′ = E(3)

m (r−3 )π[1 + δm,0] (35)

where the coefficient ESV 3
n′ has been defined to be ESV 3

n′ ≡
En′�(u′)|u′=0,ρ3=r+3 ,�=0, and En′�(u′) is defined in Eq. (23). The
superscript “SV 3” in this equation refers to the evaluation of the state
variable solution at u = u0 (or ρ3 = r+

3 , where ρ3 = r+
3 means just

inside the inhomogeneous scattering object region).
To enforce the magnetic field boundary condition of Eq. (29) at

the ρ3 = r3, u = u0 interface, Eq. (29) is multiplied on both sides, just
as the electric field Eq. (28) was, by the weighting or testing functions
{cos(mφ3)}, m = 0, . . . , N − 1 and then integrated over the range
−π ≤ φ3 ≤ π. The resulting equation is
 N∑
n′=1

Uhn′�(u′)
π∫
−π

[ −1
h(u, v)

]
Szn′�(v) cos(mφ3(v))dφ3(v)


∣∣∣
u=u0,u′=0,�=0

=


N−1∑
m′=1

U
(3)
m′ (ρ3)

π∫
−π

cos(mφ3) cos(m′φ3)dφ3


 ∣∣∣

ρ3=r−3

=
N−1∑
m′=1

U
(3)
m′ (r

−
3 )π[1 + δm,0]δm,m′ (36)

The integral on the left hand side of Eq. (36) may be evaluated in a
similar way as was the integral in Eq. (30). Calling the integral ZcU3

m,n′ ,
changing variables from φ3 to v, and letting � = 0 and u = u0 in
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Eq. (36), we find that the integral may be written

ZcU3
m,n′ =

−π∫
π

[ −1
h(u0, v)

]
Szn′0(v) cos(mφ3(v))

d

dv
φ3(v)dv (37)

Carrying out the differentiation of d
dvφ3(v) and after a small amount

of algebra it is found

1
h(u0, v)

d

dv
φ3(v) = sinh(u0)/a (38)

Substitution of Eq. (38) in Eq. (37), and using the Fourier series
expansion of Szn′�(v) in Eq. (17), it turns out that ZcU3

m,n′ may be
evaluated exactly as

ZcU3
m,n′ = −π

[
sinh(u0)

a

] I∑
i=−I

(
a

(m)
i (u0) + a

(−m)
i (u0)

)
Sz,−i,n′,0 (39)

where the Fourier coefficients a
(m)
i (u) have been defined earlier in

Eq. (27). The final magnetic field equation after evaluating the
Kronecker delta function δm,m′ in Eq. (36) is given by

N∑
n′=1

ZcU3
m,n′U

SV 3
hn′ = U (3)

m (r−3 )π[1 + δm,0] (40)

where the coefficient USV 3
hn′ has been defined to be USV 3

hn′ ≡
Uhn′�(u′)|u′=0,ρ3=r+3 ,�=0 where Uhn′�(u′) is defined in Eq. (24).

A nearly an identical procedure as was used to match EM
boundary conditions at the ρ3 = r3 interface may be used to match
EM boundary conditions at the ρ1 = r1, u = uL interface. We find
that at the ρ1 = r1, u = uL interface, that the electric and magnetic
field boundary condition equations are given by

N∑
n′=1

ZcE1
m,n′E

SV 1
n′ = E(1)

m (r+
1 )π[1 + δm,0] (41)

N∑
n′=1

ZcU1
m,n′U

SV 1
hn′ = U (1)

m (r+
1 )π[1 + δm,0] (42)

where

ESV 1
n′ ≡ En′�(u′)

∣∣∣
u′=−∆u,ρ1=r−1 ,�=L−1

(43)

USV 1
hn′ ≡ Uhn′�(u′)

∣∣∣
u′=−∆u,ρ1=r−1 ,�=L−1

(44)
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where the weighting or testing functions {cos(mφ1)}, m = 0, . . . , N−1
have been used to enforce EM boundary conditions over the interval
−π ≤ φ1 ≤ π in the same way as the {cos(mφ3)}, m = 0, . . . , N − 1
were used to enforce boundary conditions at the ρ3 = r3, u = u0

boundary.
Matching boundary conditions at the u = u�, � = 1, 2, . . . , L − 1

thin layers interfaces (these interfaces are located entirely inside the
inhomogeneous region) we have using the electric field expression of
Eq. (23) at u = u�,

E(2)
z (u′, u�, v)

∣∣∣
u′=0

= E(2)
z (u′, u�−1, v)

∣∣∣
u′=−∆u

(45)

or after evaluation, the left hand side of Eq. (45) is

E(2)
z (u′, u�, v)

∣∣∣
u′=0

=
N∑

n′=1

{
C+
n′� + C−n′�

}
Szn′�(v) ≡

N∑
n′=1

En′�(0)Szn′�(v)

(46)
the right hand side of Eq. (45) is

E(2)
z (u′, u�−1, v)

∣∣∣
u′=−∆u

=
N∑

n′=1

{
C+
n′,�−1 exp(−qn′,�−1(−∆u))

+ C−n′,�−1 exp(qn′,�−1(−∆u))
}
Szn′,�−1(v)

≡
N∑

n′=1

En′,�−1(−∆u)Szn′,�−1(v) (47)

or altogether

N∑
n′=1

En′�(0)Szn′�(v) =
N∑

n′=1

En′,�−1(−∆u)Szn′,�−1(v) (48)

where

En′,�−1(−∆u) = C+
n′,�−1exp(−qn′,�−1(−∆u))+C−n′,�−1exp(qn′,�−1(−∆u))

(49)
En′�(0) = C+

n′� + C−n′� (50)

To enforce the electric field boundary condition of Eqs. (45), (48),
Eq. (48) is multiplied on both sides by the weighting, enforcing, or
testing functions {Szn�(v)}, n = 1, 2, . . . , N of Eq. (17), and then
integrated over the interval −π ≤ v ≤ π. Carrying out this operation



200 Jarem

and using the property that the functions {Szn�(v)} are orthonormal
(Eq. (18)), it is found that

En�(0) =
N∑

n′=1

En′,�−1(−∆u)Snn
′� (51)

where

Snn
′� =

π∫
−π

Szn�(v)Szn′,�−1(v)dv = 2π
I∑

i=−I
Szin�Sz,−i,n′,�−1 (52)

where � = 1, 2, . . . , L− 1. We note because the eigenfunctions Szn�(v)
of Eq. (17) change as the value of � changes from interface to interface,
that the functions Szn�(v) and Szn′,�−1(v) in the integral of Eq. (52)
are not orthogonal, and thus Snn

′� is nonzero in general when n �= n′.
Evaluating the magnetic field Eq. (24) at u = u±� in a similar way

as the electric field was evaluated we find

N∑
n′=1

Uhn′�(0)Szn′�(v) =
N∑

n′=1

Uhn′,�−1(−∆u)Szn′,�−1(v) (53)

where

Uhn′�−1(−∆u) = Zn′,�−1

{
−C+

n′,�−1 exp(−qn′,�−1(−∆u))

+ C−n′,�−1 exp(qn′,�−1(−∆u))
}

(54)

Uhn′�(0) = Zn′�
{
−C+

n′,� + C−n′,�
}

(55)

If the magnetic field boundary condition of Eq. (53) is multiplied
on both sides by the weighting or testing functions {Szn�(v)} with
n = 1, 2, . . . , N and then integrated over the interval −π ≤ v ≤ π it
is found, following the same steps as were used done to enforce the
electric field boundary condition,

Uhn�(0) =
N∑

n′=1

Uhn′,�−1(−∆u)Snn
′� (56)

where Snn
′� has been previously defined. By inspecting Eqs. (50) and

(55) (after using a value of � − 1 in these equations) we note that
the C+

n′,�−1 and C−n′,�−1 coefficients are related to the En′,�−1(0) and
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Uhn′,�−1(0) coefficients by a simple 2×2 set of equations. If these 2×2
equations are inverted, we find

C+
n′,�−1 =

[
En′,�−1(0)− 1

Zn′,�−1
Uhn′,�−1(0)

]
/2 (57)

C−n′,�−1 =

[
En′,�−1(0) +

1
Zn′,�−1

Uhn′,�−1(0)

]
/2 (58)

If C+
n′,�−1 and C−n′,�−1 of Eqs. (57), (58) are substituted back into

Eqs. (49) and (54) and the resulting En′,�−1(−∆u), Uhn′,�−1(−∆u),
expressions are further substituted back into (51) and (56), we find
that the coefficients En′�(0) and Uhn′�(0) may be expressed in terms of
the coefficients En′,�−1(0) and Uhn′,�−1(0) by the relations

En�(0) =
N∑

n′=1

{
KEE
nn′�En′,�−1(0) +KEU

nn′�Uhn′,�−1(0)
}

(59)

and

Un�(0) =
N∑

n′=1

{
KUE
nn′�En′,�−1(0) +KUU

nn′�Uhn′,�−1(0)
}

(60)

where

KEE
nn′� = KUU

nn′� = Snn
′� cosh[qn′,�−1(−∆u)] (61)

KEU
nn′� =

[
Snn

′�/Zn′,�−1

]
sinh[qn′,�−1(−∆u)]

KUE
nn′� =

[
Snn

′�Zn′,�−1

]
sinh[qn′,�−1(−∆u)] (62)

where � = 1, 2, . . . , L − 1 and where cosh(·) and sinh(·) represent the
hyperbolic cosine and hyperbolic sine functions respectively. Defining
the N×N matrices KEE

� ≡
[
KEE
nn′�

]
, KEU

� ≡
[
KEU
nn′�

]
, KUE

� ≡
[
KUE
nn′�

]
and KUU

� ≡
[
KUU
nn′�

]
with (n, n′) = 1, 2, . . . , N , defining the column

matrices E� ≡ [En�(0)] and Uh� ≡ [Uhn�(0)] with n = 1, 2, . . . , N ,
defining the 2N × 2N matrix

K� ≡

 KEE

� KEU
�

KUE
� KUU

�


 (63)

and the 2N column matrix

W� ≡
[
E�
Uh�

]
(64)
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we find [
E�
Uh�

]
≡


 KEE

� KEU
�

KUE
� KUU

�




[
E�−1

Uh�−1

]
(65)

or
W� = K�W�−1 (66)

where � = 1, . . . , L−1. We thus see that the electric and magnetic field
coefficients En�(0) and Uhn�(0), n = 1, . . . , N of the eigenfunctions
Szn�(v) which corresponds to the u = u� layer, may be expressed
in terms of the electric and magnetic field coefficients En,�−1(0) and
Uhn,�−1(0) of the eigenfunctions Szn,�−1(v) at u = u�−1 layer. By
starting at � = 1 and by successive substitution, it is found that

WL−1 = KL−1KL−2 . . .K2K1W0 (67)

Forming the column matrices ESV 1 = [ESV 1
n ], USV 1

h = [USV 1
hn ], n =

1, . . . , N , where ESV 1
n and USV 1

hn are defined by Eqs. (43), (44), we
further find that the electric and magnetic field coefficients En,L−1(0)
and Uhn,L−1(0) of u = uL−1 the interface are related to the field
coefficients ESV 1

n and USV 1
hn of the u = uL, ρ1 = r1 interface, after

using � = L in Eqs. (61)–(63), by the matrix relation

WL ≡
[
ESV 1

USV 1
h

]
=


 KEE

L KEU
L

KUE
L KUU

L




[
EL−1

Uh,L−1

]
≡ KLWL−1 (68)

We further note that at the � = 0 interface, after letting W0 ≡[
ESV 3

USV 3
h

]
where ESV 3 ≡ [ESV 3

n ] and USV 3
h ≡ [USV 3

hn ], n = 1, . . . , N ,

where ESV 3
n and USV 3

hn are defined by Eqs. (35) and (40) respectively,
that

WL = KLKL−1 . . .K2K1W0 ≡ KW0 (69)

We thus see that matrix K relates the SV coefficients of the inner layer
to the SV coefficients outer one.

Our objective now as mentioned in the Introduction is to develop
from the SV solution a transfer matrix which relates the circular
Bessel-Fourier coefficients of cos(mφ3), m = 0, N − 1 associated with
the electric and magnetic fields on the inner cylinder ρ3 = r−3 to
the circular Bessel-Fourier coefficients of cos(mφ1), m = 0, N − 1,
associated with the electric and magnetic fields the outer cylinder
ρ1 = r+

1 . These may be accomplished by; (1) expressing the
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coefficients E(1)
m (r+

1 ), U (1)
m (r+

1 ), in terms of SV coefficients ESV 1
n , USV 1

hn

by Eqs. (41), (42); (2) expressing the SV coefficients ESV 1
n , USV 1

hn ,
in terms of ESV 3

n , USV 3
hn , by using the matrix K of Eq. (69); (3)

expressing the SV coefficients ESV 3
n , USV 3

hn , in terms of the coefficients
E

(3)
m (r−3 ), U (3)

m (r−3 ), through Eqs. (28), (29) and; (4) substituting
successively the coefficient relations mentioned in Steps (1–3) to finally
express E(1)

m (r+
1 ), U (1)

m (r+
1 ), in terms of E(3)

m (r−3 ), U (3)
m (r−3 ).

The SV coefficients ESV 3
n , USV 3

hn , may be found in terms
E

(3)
m (r−3 ), U (3)

m (r−3 ), respectively, by multiplying Eq. (28) by Szn�(v),
� = 0, by multiplying Eq. (29) by −h(u0, v)Szn�(v), � = 0, and
then integrating the resulting equations over the range −π ≤ v ≤ π.
Performing these operations after using the orthonormal property of
the Szn�(v), n = 1, . . . , N, � = 0 eigenfunctions it is found

ESV 3
n ≡ En�(u′)

∣∣∣
u′=0,u=u0,�=0

=
N−1∑
m=0

E(3)
m (r−3 )


 π∫
−π

Szn0(v) cos(mφ3(v))dv


 (70)

USV 3
hn ≡ Uhn�(u′)

∣∣∣
u′=0,u=u0,�=0

=
N−1∑
m=0

U (3)
m (r−3 )


−

π∫
−π

Szn0(v)h(u0, v) cos(mφ3(v))dv


 (71)

If one expands Szn0(v) and the exponentials exp(±jmφ3(v)) which
make up cos(mφ3(v)) in an the exponential Fourier series in the
variable v given by Eq. (27), one finds after substituting the Fourier
series of the two terms and using the orthogonality of the Fourier
exponentials exp(jiv), i = −I, . . . , I, that the integral in Eq. (70)
is given by

ESV 3
n ≡

N−1∑
m=0

ZSE3
nm E(3)

m (r−3 ),

ZSE3
nm = π

I∑
i=−I

[
α

(m)
−i (u0) + α

(−m)
−i (u0)

]
Szin0

(72)

The integral in Eq. (71) may be evaluated by; (1) expanding
the cosine exponential factors exp(jpφ3(v))/(cosh(u0) − cos(v)) =
exp(jpφ3(v))(h(u0, v)/a), p = ±m which occur in this integral as an
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exponential Fourier series

exp(jpφ3(v))/(cosh(u0)− cos(v)) =
∞∑

i=−∞
β

(p)
i (u0) exp(jiv) (73)

(details given in Appendix A); (2) substituting the exp(jiv) Fourier
expansion for Szn0(v) of Eq. (17); and (3) carrying out the resulting
integral over −π ≤ v ≤ π with respect to v and using the orthogonality
of the exp(jiv) exponentials. From these steps it is found

USV 3
hn ≡

N−1∑
m=0

ZSU3
nm U (3)

m (r−3 ),

ZSU3
nm = −πa

I∑
i=−I

[
β

(m)
−i (u0) + β

(−m)
−i (u0)

]
Szin0

(74)

If Eqs. (72), (74) are put in matrix form with ZSE3 = [ZSE3
nm ], ZSU3 =

[ZSU3
nm ], E(3) = [E(3)

m (r−3 )], U (3) = [U (3)
m (r−3 )] with m = 0, . . . , N − 1,

and n = 1, . . . , N , we have (Eq. (69))

W0 ≡
[
ESV 3

USV 3
h

]
=

[
ZSE3 0

0 ZSU3

] [
E(3)

U (3)

]
≡ Z(3)W (3) (75)

The coefficients E(1)
m (r+

1 ), U (1)
m (r+

1 ) are given by, after using Eqs. (41),
(42)

E(1)
m (r+

1 ) =
N∑
n=1

ZCE1
mn ESV 1

n , ZCE1
mn ≡

1
π(1 + δm,0)

ZcE1
mn (76)

U (1)
m (r+

1 ) =
N∑
n=1

ZCU1
mn USV 1

hn , ZCU1
mn ≡

1
π(1 + δm,0)

ZcU1
mn (77)

If Eqs. (76), (77) are put in matrix form with ZCE1 = [ZCE1
mn ], ZCU1 =

[ZCU1
mn ], E(1) = [E(1)

m (r+
1 )], U (1) = [U (1)

m (r+
1 )] with m = 0, . . . , N − 1

and n = 1, . . . , N we have[
E(1)

U (1)

]
=

[
ZCE1 0

0 ZCU1

] [
ESV 1

USV 1
h

]
≡ Z(1)

[
ESV 1

USV 1
h

]
(78)

Letting W (1) ≡
[
E(1)

U (1)

]
, using WL ≡

[
ESV 1

USV 1
h

]
which is defined in

Eq. (68), we have altogether W (1) = Z(1)WL, WL = KW0, from
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Eq. (69), and W0 = Z(3)W (3) from Eq. (75), or after substitution,
W (1) = Z(1)K Z(3)W (3). We have

[
E(1)

U (1)

]
=


 KSV EE

r1;r3 KSV EU
r1;r3

KSV UE
r1;r3 KSV UU

r1;r3




[
E(3)

U (3)

]
= KSV

r1;r3

[
E(3)

U (3)

]

= Z(1)K Z(3)

[
E(3)

U (3)

]
(79)

where we have defined KSV
r1;r3 ≡ Z(1)K Z(3). This relation thus uses

state variable techniques to express, respectively, the electric and
magnetic field coefficients E

(1)
m (r+

1 ), U (1)
m (r+

1 ) of cos(mφ1) in terms
of the electric and magnetic field coefficients E

(3)
m (r−3 ), U (3)

m (r−3 ) of
cos(mφ3). The matrix KSV

r1;r3 , which may be called a transfer matrix

since it relates or transfers the electric and magnetic field Fourier
coefficients from the Reg. 3 inner boundary to the electric and magnetic
field Fourier coefficients of the Reg. 1 exterior interface, is useful for
defining an overall matrix from which all unknowns of the system may
be found.

The transfer matrix of Eq. (79) is also useful because in the case
when uniform materials occupy the regions between the interfaces
of adjacent, eccentric cylinders, it may be compared directly to the
exact, Bessel function addition theorem analysis that was developed
by KPE [22] after an algebraic manipulation of the form of the KPE
algorithm is made. This is very useful because by comparing the matrix
elements of the SV transfer matrix KSV

r1;r3 and the matrix elements of

the Bessel function transfer matrix, call it KB
r1;r3 , based on the KPE

method [22], one can gain insight into how well the SV method is
converging with respect to the number of modes used, the number of
layers, the Fourier matrix truncation size, etc.. Appendix B specifies
and gives a derivation of the Bessel function transfer matrix KB

r1;r2

that results from the KPE algorithm [22] for a single layer between
two adjacent interfaces containing a uniform material and Appendix B
also presents the theory of how to cascade together single layer, uniform
material, Bessel, transfer matrices to form the overall transfer matrix
of a multiple, eccentric cylinder system. For example, for the two layer,
three interface composite cylinder shown in Fig. 2, the cascaded Bessel
transfer matrix KB

r1;r3 would be given by KB
r1;r3 = KB

r1;r2 K
B
r2;r3 where

KB
r1;r2 and KB

r2;r3 are single layer transfer matrices.



206 Jarem

As a numerical example of a comparison the SV and Bessel transfer
matrices we again consider the scattering object shown in Fig. 2 and
we consider the numerical case when the SV matrix was determined
using L = 4200 layers and N = 30 modes. It was found numerically
that for m = 4, m′ = 8 the SV and Bessel transfer EE submatrix
elements had respectively the values;

KSV EE
r1;r3 (4, 8) = 8.0877× 10−3

KBEE
r1;r3 (4, 8) = 8.0901× 10−3

and the state variable and Bessel transfer UE submatrix elements had
respectively the values;

KSV UE
r1;r3 (4, 8) = −j2.4427× 10−2

KBUE
r1;r3 (4, 8) = −j2.4533× 10−2

The data shown represents relatively good agreement between the
methods.

So far the state variable transfer matrix has been derived to
express the electric and magnetic field coefficient column matrix
evaluated at ρ1 = r1 in terms of electric and magnetic field coefficient
column matrix evaluated at ρ3 = r3. We would like to mention at
this point that the state variable transfer matrix, call it KSV

ru;r3 , which

expresses the electric and magnetic field coefficient column matrix
evaluated at an intermediate layer in the inhomgeneous region, say
ρu = ru, u = u�, in terms of electric and magnetic field coefficient
column matrix evaluated at ρ3 = r3, may be defined by simply cascade
multiplying the matrices of Eq. (69) through all layers between ρ3 = r3
and the intermediate layer ρu = ru, u = u�, call this matrix Ku�;u0 ,

and then forming KSV
ru;r3 = Z(u)Ku�;u0 Z

(3) where Z(u) is defined at

the intermediate layer ρu = ru, u = u�, rather than at ρ1 = r1 as
was Z(1) of Eq. (78). The transfer matrix KSV

ru;r3 is very helpful for

post processing because it may be used to find the cylindrical Fourier,
electric and magnetic coefficients Em(ru), Um(ru), of cos(mφu), m =
0, . . . , N − 1, at any desired internal layer interface ρu = ru, u = u�,
once the coefficients E(3)

m (r−3 ), U (3)
m (r−3 ) are found. All calculations of

the EM fields inside the inhomogeneous region of the scattering object
were made in this paper by finding the coefficients Em(ru), Um(ru),
at all intermediate interfaces using the intermediate transfer matrix
KSV
ru;r3 and then summing the appropriate Fourier cosine series.
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We now are in a position to define an overall system matrix from
which all unknowns of the system may be determined. We will use
the SV transfer matrix of Eq. (79). At ρ3 = r−3 the electric and
magnetic field Fourier coefficients from Eqs. (19), (20) are given by
m = 0, 1, . . . , N − 1

E(3)
m (r−3 ) = A(3)

m Jm(k3r
−
3 ) +BI

mH
(2)
m (k3r

−
3 ) (80)

U (3)
m (r−3 ) =

[
k3

jµ3

] [
A(3)
m J ′m(k3r

−
3 ) +BI

mH
(2)
m

′
(k3r

−
3 )

]
(81)

If the A(3)
m coefficients of Eq. (80) is substituted into Eq. (81), it turns

out that

J ′m(k3r
−
3 )

Jm(k3r
−
3 )
E(3)
m (r−3 )− jµ3

k3
U (3)
m (r−3 ) =

2jBI
m

(πk3r
−
3 )Jm(k3r

−
3 )

(82)

In deriving Eq. (82) the Wronskian relation J ′m(X)H(2)
m (X) −

Jm(X)H(2)
m
′
(X) = 2j

πX was used. (Use of the Wronskian eliminated
the Hankel function and its derivative from Eq. (82)). At the ρ1 = r+

1

a similar analysis as was performed at ρ3 = r−3 , shows for m =
0, 1, . . . , N − 1

H
(2)
m
′
(k0r

+
1 )

H
(2)
m (k0r

+
1 )

E(1)
m (r+

1 )− jµ0

k0
U (1)
m (r+

1 ) =
−2jAIm cos(mφ0)

(πk0r
+
1 )H(2)

m (k0r
+
1 )

(83)

In this paper it is assumed that there are no internal sources in
Reg. 3, thus BI

m = 0, and that a plane wave of amplitude EP
0 =

1.0 (Volt/m) is incident of the scattering object (see Fig. 2) and thus
AIm = EP

0 (2− δm,0)jm. Eqs. (82), (83), along with the transfer matrix
of Eq. (79), form an overall 4N×4N system matrix system from which
the unknowns, namely E

(3)
m (r−3 ), U (3)

m (r−3 ), E(1)
m (r+

1 ), U (1)
m (r+

1 ), m =
0, 1, . . . , N − 1, may be determined. Once these unknowns are found
all other unknowns of the system may be determined.

As mentioned earlier, the SV transfer matrix of Eq. (79) has been
derived to express the ρ1 = r1 (or u = uL) electric and magnetic
field column matrices in terms of the ρ3 = r3 (or u = u0) electric and
magnetic field column matrices. This may be referred to as an outward
transfer matrix as one starts at the inner boundary ρ3 = r3 and cascade
multiplies the layer to layer matrices K� in Eq. (69) in an outward
direction from ρ3 = r3 to ρ1 = r1. We would like to note at this point
that the formulation that has been presented in Eqs. (45)–(79) can
also be used to derive a transfer matrix which does the reverse of what
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the present transfer matrix KSV
r1;r3 does, namely express the ρ3 = r3

electric and magnetic field column matrices in terms of the ρ1 = r1
electric and magnetic field column matrices. This may be accomplished
by simply using ∆u (∆u > 0) in Eqs. (45)–(79) rather than (−∆u)
as was used, and then cascade multiplying the resulting equations in
an inward direction from ρ1 = r1, u = uL, to ρ3 = r3, u = u0,
rather than the outward direction. The resulting transfer matrix
KSV
r3;r1 may be called an inward transfer matrix as it is formed by

cascade multiplying the resulting equations in an inward direction from
ρ1 = r1, u = uL, to ρ3 = r3, u = u0. If the inward transfer matrix
KSV
r3;r1 is used to formulate the overall system matrix equations, one

then forms a different overall system matrix than is formed by using the
outward KSV

r1;r3 transfer matrix. In addition to overall system matrix

formulations based on pure outward or inward transfer matrices, one
may also develop a mixed overall system matrix formulation where one
uses a combination of an inward and outward transfer matrices. In this
mixed formulation, with the use of the outward and inward transfer
matrices, EM boundary conditions are enforced at an interface inside
the inhomogeneous scattering object. The ability to develop overall
system matrices based on outward, inward, or mixed sets of transfer
matrices is very useful as it allows one to implement different overall
system matrices, which thus provides a method to at least partially
cross check numerical results by comparing the numerical results of the
different, overall system matrix solutions. Numerical testing has shown
that in all cases tested, that the pure outward transfer matrix produced
the most accurate results when compared to the KPE algorithm [22],
but that acceptable numerical solutions were also found using the
mixed and backward transfer matrix solutions.

Once the EM fields of the system are known an important
scattering quantity to determine is the bistatic scattering width per
unit wavelength (the wavelength is taken in the medium which the
scattering object is located (free space in this paper)). The scattering
width (also called radar cross section per unit length) in units of meters
is defined by [25]

σ2−D(φ, φ0) = lim
ρ̃1→∞

2πρ̃1
|Es

z |2

|EINC
z |2

, (84)

thus bistatic scattering width per unit wavelength is defined by

σ(φ, φ0) ≡
σ2−D(φ, φ0)

λ̃0

(85)
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where here we take λ̃0 = 1 meter. In Eq. (84) EINC
z is the incident

plane wave of the system assumed to have an amplitude value EP
0 = 1.0

(Volt/m), φ is the scattering angle (measured from the X1 axis of
Figs. 1 and 2), φ0 is the angle of incidence of the plane wave and Es

z
is the scattered electric field of the system. When Es

z is substituted in
Eq. (84) it is found, after the symmetry of the present scattering case
is taken into account that

Es
z =

∞∑
m=0

B(0)
m H(2)

m (k̃0ρ̃1) cos(mφ0) cos(mφ) (86)

When the Hankel functions H(2)
m (k̃0ρ̃1) which make up the Es

z scattered
fields are expanded asymmptotically as ρ̃1 →∞, it is found

σ(φ, φ0) =
2
π
|F s(φ, φ0)|2 (87)

where

F s(φ, φ0) =
∞∑
m=0

jmB(0)
m cos(mφ0) cos(mφ) (88)

Eq. (87) is the scattering cross section equation used by KPE [22,
Eq. (19)]. (Please keep in mind that KPE [22] studied scattering
from composite cylinders which were not in general symmetric, so that
F s(φ, φ0) given in [22] was expressed as an exponential series from
m = −∞, . . . ,∞ rather than the cosine series given in Eq. (88).)

We would like to mention that an important aspect of the
RCWA algorithm that is being developed herein is to properly validate
the numerical results of the algorithm. In this paper this may be
accomplished in the following ways. The first way is to compare
numerical results from the RCWA algorithm with the numerical
results KPE algorithm as presented in [22] for cases for which the
KPE applies, namely multiple eccentric cylinders containing uniform
materials between the cylinder interfaces. To accomplish this the
author of this paper has programmed the KPE algorithm as presented
in [22], has programmed the exact matrix equations presented in [22],
and except for a minor computational change (which was to invert layer
to layer matrices of [22] to obtain a reduced system matrix as opposed
to solving a large system as was done in [22]), the exact KPE algorithm
was used to compute comparison validation results. A second way to
validate the RCWA method is to use the Bessel, cascaded, transfer
matrix, KB

r1;r3 (which is based on the KPE algorithm) which was

derived in Appendix B to formulate the overall matrix of the system
rather than use the outward SV transfer matrix KSV

r1;r3 . Numerical
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Figure 4. Figs. a and b show, respectively, for the scattering model
described in Figs. 1, 2, 3a and Sec. 3 for φ0 = 0◦, the real part of the
electric field Ez, EzR, that results when the KPE method [22] is used
to calculate EzR (Fig. a) and when the RCWA method was used to
calculate EzR (Fig. b).

calculations for several different examples showed that both the original
KPE algorithm as presented in [22] and the KPE algorithm based
on the Bessel transfer matrix KB

r1;r3 , gave virtually identical results.

A third way of validating results when the KPE or Bessel transfer
matrix formulation didn’t apply (i.e., spatially non uniform materials
between the cylinder interfaces), was to compare matrix results using
the outward SV transfer matrix formulation with matrix results using
a mixed, outward-inward transfer matrix formulation. In the next
section many validation results are presented. We mention that for
validation cases involving the KPE algorithm to be presented, that
only the KPE algorithm as originally presented in [22] (referred as the
first way) was used, as this seemed to be the most independent way to
compare numerical results of the two algorithms.
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Figure 5. Figs. a and b show for the same case described in Fig. 4,
the imaginary part of the electric field Ez, EzI , that results when the
KPE method [22] is used to calculate EzI (Fig. a) and when the RCWA
method was used to calculate EzI (Fig. b).

3. NUMERICAL RESULTS

This section will present several numerical examples of the theory in
Sec. 2. As mentioned in the previous section the author of the present
paper has programmed the KPE algorithm as presented in [22] and has
used this algorithm to validate all examples which may be analyzed
using the KPE algorithm. In the following examples the permeability
is assumed to be that of free space everywhere. For all computations
in this paper the spectral domain truncation index I was taken to have
a value I = N + 2 or I = N + 3 where N was the number of modes
used in RCWA calculation.

As a first example, we refer to KPE [22], Fig. 6, middle curve (TM
case, Ez �= 0) which displays the backscatter width σb ≡ σ(φ0, φ0) as
a function of the angle incidence φ0. For this example, the scattering
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Figure 6. Figs. a and b show for the same case described in Fig. 4,
the real part of the magnetic field Ux = η̃fHx, UxR, that results when
the KPE method [22] is used to calculate UxR (Fig. a) and when the
RCWA method was used to calculate UxR (Fig. b).

object consists of a one layer eccentric circular cylinder where the inner
radius is r̃2 = 0.3183λ̃f , where the outer radius r̃1 = 2r̃2, and where
the inner cylinder center is displaced a distance ẽ12 = 0.1λ̃f to the
right of the center of the outer cylinder. The relative permittivity; of
the inner cylinder is ε2 = 4.0, of the layer between the inner and outer
cylinders is ε1 = 2.0; and of the region exterior to the outer cylinder is
ε0 = 1.0. Two data points in Fig. 6 [22] that can be compared directly
to the present symmetry case under analysis in this paper, correspond
to the Fig. 6 [22] data points when the angle of incidence is 0◦ and
when it is 180◦. When the angle of incidence in KPE [22] Fig. 6 was
0◦, the KPE algorithm written by the author of this paper calculated
numerically a backscatter width value of σKPE

b = 0.21628129000863,
whereas the RCWA method for the same orientation of the plane
wave to the scattering object as was used in [22], gave a value of
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σRCWA
b = 0.21628129000806. Direct visual inspection of the KPE Fig.

6 graph [22] showed a value approximately of σKPE
b

∼= 0.22 for this case.
When the angle of incidence in KPE [22] Fig. 6 was 180◦, the KPE
algorithm written by the author of this paper calculated numerically
a backscatter width value of σKPE

b = 2.62566962481638 whereas the
RCWA method for the same orientation of the plane wave to the
scattering object gave a value of σRCWA

b = 2.62566962481619. Direct
visual inspection of the KPE Fig. 6 graph [22] showed a backscatter
width value approximately of σKPE

b
∼= 2.63. Extremely close agreement

for this example is seen between the KPE and RCWA methods.
The second example to be presented corresponds to the two layer,

three interface, eccentric cylinder system shown in Fig. 2. Recalling
the original definitions ρj ≡ k̃f ρ̃j , rj ≡ k̃f r̃j , Rj ≡ rj/2π, j = 1, 2, 3
where k̃f ≡ 2π/λ̃f , where ρ̃j , r̃j are in units of meters, Fig. 1 shows
dimensions and coordinates of the interior region (u > u0, ρ3 < r3),
the inhomogeneous region (uL ≤ u ≤ u0), and the exterior region
(u < uL, ρ1 > r1), whereas Fig. 2 shows the geometry of relative
dielectric material inhomogeneity ε(u, v). In this example the inner
cylinder is defined by a radius of r̃3 = 1.0λ̃f and its center is displaced
a distance ẽ13 = 0.31415926λ̃f to the left of the outer cylinder center;
the outer cylinder is defined by a radius of r̃1 = 2.0λ̃f ; and the cylinder
circumscribed between the inner and outer cylinders as shown in Fig. 2,
is an intermediate cylinder of radius r̃2 = 1.34292036λ̃f which is offset
a distance ẽ12 = 0.65770796λ̃f to the left of the outer cylinder center.
The bipolar parameter had a value of a = k̃f ã = 28.32451318 for
the system shown in Figs. 1 and 2. As can be seen from Fig. 2, the
intermediate cylinder contains the inner cylinder, and the intermediate
cylinder is contained by the outer cylinder. For this example the
inhomogeneity profile which will be studied (see Fig. 2) is given by

ε(u, v) =

{
ε1 + ∆ε cos(Λu) cos(αv), when (u, v) is in Reg. 1
ε2, when (u, v) is in Reg. 2

(89)

where Reg. 1 is the region bounded by ρ1 = r1 on the outside and
ρ2 = r2 on the inside and where Reg. 2 is the region bounded by ρ2 = r2
on the outside and ρ3 = r3 on the inside. Figs. 3a, 3b, and 3c show
respectively, plots of ε(X1, Y1) (found from ε(u, v) of Eq. (89)) when the
relative bulk permittivities are ε0 = 1.0, ε1 = 2.0, ε2 = 3.0, ε3 = 4.0
and; when ∆ε = 0 (Fig. 3a); when ∆ε = .4, α = 5.5, Λ = 0 (Fig.
3b); and when ∆ε = .4, α = 5.5, Λ = 4π (Fig. 3c). We note that
considerable algebra involving the bipolar coordinates of Eq. (1) is
needed (details not given) to mathematically implement the ε(X1, Y1)
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function specified from ε(u, v) of Eq. (89) and shown in Figs. 3a,b, and
3c. The ε(u, v) profile of Eq. (89) on any bipolar circle of constant
u, −π ≤ v ≤ π, may be called a combined uniform step-cosine profile,
since part of the profile is constant for those values of v which are in
Reg. 2 and a cosine profile for those values of v which are in Reg. 1.

We now present the electromagnetic fields that result for the
second example which was just described for the case when a plane
wave is incident (assuming incidence angles either φ0 = 0◦ or φ0 =
180◦) on the system (see Fig. 2) and when the parameter ∆ε in Eq. (89)
is taken to have a value ∆ε = 0 (see Fig. 3a). We note for this case that
the material in Regs. 1 and 2 are uniform and thus this case represents
a case when the KPE [22] method may be used to directly to validate
the RCWA algorithm. Figs. 4a and 4b show respectively as a function
of the coordinates X1, Y1 for φ0 = 0◦, the real part of the electric
field Ez, namely EzR = Real(Ez), when the KPE method [22] is used
to calculate EzR (Fig. 4a) and when the RCWA method was used to
calculate EzR (Fig. 4b). In viewing these plots, visually no difference
can be seen between the two plots. The KPE plot of Fig. 4a was
computed by using N = 40 (m = 0, . . . , 39) Hankel-Bessel functions
modes and was labeled “Exact” because it was determined through
numerical testing that the KPE algorithm had completely converged
for this number of modes. Fig. 4b was computed using N = 30 state
variable modes and using L = 4200 layers. Figs. 5a and 5b show
the imaginary part of the electric field Ez, namely EzI = Imag(Ez),
for the same parameters as were shown in Figs. 4a and 4b. Again in
viewing these plots, visually no difference can be seen between the two
plots. Figs. 6 and 7 show the real part of the magnetic fields UxR =
Real(η̃fHx) and UyR = Real(η̃fHy), respectively, that are associated
with the electric field plots of Figs. 4 and 5. Again in viewing these
magnetic field plots, visually no difference can be seen between the
KPE and RCWA UxR plots and UyR plots. Rectangular components
of the magnetic field have been plotted because the geometry of the
scattering systems is a mixture of cylindrical, bipolar and rectangular
coordinate systems, thus rectangular components and coordinates are
the most convenient ones to use to represent the fields in all regions.
In viewing these magnetic field plots of Figs. 6a and 6b and 7a and 7b
one notices that for both the UxR and UyR plots, that the magnetic
field component is continuous through the plots. This is to be expected
since a uniform value of the magnetic permeability was assumed in all
regions of space. One also notices in Figs. 6a and 6b that the UxR field
is zero on the line Y1 = 0. This is to be expected because the scattering
system is symmetric with respect to the Y1 axis as mentioned earlier.

Figs. 8a and 8b show the real part of the electric field EzR for the
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Figure 7. Figs. a and b show for the same case described in Fig. 4,
the real part of the magnetic field Uy = η̃fHy, UyR, that results when
the KPE method [22] is used to calculate (Fig. a) and when the RCWA
method was used to calculate UyR (Fig. b).

same parameters as were used to make the plots of Figs. 4–7 except
that the angle of incidence was taken to be φ0 = 180◦ rather than
φ0 = 0◦. In viewing these electric field plots, visually no difference can
be seen between the KPE (Fig. 8a) and RCWA (Fig. 8b) plots. It is
interesting to note in comparing the field patterns of Fig. 4 (φ0 = 0◦)
with those of Fig. 8 (φ0 = 180◦), that totally different electric field
patterns arise for the two different angles of incidence. In the Fig. 4
(φ0 = 0◦) case, a more fully developed wave structure is seen, whereas
in Fig. 8 (φ0 = 180◦), a much more ripple like pattern occurs than did
in Fig. 4 plot, particularly inside the scattering structure.

We would like to mention that plots similar to those of Figs. 4–8
have been made for cases when a lower number of modes and a lower
number of layers were used in the RCWA algorithm. It was found in
these cases, that visually, just as is seen in Figs. 4–8, that virtually no
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Figure 8. Figs. a and b show, respectively, for the scattering example
described in Figs. 1,2,3a and Sec. 3 for φ0 = 180◦, the real part of the
electric field Ez, EzR, that results when the KPE method [22] is used
to calculate EzR (Fig. a) and when the RCWA method was used to
calculate (Fig. b).

difference between KPE and RCWA methods could be observed. For
this reason in order to study the convergence of the RCWA method
in more detail, two error analyses were made, one which studied the
peak difference in the electric and magnetic field values between the
KPE and RCWA methods over a given X1, Y1 region call it R1, and
the second which studied the root mean square differences between the
methods for the same region R1 and same cases. The peak difference
was studied by defining the relative peak error difference measure

Epeak
rel = 100×

Max
R1

∣∣F − F exact
KPE∗

∣∣
Max
R1
|F exact

KPE∗ |
(%) (90)

where; F is any of complex field values Ez, Ux, Ux which have been
computed by the RCWA method or by the KPE method (when the
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KPE method used a lower number of modes than was used for F exact
KPE∗),

F exact
KPE∗ is any of complex field values Ez, Ux, Ux which have been

computed by the KPE Exact method using 40 modes (called KPE*
in Eq. (90)), represents the magnitude of a complex number, and the
Max and R1 in Eq. (90) means to find the maximum value over the
region R1. The RMS relative difference error measure, ERMS

rel , is given
by Eq. (90) when the numerator of the second factor in Eq. (90) is
replaced by the standard RMS formula { 1

Ns

∑Ns
p=1 |Fp − F p,exact

KPE∗ |2}1/2
where p the represents a sample of the complex fields F and F exact

KPE∗
at a point P in region R1, and where Ns represents the number of
samples made over the region R1. In the present paper the region
R1, for both the peak and RMS error measures, was taken to be
the X1, Y1 plane shown in Figs. 4–8. For both the peak and RMS
error measures, a very fine rectangular, sample grid consisting of
Ns = 240 × 120, nearly uniformly spaced, X1, Y1 points was used to
compute the numerical errors. We say nearly uniformly spaced because
when sampling the EM fields inside the inhomogeneous region on an
exactly uniform rectangular grid at a point Xrec

1 , Y rec
1 , the field point

X1, Y1 that was actually used was the point X1, Y1 which was on a
ρu = ru, u = u�, � = 1, . . . , L − 1, internal bipolar circle which was
closest in distance to theXrec

1 , Y rec
1 point. This point was used because,

as discussed in Sec. 2, the cylindrical Fourier, electric and magnetic
coefficients Em(ru), Um(ru), of cos(mφu) were computed exactly on
the internal layer interfaces ρu = ru, u = u�, � = 1, . . . , L − 1 by the
matrix multiplication of KSV

ru;r3 times the matrix W (3) which contained

the Fourier coefficients E
(3)
m (r−3 ), U

(3)
m (r−3 ). Thus by choosing the

X1, Y1 point on the ρu = ru, u = u�, interface, the most accurate
calculation of the internal EM fields possible was made. This was
particularly important in the present example because the EM field
summations involved a large number of Fourier harmonics, and thus
even a very small spatial displacement between the point Xrec

1 , Y rec
1

of a perfectly uniform spaced rectangular grid and those of a point
X1, Y1 on the interface, ρu = ru, u = u�, � = 1, . . . , L − 1 where the
RCWA harmonics were actually computed, could make a relatively
large difference in the complex values (particularly the complex phase
angle) of the EM field solutions which were being evaluated.

Table 1 shows for the Ez, Hx, Hy components, the % Peak
Relative Error with the Exact KPE solution [22] (the Exact KPE
solution is labeled KPE* in Table 1), Epeak

rel , as results: when the KPE
solution is calculated using 22, 26 and 30 modes: when the RCWA
method is calculated using; 22 modes, 2800 layers; 26 modes, 2800
layers; and 30 modes, 4200 layers for the cases when the angle of
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Table 1. The % Peak Relative Error with the Exact KPE solution,
Epeak
rel , is displayed for the Ez, Hx, Hy components for several different

computational cases. The Exact KPE solution (40 mode) is labeled
KPE*. Also listed is the backscatter width, σb = σ(φ0, φ0), that result
for the KPE and RCWA methods.

Method
(∆ε = 0 )

# Modes,
#Layers

φ0

Angle
of Inc.

Ez  (% Peak

Rel. Error
with KPE*)

Hx (% Peak 

Rel. Error
with KPE* )

Hy (%

Rel. Error
with KPE*)

Backscatter
Width

σ σ φ φb = ( , )0 0

KPE*
(Exact Soln)

40 0 0.0 0.0 0.0 (4.95907)

KPE 22 0 4.4564 5.8828 4.2741 4.95919
RCWA 22,2800 0 4.4834 5.9464 4.2980 4.95545

KPE 26 0 0.3702 0.7270 0.5074 4.95907
RCWA 26,2800 0 0.3790 1.2108 0.7035 4.95933

KPE 30 0 0.0128 0.0333 0.0224 4.95907
RCWA 30,4200 0 0.2256 1.0280 0.4694 4.95901

KPE*
(Exact Soln)

40 180 0.0 0.0 0.0 (4.38545)

KPE 22 4.2371 5.2686 4.6176 4.38527
RCWA 22,2800 180 6.2794 8.3671 5.1142 4.11560

KPE 26 180 0.3517 0.5722 0.5482 4.38545
RCWA 26,2800 180 0.4094 1.5942 0.6391 4.35349

KPE 30 180 0.0132 0.0261 0.0244 4.38545
RCWA 30,4200 180 0.2671 1.2189 0.5668 4.36584

Peak 

o

o

o

o

o

o

o

o

o

o

o

o

o

180o

incidence is φ0 = 0◦ and φ0 = 180◦. As can be seen from Table 1, for
both the KPE and RCWA methods, that the peak relative error with
KPE*, Epeak

rel , decreases rapidly as the number of modes used increases
from 22, to 26, to 30 modes for both angles of incidence φ0 = 0◦
and φ0 = 180◦. It is also observed for both φ0 = 0◦ and φ0 = 180◦
for the KPE method, that for 30 modes, for all the field components
Ez, Hx, Hy, that the peak relative error Epeak

rel , is extremely small, on
the order 0.02 to 0.03%. With this extremely small peak error, the
present author feels confident that the KPE solution has completely
converged when calculated by using 40 modes and that labeling the
40 mode KPE solution as the exact solution KPE* in Table 1 is very
justified.

It is also interesting to note that for the 22 and 26 mode
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Table 2. The % RMS Relative Error with the Exact KPE solution,
ERMS
rel , is displayed for the Ez, Hx, Hy components for the same case

as Table 1. Also listed is backscatter width, σb = σ(φ0, φ0), that result
for the KPE and RCWA methods.

Method
(∆ε = 0 )

# Modes,
#Layers

φ0

Angle
of Inc.

Ez  (% RMS

Rel. Error
with KPE*)

Hx   (% RMS

Rel. Error
with KPE*)

Hy   (% RMS

Rel. Error
with KPE*)

Backscatter
Width

σ σ φ φb = ( , )0 0

 KPE*
(Exact Soln)

40 0 0.0 0.0 0.0 (4.95907)

KPE 22 0 0.4934 0.5726 0.3697 4.95919
RCWA 22,2800 0 0.5641 0.7126 0.4251 4.95545

KPE 26 0 0.0300 0.0453 0.0291 4.95907
RCWA 26,2800 0 0.0715 0.1312 0.0738 4.95933

KPE 30 0 0.0008 0.0016 0.0010 4.95907
RCWA 30,4200 0 0.0426 0.0081 0.0045 4.95901

 KPE*
(Exact Soln)

40 180 0.0 0.0 0.0 (4.38545)

KPE 22 180 0.6189 0.6971 0.4610 4.38527
RCWA 22,2800 180 1.3355 1.5614 1.0870 4.11560

KPE 26 180 0.0285 0.0357 0.0315 4.38545
RCWA 26,2800 180 0.1081 0.1520 0.1018 4.35349

KPE 30 180 0.0008 0.0012 0.0011 4.38545
RCWA 30,4200 180 0.0622 0.0853 0.0569 4.36584

o

o

o

o

o

o

o

o

o

o

o

o

o

o

calculations, that the KPE and RCWA solutions are showing very
similar peak relative error differences (approximately 4 to 8% for the
22 mode case and 0.3 to 1.5% for the 26 mode case) with the exact
KPE* solution for both angles of incidence tested and for all field
components. It is very reasonable that the number of modes should
be an important factor in determining the accuracy of the solutions
regardless of whether the KPE or RCWA method is used. It is
not surprising that the KPE method is always closer to the exact
KPE* solution since for a given number of modes, the Bessel addition
formulas used by [22], express exactly the modal coefficients from the
inner (ρ3 = r3) to outer (ρ1 = r1) layers in terms of Bessel functions,
whereas the RCWA method always requires a SV matrix whose matrix
elements are constant in each layer, and therefore represents only
an approximate EM solution in each thin layer, thus leading to less
accurate results than the KPE method can provide.

Table 1 in the last column lists the backscatter width, σb =
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σ(φ0, φ0), that result for the KPE and RCWA methods for the different
computation cases which have been discussed earlier. One notices
for the φ0 = 0◦ case, that σb converges very rapidly to the KPE*
exact solution (listed in Table 1 in parantheses) when using 22,26,30
modes, for both the RCWA and KPE methods. One notices for the
φ0 = 180◦ case, however, that KPE method converges rapidly to the
exact σb value when using 22,26,30 modes, but that significant error
in calculating σb arises for the 22 mode case when using the RCWA
method, but that more accurate σb RCWA results are found when the
RCWA method uses 26 and 30 modes. Table 2 lists ERMS

rel , the %
RMS Relative Error with the Exact KPE* solution as defined earlier,
for same cases that were discussed earlier in Table 1. As can be seen
by inspecting Table 2, all of the trends discussed for Table 1 are seen
again in Table 2. One notices in Table 2, the RMS relative error is
much smaller than the peak relative errors of Table 1. This is not
surprising since peak error is a much more severe test of accuracy than
an RMS error which tends to average out places where relatively large
error might occur.

Figs. 9a and 9b for φ0 = 0◦, show, respectively, the real (EzR =
Real(Ez)) and imaginary (EzI = Imag(Ez)) parts of the electric field
Ez for the same parameter case as were shown in Fig. 4 except that
∆ε = 0.4, α = 5.5, and Λ = 0 rather than ∆ε = 0. Fig. 3b shows a plot
of ε(X1, Y1) (from ε(u, v) of Eq. (89)) for this example. In this example,
because ∆ε is not zero in Eq. (89), Reg. 1 is not a uniform material
and thus the KPE algorithm cannot be used to calculate the EM fields
of the system. The EM fields for the plots of Figs. 9a and 9b were
made using 30 modes and using 4200 layers. A comparison of the Fig.
9a plot (EzR, ∆ε = 0.4, α = 5.5, Λ = 0) and Fig. 4b (EzR, ∆ε = 0,)
shows that Fig. 9a has a very similar field pattern to that shown in
Fig. 4b, but on careful inspection of the two plots, one still notices
perceptible difference between the two plots. For example, near the
origin of the two plots, one notices that in Fig. 9a, a higher peak to peak
interference pattern of the EzR field occurs than did in the Fig. 4b plot.
A comparison of the Fig. 9b plot (EzI , ∆ε = 0.4, α = 5.5, Λ = 0) and
Fig. 5b (plot of EzI , ∆ε = 0,) shows that Fig. 9b has a very similar field
pattern to that shown in Fig. 5b, but still one may observe perceptible
differences between the plots. Overall the presence of the non uniform
dielectric material in Reg. 1 of the system cause a definite change in
the EM field pattern as to when the material is uniform.

Fig. 10a shows a comparison of the plots of the db bistatic
scattering width σdb(φ, φ0) given by σdb(φ, φ0) ≡ 10 log(σ(φ, φ0)) as
a function of φ, the scattering angle, for the model described in Fig. 2
for the case φ0 = 0◦ when ∆ε = 0 (ε(X1, Y1) shown in Fig. 3a) as
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Figure 9. Figs. a and b show for φ0 = 0◦, ∆ε = 0.4, α = 5.5, Λ = 0,
the real (Fig, a) and imaginary (Fig. b) parts of the electric field Ez
that result when using the RCWA method. Please note, that because
∆ε �= 0 in this case, Reg. 1 is nonuniform, thus only the RCWA may
be used to determine EM fields of the system.

calculated by the KPE method using 40 modes (dot in Fig. 10a) and as
calculated by the RCWA method using 30 modes and 4200 layers (solid
line in Fig. 10a). As can be seen from the Fig. 10a plots, extremely
close numerical results occur by using the two methods. The close
agreement of KPE and RCWA method provides further validation of
the RCWA method when the material is uniform. Fig. 10b presents a
plot of σdb(φ, φ0) as a function of φ for the model described in Fig. 2
for the case when ∆ε = 0.4, α = 5.5, Λ = 0 (ε(X1, Y1) shown in
Fig. 3b) for φ0 = 0◦ as calculated by the RCWA method using 30
modes and 4200 layers (solid line in Fig. 10b). Also shown in Fig. 10b
for comparison is the KPE Exact (40 mode) solution (dashed line,
∆ε = 0). As discussed earlier the ∆ε = 0.4, α = 5.5, Λ = 0 case is
one which cannot be analyzed by the KPE method. In comparing the
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Figure 10. Fig. a shows a comparison of the plots of the σdb(φ, φ0)
bistatic scattering widths (in db) as a function of φ for the scattering
model described in Figs. 1, 2, 3a and Sec. 3 for the case when (Fig. 3a)
∆ε = 0 and when φ0 = 0◦, as calculated by the KPE method [22] using
40 modes (dot in Fig. a) and as calculated by the RCWA method using
30 modes and 4200 layers (solid line in Fig. a). Fig. b shows σdb(φ, φ0)
for the same case as Fig. a, except ∆ε = 0.4, α = 5.5, Λ = 0 (ε(X1, Y1)
shown in Fig. 3b). Also shown in Fig. b for comparison is the KPE
Exact (40 mode) solution (dashed line, ∆ε = 0).

plots (solid line and dashed line) of Figs. 10b one clearly sees significant
differences between the profiles. Figs. 11a and 11b show a comparison
of the plots of the db bistatic scattering width σdb(φ, φ0) as a function
of φ for the same cases as Figs. 10a,b except that φ0 = 180◦ rather
than φ0 = 0◦. In Fig. 11a extremely good validation of the RCWA is
seen. In the Fig. 11b plot, the presence of the nonuniform material in
Reg. 1 in the scattering model causes a significantly different bistatic
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Figure 11. This figure shows σdb(φ, φ0) for the same cases as displayed
in Fig. 10 except φ0 = 180◦ rather than φ0 = 0◦.

scattering width profile to occur (solid line in Fig. 11b) as when the
material is uniform (dashed line, ∆ε = 0, Fig. 11b). Overall, for angles
of incidences φ0 = 0◦ and φ0 = 180◦, the presence of the non uniform
material in Reg. 1 (see Figs. 2 and 3b) produces a significantly different
bistatic scattering width profile (solid line Figs. 10b and 11b) than
when the Reg. 1 material is uniform (dashed line, Figs. 10b and 11b).

Fig. 12a shows a comparison of the plots of the db bistatic
scattering width σdb(φ, φ0) as a function of φ for the model of the
second example described earlier (see Fig. 2) for the case when ∆ε =
0.4, α = 5.5, Λ = 4π ((ε(X1, Y1) shown in Fig. 3c), φ0 = 0◦ as
calculated by the RCWA method using 30 modes and 4200 layers (solid
line in Fig. 12a). Also shown for comparison is the KPE exact solution
(dashed line in Fig. 12a). As can be seen from the Fig. 12a plots, the
presence of the material inhomogeneity in Reg. 1 (see Fig. 2) causes a
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Figure 12. Fig. a shows a comparison of the plots of given as a
function of σdb(φ, φ0) for the scattering model described in Figs. 1, 2, 3c
and Sec. 3 for the case when ∆ε = 0.4, α = 5.5, Λ = 4π (corresponding
to Fig. 3c) when φ0 = 0◦ as calculated by the RCWA method (solid
line in Fig. a). Also shown for comparison is the KPE exact solution
(dashed line in Fig. a). Fig. b shows σdb(φ, φ0) for the same case as
Fig. a, except φ0 = 180◦ rather than φ0 = 0◦.

perceptible difference in the bistatic scattering width as compared to
the case when Reg. 1 is uniform. Fig. 12b shows a plot of the bistatic
scattering width for the same cases as Fig. 12a except that the angle of
incidence has been taken to be φ0 = 180◦ rather than φ0 = 0◦. Again
one notices, the presence of the material inhomogeneity in Reg. 1 (see
Fig. 2) causes a perceptible difference in the bistatic scattering width
as compared to the case when Reg. 1 is uniform. It is interesting to
note that in comparing Figs. 10b and 12a (both φ0 = 0◦), that the
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inhomogeneity used in Fig. 10b (∆ε = 0.4, α = 5.5, Λ = 0, Fig. 3b)
caused a larger difference with the uniform region cases than did the
inhomogeneity (∆ε = 0.4, α = 5.5, Λ = 4π, Fig. 3c) used in Fig. 12a.
This is not surprising, because although the inhomogeneity used in
Fig. 12a had a more rapid spatial variation overall than the one used
in Fig. 10a, its radial u variation nevertheless tended to average out
the EM field, thus producing less marked difference with the uniform
region case than did the inhomogeneity used in Fig. 12a. Overall
in Figs. 10b, 11b, 12a and 12b, the differences between the uniform
material case (dashed line) and nonuniform material case (solid line),
are very believable and are of the order one would expect for the
inhomogeneity profiles shown in Figs. 3b and 3c.

For the case when the permittivity of the material between the
interfaces is nonuniform (i.e., when ∆ε �= 0) it is not possible to use
the KPE algorithm to validate numerical results. As mentioned at
the end of Sec. 2, one possible way to at least partially validate the
RCWA algorithm for this case is to solve a system matrix equation
which is based on a mixed combination of outward and inward transfer
matrices, and then compare the numerical results of this algorithm
with the main RCWA algorithm of the paper, namely the algorithm
based on a pure outward transfer matrix. Table 3 shows the error
results of such an analysis where the mixed transfer matrix method
is entitled RCWAm and was based on the use of a outward transfer
matrix ZSVru;r3 and on the use of a inward transfer matrix ZSVr1;ru (ru
is located .75L # of layers outward from r3 and .25L # of layers
inward from r1) to formulate the matrix equation of the overall system.
The error measure was obtained by replacing F exact

KPE∗ in Eq. (90) with
F out

RCWA∗ , where F out
RCWA∗ is any of the complex field values Ez, Ux, Ux

which have been computed by the RCWA method which was based
on a pure outward transfer method using 30 modes and 4200 layers,
and taking F in Eq. (90) to be any of the EM fields calculated by the
RCWAm method. All EM fields associated with the RCWAm method
were calculated from the electric and magnetic Fourier coefficients
which were found from the matrix solution at the ρ3 = r3 boundary.
The region R1 used for Table 3 is the same one used for Tables 1 and
2. In Table 3, the first set of data, corresponding to ∆ε = 0, shows
the relative peak error Epeak

rel for Ez, Hx, Hy between the RCWA* and
RCWAm algorithms for different numbers of modes and layers and for
φ0 = 0◦, 180◦. In this set of data one clearly sees the peak error between
the two RCWA algorithm solutions decreases as the number of modes
and layers increases. The rate of error reduction with increase in the
number of modes is very similar to that seen in the Table 1 relative
peak error data when the KPE and RCWA algorithm solutions were
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Table 3. The % Peak Relative Error Epeak
rel between the RCWA*

algorithm (based a pure outward transfer matrix) and the RCWAm
algorithm (based on the use of a 3/4 outward and 1/4 inward transfer
matrix) is displayed for the Ez, Hx, Hy components for different
computational cases. Also listed is backscatter width, σb = σ(φ0, φ0),
that result for the KPE Exact (40 mode), RCWA and RCWAm
methods.

Method,
Λε α, ,

# Modes,
#Layers

φ0

Angle
of Inc.

Ez  (% Peak

Rel.Error
with

RCWA*)

Hx (%
 Rel. Error

with
RCWA* )

Hy

with
RCWA*)

Backscatter
Width

σ σ φ φb = ( , )0 0

ε = 0

KPE* (Exact) 40 0 (4.95907)
 RCWA* 22,2800 0 0.0 0.0 0.0 4.95545
RCWAm 22,2800 0 1.2193 2.3026 .7540 4.94900
RCWA* 26,2800 0 0.0 0.0 0.0 4.95933
RCWAm 26,2800 0 0.1991 0.2552 0.1785 4.95702
RCWA* 30,4200 0 0.0 0.0 0.0 4.95901
RCWAm 30,4200 0 0.1232 0.1541 0.1084 4.95744

KPE* (Exact) 40 180 (4.38545)
RCWA* 22,2800 180 0.0 0.0 0.0 4.11560
RCWAm 22,2800 180 3.5397 6.0937 2.3769 4.16989
RCWA* 26,2800 180 0.0 0.0 0.0 4.39533
RCWAm 26,2800 180 0.4259 0.7202 0.4219 4.39533
RCWA* 30,4200 180 0.0 0.0 0.0 4.36584
RCWAm 30,4200 180 0.2422 0.3034 0.2249 4.39421

Λ

ε α= =

=

0 4 5 5

0

. , . ,

RCWA* 30,4200 0 0.0 0.0 0.0 4.09170
RCWAm 30,4200 0 0.6920 1.1630 0.7738 4.09625
RCWA* 30,4200 180 0.0 0.0 0.0 7.12139
RCWAm 30,4200 180 0.7489 1.7432 0.9104 7.16171

Λ

ε α

π

= =

=

0 4 5 5

4

. , . ,

RCWA* 30,4200 0 0.0 0.0 0.0 1.82968
RCWAm 30,4200 0 0.2358 0.3970 0.2542 1.83414
RCWA* 30,4200 180 0.0 0.0 0.0 4.79632
RCWAm 30,4200 180 0.2257 0.3625 0.2230 4.82439

∆

Peak  (% Peak
 Rel. Error

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

∆

∆

∆

o

o

o

o
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compared with the KPE* Exact (40 mode) solution. The second and
third sets of data in Table 3 show the peak error difference Epeak

rel for the
two inhomogeneous material examples corresponding to Figs. 3b and 3c
respectively for just the case when 30 modes and 4200 layers have been
used in both RCWA algorithms for φ0 = 0◦, 180◦. In comparing all
three data sets for 30 modes and 4200 layers, one notices that relative
peak error Epeak

rel for the second data set (∆ε = 0.4, α = 5.5, Λ = 0)
is clearly larger (Epeak

rel
∼= 1 to 2%) than that of the first (∆ε = 0)

and third (∆ε = 0.4, α = 5.5, Λ = 4π) data sets where the error
is Epeak

rel
∼= 0.1 to 0.4%. This result seems very much in line with

observations made that the difference in the bistatic scattering widths
seen in Figs. 10b and 11b (comparison of ∆ε = 0, Fig. 3a (dashed line)
with ∆ε = 0.4, α = 5.5, Λ = 0, Fig. 3b (solid line)) was greater than
was the difference seen in Figs 12a and 12b (comparison of ∆ε = 0,
Fig. 3a (dashed line) with ∆ε = 0.4, α = 5.5, Λ = 4π, Fig. 3c (solid
line)).

4. SUMMARY, CONCLUSIONS, AND FUTURE WORK

The paper has presented a bipolar RCWA algorithm for the calculation
of EM fields and scattering from an inhomogeneous material,
composite, eccentric, circular, cylinder system. The basic RCWA
formulation in bipolar coordinates has been presented as well as a
complete description of the boundary matching equations that were
used. Extensive use of the residue theorem to calculate various bipolar
interaction integrals (Appendix A) allowed an extremely accurate and
fast numerical implementation of both the RCWA formulation and the
boundary matching equations. The RCWA algorithm was extensively
validated using an algorithm developed by [22] to study scattering from
uniform material eccentric cylinders (termed the KPE algorithm in this
paper). For validation purposes the paper presented a slightly altered
formulation of the KPE algorithm (Appendix B) which allowed the
transfer matrices of the RCWA and KPE algorithms to be compared.
Numerical validation results of the RCWA algorithm were presented
in the text directly, were presented in Figs. 4–8, 10a, and 11a and were
presented in Tables 1, 2, and 3. In the author’s opinion extremely close
numerical results for the between the KPE and RCWA algorithms
were observed. In Figs. 9, 10b, 11b, 12a and 12b numerical examples
involving inhomogeneous materials were presented. Very reasonable
numerical results were obtained. In this paper RCWA was applied only
to case where the EM fields and scattering object were symmetric with
respect to y coordinate. We would like to mention that the extension of
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the RCWA algorithm to the case where the EM fields and a scattering
object have arbitrary symmetry is straight forward.

There are several areas for which the RCWA algorithm that
has been presented could be improved. One area concerns the
numerical calculation of the eigenvalues and eigenfunctions of the
RCWA algorithm. Numerical testing has shown that in determining
the SV modes, that the higher the mode number and the larger
the magnitude of the eigenvalue Qn, that the coefficients of the
eigenfunction Szn(v) for that mode, have a certain integer index value
call it in,max, for which the magnitude of the coefficient is largest.
As one calculates the magnitude of the Fourier coefficients Szin(v)
of Szn (Eq. (17)) for integer values above or below this value, the
magnitudes of the adjacent coefficients die off more and more rapidly
as the magnitude of Qn increases. Put in spectral domain terms, as the
magnitude of the eigenvalue Qn increases, the Szn(v) coefficients which
are centered about in,max, become more and more narrow band. This
means that when solving the SV matrix for a given higher order mode,
that one might be able to perform an eigenanalysis on a much smaller
(or greatly reduced) SV matrix which has been truncated around those
matrix elements (i.e., associated with in,max) which contribute most to
the given higher order mode. This would of course save a great deal
of computational time, particularly for numerical scattering examples
which are much larger than have already been studied. Another
area where the RCWA computation time could be greatly reduced
is if parallel processing were used to carry out the SV eigenanalysis
of the system. The SV eigenanalysis is very amenable to parallel
processing since the eigenanalysis in each thin layer may be calculated
independently of every other layer. As the eigenanalysis is the most
time consuming step in algorithm parallel process would reduce the
processing time approximately by a factor of 1/L where L is the
number of layers.

APPENDIX A.

This appendix will present the calculation of the exponential Fourier
coefficients that are used in this paper. We will first determine the
Fourier coefficients of the series

exp(−jmφu(u, v)) =
∞∑

i=−∞
α

(−m)
i (u) exp(jiv) (A1)

α
(−m)
i (u) =

1
2π

π∫
−π

exp(−jmφu(u, v)− jiv)dv (A2)
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wherem ≥ 1, where u > 0, where the angle φu(u, v) defined in Eq. (3) is
the circular, cylindrical coordinate defined at the center of the Ou circle
whose radius is ru = a/ sinh(u) and whose center is xcu = a/ tanh(u)
(see Fig. 1). We first study the function

exp(jφu(u, v)) = cos(φu(u, v)) + j sin(φu(u, v)) = (x− xcu + jy)/ru
(A3)

where x = a sinh(u)/(cosh(u) − cos(v)) and y = −a sin(v)/(cosh(u) −
cos(v)) are the bipolar coordinates of Eq. (1). Substituting x, y, and
xcu into Eq. (A3) one finds after algebra

exp(jφu(u, v)) =
F

(cosh(u)− cos(v))
(A4)

F = cosh(u) cos(v)− 1− j sinh(u) sin(v)

=
1
2

exp(−jv) exp(−u)[exp(jv)− exp(u)]2 (A5)

Algebraic manipulation shows

cosh(u)− cos(v) = −1
2

exp(−jv)[exp(jv)− exp(−u)][exp(jv)− exp(u)]

(A6)
After simplification it is found

exp(jφu(u, v)) = − exp(−u)
[

exp(jv)− exp(u)
exp(jv)− exp(−u)

]
(A7)

If the exp(jφu(u, v)) is raised to the power −m power and substituted
into Eq. (A2) and following the complex variable theory of [23], a
substitution z = exp(jv) is made, it is found that the resulting Eq. (A2)
integral is

α
(−m)
i =

1
2πj

(−1)m exp(mu)
∮

C;|z|=1

[
z − exp(−u)
z − exp(u)

]m dz

zi+1
(A8)

where the substitutions exp(−jiv) = z−i, dz = j exp(jv)dv =
jzdv, dv = dz/jz have been made in Eq. (A8), and where C; |z| = 1
represents a counter clockwise integration in the complex z plane
around the line |z| = 1. The factor

[
z−exp(−u)
z−exp(u)

]m
for m ≥ 1, is

analytic in the region of the complex plane |z| ≤ 1, and the factor
zi+1 represents a pole of order i + 1 for i > 0. We thus see using the
residue theorem [23] for m ≥ 1

α
(−m)
i (u) = (−1)m exp(mu)

1
i!

{
di

dzi

[
z − exp(−u)
z − exp(u)

]m} ∣∣∣
z=0

(A9)
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for i ≥ 0 and α
(−m)
i = 0 for i ≤ −1.

For the case when m = 0,

α
(0)
i (u) =

{
1, i = 0
0, i �= 0 (A10)

The coefficients α(m)
i for m ≥ 1 may be found by taking the complex

conjugate Eq. (A1) and comparing the coefficients of exp(jiv) of the
two series. The result is for m ≥ 1 and for all i is

α
(m)
i = α

(−m)∗

−i (A11)

Since α(m)
i (u) is purely real, the complex conjugate may be omitted.

The higher order derivatives in Eq. (A9) may be readily calculated and
evaluated by summing the series specified by the Leibniz derivative
product rule given in [24]. The validity of Eq. (A9) has been checked
for several cases by direct numerical integration of Eq. (A2).

An analysis similar to that performed to calculate the α
(m)
i (u)

coefficients shows that the β
(−m)
i (u) coefficients for u > 0 for the

Fourier series of Eq. (73), Sec. 2, are given by for m ≥ 1

β
(−m)
i (u) = (−1)m+1 exp(mu)

2
(i−1)!

{
di−1

dzi−1

[
(z−exp(−u))m−1

(z − exp(u))m+1

]}∣∣∣
z=0

(A12)
for i ≥ 1 and β

(−m)
i (u) = 0 for i ≤ 0. For m = 0 it is found

β
(0)
i (u) =

1
sinh(u)

exp(−|i|u) (A13)

for all i. The β(m)
i (u) coefficients for m ≥ 1 are given by for all i by

β
(m)
i (u) = β

(−m)
−i (u)∗ (A14)

Since β(−m)
−i is purely real, the complex conjugate may be omitted.

The ζ(m)
i (u) coefficient of Eq. (33) for u > 0 is given by the integral

ζ
(m)
i (u) =

1
2π

π∫
−π

[
d

dv
φu(u, v)

]
exp(jmφu(u, v)− jiv)dv (A15)

For m �= 0, the ζ(m)
i (u) coefficient may be calculated from the α(m)

i (u)
coefficients as follows. We note for m �= 0,

exp(jmφu(u, v)
d

dv
φu(u, v) =

1
jm

d

dv
exp(jmφu(u, v))
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=
1
jm

d

dv


 ∞∑
i=−∞

α
(m)
i (u) exp(jiv)


 (A16)

exp(jiφu(u, v)
d

dv
φu(u, v) =

∞∑
i=−∞

i

m
α

(m)
i (u) exp(jiv) (A17)

For all m �= 0, we find

ζ
(m)
i (u) =

i

m
α

(m)
i (u) (A18)

For m = 0 it turns out for all i

ζ
(0)
i (u) = − exp(−|i|u) (A19)

The Fourier series for the function εh(u, v) ≡ h2(u, v)ε(u, v),
Eq. (7), is given by

εh(u, v) =
∞∑

i=−∞


 ∞∑
i′=−∞

hsqi−i′(u)εi′(u)


 exp(jiv) (A20)

where εi′(u) are the Fourier coefficients of the relative dielectric
permittivity function ε(u, v) and hsqi (u) are the Fourier coefficient of
the squared scale factor function h2(u, v). Using the residue theorem
it may be shown that

hsqi (u) = a2 exp(−|i|u)

[
cosh(u) + |i| sinh(u)

sinh3(u)

]
(A21)

for all for all i.
In addition to Eq. (A9), the validity of the other Fourier coefficient

formulas presented in this appendix have been checked for several cases
by direct numerical integration of the integrals which defined them.

APPENDIX B.

This appendix will give a derivation of the single layer, eccentric
circle, Bessel transfer matrix which was described in the main text.
The derivation will be based on a modification of the KPE algorithm
presented in [22]. We will derive, as a representative example, the
transfer matrix for the layer enclosed by the ρ1 = r1 and ρ2 = r2
circles of Fig. 2 with the material parameters taken to be ε1 = ε and
µ1 = µ. Letting E

(p)
z and U

(p)
φ = η̃fH

(p)
φ , p = 1, 2 be the electric and
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magnetic fields at the ρ1 = r−1 and ρ2 = r+
2 boundaries respectively we

have KPE [22]

E(p)
z =

∞∑
m=−∞

[
A(p)
emJm(Xp) +B(p)

emH
(2)
2 (Xp)

]
exp(jmφp) (B1)

U
(p)
φ ≡ η̃fH

(p)
φ =

k

jµ

∞∑
m=−∞

[
A(p)
emJ

′
m(Xp) +B(p)

emH
(2)
2

′
(Xp)

]
exp(jmφp)

(B2)
where Xp = kρp, p = 1, 2, k =

√
µε,

A(1)
em =

∞∑
m′=−∞

Zexp
m,m′A

(2)
em′ (B3)

B(1)
em =

∞∑
m′=−∞

Zexp
m,m′B

(2)
em′ (B4)

Zexp
m,m′ = exp[j(m′ −m)φ12]Jm−m′(ke12) (B5)

(m,m′) = −∞, . . . ,∞

where e12 = k̃f ẽ12 > 0 is the magnitude of the separation distance of
the centers of the O1 and O2 circles, where φ12 = 0 when the O2 circle
center is to the right of the O1 circle center, and φ12 = π when the O2

circle center is to the left of the O1 circle center. The subscript “e” in
Eqs. (B1)–(B4) represents “exponential”. If we take advantage of the
symmetry of the present problem and perform algebra we find

E(p)
z =

∞∑
m=0

[
A(p)
cmJm(Xp) +B(p)

cmH
(2)
m (Xp)

]
cos(mφp)

≡
∞∑
m=0

Em(rp) cos(mφp) (B6)

U
(p)
φ ≡ η̃fH

(p)
φ =

∞∑
m=0

k

jµ

[
A(p)
cmJ

′
m(Xp) +B(p)

cmH
(2)
m

′
(Xp)

]
cos(mφp)

≡
∞∑
m=0

Um(rp) cos(mφp) (B7)

where

A(1)
cm =

∞∑
m′=0

Zcos
m,m′A

(2)
cm′ (B8)
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B(1)
cm =

∞∑
m′=0

Zcos
m,m′B

(2)
cm′ (B9)

and

Zcos
m,m′ = (2− δ0,m)




Zexp
m,m′ , m′ = 0

1
2

[
(−1)m

′
Zexp
m,−m′ + Zexp

m,m′

]
, m′ ≥ 1

(B10)

and where

Em(ρp) = A(p)
cmJm(Xp) +B(p)

cmH
(2)
m (Xp) (B11)

Um(ρp) =
k

jµ

[
A(p)
cmJ

′
m(Xp) +B(p)

cmH
(2)
m

′
(Xp)

]
(B12)

where the subscript “c” in Eqs. (B6), (B7) represents “cosine” and
has been placed there to distinguish the exponential coefficients of
Eqs. (B1)–(B4). For each value of m = 0, 1, . . . , the 2 × 2 equations
in Eqs. (B11), (B12) which specify Em(ρp) and Um(ρp) in terms
of A

(p)
cm and B

(p)
cm, may be inverted to express the A

(p)
cm and B

(p)
cm

coefficients in terms of the Em(ρp) and Um(ρp) coefficients. These
resulting expressions may be further simplified by using the Wronskian
relation of Eq. (82) that applies for the Jm(Xp), H

(2)
m (Xp), functions.

If the A
(2)
cm, B

(2)
cm coefficients, expressed as 2 × 2 linear combination

of the Em(r+
2 ), Um(r+

2 ) coefficients are substituted in Eqs. (B8),
(B9), and if the A

(1)
cm, B

(1)
cm coefficients, expressed as 2 × 2 linear

combination of the Em(r−1 ), Um(r−1 ) coefficients are substituted Eqs.
(B11), (B12), the coefficients Em(r−1 ), Um(r−1 ) may be expressed in
terms of Em(r+

2 ), Um(r+
2 ). The final results are

Em(r−1 ) =
∞∑

m′=0

[
ZBEEm,m′Em′(r

+
2 ) + ZBEUm,m′Um′(r

+
2 )

]
(B13)

Um(r−1 ) =
∞∑

m′=0

[
ZBUEm,m′Em′(r

+
2 ) + ZBUUm,m′Um′(r

+
2 )

]
(B14)

where

ZBEEm,m′ =
[
jπ

2
X2

] [
Jm(X1)H

(2)
m′
′
(X2)−H(2)

m (X1)J ′m′(X2)
]
Zcos
m,m′

(B15)

ZBEUm,m′ =
[
π

2
X2

(
µ

k

)] [
Jm(X1)H

(2)
m′ (X2)−H(2)

m (X1)Jm′(X2)
]
Zcos
m,m′
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(B16)

ZBUEm,m′ =
[
π

2
X2

(
k

µ

)] [
J ′m(X1)H

(2)
m′
′
(X2)−H(2)

m

′
(X1)J ′m′(X2)

]
Zcos
m,m′

(B17)

ZBUUm,m′ =
[
jπ

2
X2

] [
−J ′m(X1)H

(2)
m′ (X2) +H(2)

m

′
(X1)Jm′(X2)

]
Zcos
m,m′

(B18)

for (m,m′) = 0, 1, . . . ,∞. The overall transfer matrix is given by this
layer is

ZBr1;r2 ≡
[
ZBEE ZBEU

ZBUE ZBUU

]
(B19)

where ZBEE =
[
ZBEEm,m′

]
, etc..

A nice feature of the transfer matrix of Eq. (B19) is the fact that
in the case of multi-eccentric cylinders, the overall transfer matrix of
the system may be found by the proper cascade matrix multiplication
of the transfer matrices of each individual layer. For the two layer
example of Fig. 2, assuming in general different materials in each
layer, let the single layer transfer matrices be ZBr2;r3 and ZBr1;r2 and

let the electric and magnetic field coefficient column matrices be
E(r+

3 ) = [Em(r+
3 )], U(r+

3 ) = [Um(r+
3 )], etc.. We have

[
E(r−1 )

U(r−1 )

]
= ZBr1;r2

[
E(r+

2 )

U(r+
2 )

]
(B20)

[
E(r−2 )

U(r−2 )

]
= ZBr2;r3

[
E(r+

3 )

U(r+
3 )

]
(B21)

Because the tangential electric and fields are continuous at the all
interfaces, the electric and magnetic coefficients satisfy Em(r−j ) =
Em(r+

j ), Um(r−j ) = Um(r+
j ) for j = 1, 2, 3 and thus

[
E(r+

1 )

U(r+
1 )

]
= ZBr1;r3

[
E(r−3 )

U(r−3 )

]
(B22)

where ZBr1;r3 = ZBr1;r2Z
B
r2;r3 . For Fig. 2, ZBr1;r3 is the Bessel transfer

matrix which expresses the Bessel coefficients Em(r+
1 ), Um(r+

1 ) in
terms of Em(r−3 ), Um(r−3 ).
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