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Abstract—General expressions for the electromagnetic fields of
homogeneous TM-type plane waves at a skew angle of incidence upon
an inclined anisotropic half-space are derived. Previous analyses have
only considered fields of homogeneous plane waves in the problems of
a laterally anisotropic half-space, and not the problem of an inclined
anisotropic half-space. Previous analyses also have assumed that
the linear polarization of the incident magnetic field is maintained,
regardless of the anisotropy present. The results presented in this
paper have shown that while this assumption is valid only for
the magnetic field, the electric field is elliptically polarised in the
anisotropic half-space. This is demonstrated through a model study
and experimental verification at VLF. The solutions obtained converge
on the expected values for the special cases presented by other authors.
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1. INTRODUCTION

The physical basis for the surface impedance of a homogeneous
plane wave polarised parallel or perpendicular to the strike of a two-
dimensional half-space is that the electric and magnetic fields generated
are orthogonal. In any other situation, the electric and magnetic field
vectors are not orthogonal. This can occur when the source field is
scattered by a half-space that is three-dimensional and inhomogeneous,
or when the source field is not polarised parallel or perpendicular to
the strike of the half-space [1]. At frequencies less than 1 kHz, the
source fields are elliptically polarised [2] and this can lead to some
difficulties in surface impedance data reduction and interpretation [18].
At higher frequencies, the principle source field for surface impedance
measurements is the radiation from lightning discharges or artificial
signals from navigation beacons and radio transmitters [3]. These very
low frequency (VLF) waves propagate with very little loss in the earth-
ionosphere waveguide as a series of waveguide modes. Cloud-to-ground
lightning discharges and VLF antennas are effectively vertical electric
dipoles, and launch linearly polarised TM-type waves. At imperfect
ionospheric and terrestrial boundaries, the TM-type waves can be
partly reflected as TE-type waves, which propagate independently
with higher attenuation than the lower order TM-type waves that
dominate VLF propagation over very large distances in the earth-
ionosphere waveguide [4]. However, the extent of this mechanism for
elliptical polarization has been calculated to be less than 1% [5] and
the minor/major axis ratio of the magnetic field polarization ellipse
has been measured to less than 1% [6].

The one-dimensional surface impedance of VLF radio waves is
commonly measured using portable surface impedance meters [7, 8]
that measure the horizontal electric and magnetic field magnitudes,
and the phase difference between them. In the interpretation of the
VLF surface impedance measurements, the earth is usually assumed
to be isotropic. However, some authors have presented methods of
interpreting one-dimensional VLF surface impedance data above a
laterally anisotropic half-space [9–11]. In these formulations, it has
been assumed that the horizontal magnetic field component maintains
its linear polarization. This is not exactly true in the presence of
an arbitrary anisotropic half-space. Further, no analyses have been
presented for the surface impedance of an inclined anisotropic half-
space at arbitrary skew angles. In this paper, we will develop the
method of auxiliary potentials proposed by Chetaev and Belen’kaya
[12–14] to solve for the fields of a linearly polarised, homogeneous TM-
type plane wave incident at a skew angle upon an inclined anisotropic
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half-space. In the anisotropic half-pace, all field components are
coupled and hence a TM-type wave incident upon the half-space
will generate a reflected TE-type wave in addition to the reflected
TM-type wave. This influences the measured electric and magnetic
field components in one-dimensional surface impedance measurements.
Expressions for all elements of the impedance tensor are derived,
and their applications to VLF surface impedance measurements are
discussed.
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Figure 1. Geometry for the homogeneous plane wave incident at a
skew angle θ to the anisotropic half space inclined at angle α about
the x-axis.

2. GENERAL SOLUTIONS FOR AN ANISOTROPIC
MEDIUM

The surface impedance of homogeneous, monochromatic TM-type
plane waves incident at a skew angle upon a homogeneous half-
space with inclined uniaxial anisotropic conductivity (see Figure 1)
is considered using Chetaev’s method of auxiliary potentials [12, 13].
Geologically, this is equivalent to the propagation of VLF radio waves
in a sedimentary environment, where the bedding planes are inclined
with respect to the surface of the earth. In the {x′, y′, z′} co-ordinate
system, the half-space is characterized by the uniaxial conductivity
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tensor:

σ̂ =




σt σ 0
0 σt 0
0 0 σn


 , (1)

where σt is the conductivity parallel to the bedding plane, and σn is
the conductivity normal to the bedding plane, and both σt and σn can
be complex. Given Maxwell’s equations for monochromatic fields with
time variance of ejωt in the inclined co-ordinate system of a uniaxial
anisotropic medium with no free charges or extraneous currents:

∇× H′ = σ̂E′, (2)
∇× E′ = −jωB′, (3)
∇ · B′ = 0, (4)
∇ · J′ = 0. (5)

The electromagnetic potentials can be written as:

B′ = ∇× A′, (6)
E′ = −jωA′ −∇Φ. (7)

Substituting equations (6) and (7) into Maxwell’s equations (3) and
(4) results in:

∇2A′ −∇(∇ · A′) − jωµσ̂A′ − µσ̂∇Φ = 0,

and substituting equations (6) and (7) into (2) and (5) results in:

∇ · σ̂∇Φ + jω∇ · σ̂A′ = 0, (8)

where ∇ · σ̂ can not be abbreviated if σ̂ is anisotropic [15]. Using the
optimal Lorentz gauge condition [16]:

Φ = − 1
µσt

∇ · A′, (9)

and substituting equation (9) into equation (4), then:

∇2A′ − jωµσ̂A +
(

σ̂

σt
− 1

)
∇(∇ · A′) = 0. (10)

for the vector potential A in {x′, y′, z′} co-ordinates. For Ax′ and Ay′

which are associated with σt, equation (10) reduces to the homogeneous
Helmholtz equations:

∇2
{

Ax′

Ay′

}
− jωµσt

{
Ax′

Ay′

}
= 0, (11)
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From the Lorentz gauge condition, the full condition on the vector
potential is stated as:

−1
µσt

∂Az′

∂z′
= Φ, (12a)

∂Ax′

∂x′
∂Ay′

∂y′
= 0. (12b)

For Az′ , which is associated with σn equation (10) reduces to:

∇2Az′ − jωµσn +
(
Λ2 − 1

) ∂Az′

∂z′2
= 0, (13)

where Λ =
√

σn/σt = 1/λ, the reciprocal of the coefficient of
anisotropy, λ. The co-ordinate rotation matrix for rotations through
angles α and θ about the x- and z-axes respectively can be written as:

R(θ, α) = R(θ)R(α) =




cos θ sin θ cosα − sin θ sinα

− sin θ cos θ cosα − cos θ sinα

0 sinα cosα


 . (14)

R(θ, α) rotates the co-ordinates from the fundamental co-ordinate
system to the inclined co-ordinate system. Equation (11) is invariant,
while equation (12) takes the form of:

−∂Ax′

∂z
sin θ sinα +

∂Ay′

∂z
cos θ sinα = 0, (15)

and equation (13) takes the form of:

∆Az′ − jωµσn +
(
Λ2 − 1

) ∂Az′

∂z2
cos2 α = 0, (16)

since all partial derivatives of the homogeneous plane wave field with
respect to x and y are equal to zero. When one considers equation
(12) with the spatial variance exp(−k1, z), then Ax′ and Ay′ satisfy
the wave number:

k2
1 = jωµσt, (17)

which is the wave number for an ordinary wave, provided Rek1 > 0 to
prevent exponentially divergent solutions in Ax′ and Ay′ . As a result
of the spatial variances, from equation (15), the relation between the
vector potential components of the ordinary wave:

Ay′ = Ax′ tan θ, (18)
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is obtained. From co-ordinate rotations, the vector potential
components for the ordinary wave can be written as:

Ax = Ax′ cos θ + Ay′ sin θ cosα, (19)
Ay = −Ax′ sin θ + Ay′ cos θ cosα, (20)
Az = Ay′ sinα. (21)

By substituting equation (18) into equations (19) to (21), the vector
potential components in fundamental co-ordinates can be written as:

Ax = Ax′

(
cos2 θ + sin2 θ cosα

cos θ

)
, (22)

Ay = Ax′ sin θ(cosα − 1), (23)
Az = Ax′ tan θ sinα. (24)

As a consequence of equation (12), it is observed for the ordinary wave
that Φ = 0, which implies:

E = −jωA. (25)

As a result, the components of the electric fields of the ordinary wave
in fundamental coordinates can be written as:

Ex = −jωAx′

(
cos2 θ + sin2 θ cosα

cos θ

)
, (26)

Ey = −jωAx′ sin θ(cosα − 1), (27)
Ez = −jωAx′ tan θ sinα. (28)

From equation (6), the components of the magnetic flux density of the
ordinary wave in fundamental co-ordinates can be written as:

Bx = jk1Ax′ sin θ(cosα − 1), (29)

By = −jk1Ax′

(
cos2 θ + sin2 θ cosα

cos θ

)
, (30)

Bz = 0. (31)

After considering equation (16) with the spatial variance exp(−k2z),
then it is observed that Az′ satisfies the wave number:

k2
2 =

jωµσt

1 + (λ2 − 1) sin2 α
, (32)

which is the wave number for an extraordinary wave, provided
Rek2 > 0 to prevent exponentially divergent solutions in Az′ . For
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the extraordinary wave, it is observed that the scalar potential is not
zero but is given by:

Φ =
jk2

µσt
Az′ cosα. (33)

From equation (33), it follows that:

∇Φ =

(
k2

2

µσt
Az′ cosα

)
k̂. (34)

From co-ordinate rotations, the vector potential components for the
ordinary wave can be written as:

Ax = −Az′ sin θ sinα, (35)
Ay = −Az′ cos θ sinα, (36)
Az = Az′ cosα. (37)

The components of the electric field for the extraordinary wave are
obtained by substituting equations (34) to (37) into equation (7):

Ex = jωAz′ sin θ sinα, (38)
Ey = jωAz′ cos θ sinα, (39)

Ez =

(
k2

1 − k2
2

µσt

)
Az′ cosα. (40)

From equation (6), the components of the magnetic flux density of the
ordinary wave in fundamental co-ordinates can be written as:

Bx = −jk2Az′ cos θ sinα, (41)
By = jk2Az′ sin θ sinα, (42)
Bz = 0. (43)

The observed fields will be the sum of the ordinary and extraordinary
fields:

E = Eordinary + Eextraordinary, (44a)
H = Hordinary + Hextraordinary. (44b)

From equations (26) to (31) and (38) to (43), the components of the
total electric and magnetic fields in fundamental co-ordinates in the
inclined anisotropic half-space become:

Ex = −jωAx′

(
cos2 θ + sin2 θ cosα

cos θ

)
+ jωAz′ sin θ sinα, (45)
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Ey = −jωAx′ sin θ(cosα − 1) + jωAz′ cos θ sinα, (46)

Ez = −jωAx′ tan θ sinα +

(
k2

1 − k2
2

µσt

)
Az′ cosα, (47)

Bx = jk1Ax′ sin θ(cosα − 1) − jk2Az′ cos θ sinα, (48)

By = −jk1Ax′

(
cos2 θ + sin2 cosα

cos θ

)
+ jk2Az′ sin θ sinα, (49)

Bz = 0. (50)

Equation (50) is expected for a homogeneous plane wave.

3. GENERAL SOLUTIONS FOR PROPAGATION IN AIR

In the upper half-space, the general solution for the electromagnetic
fields are the superposition of the TE- and TM-type waves, which
propagate independently but satisfy the same wave number:

k2
0 = ω2εµ. (51)

From (2) and (3) in free space, the components of the homogeneous
TM-type waves will be:

∂By

∂t
= −∂Ex

∂z
, (52)

ε0
∂Ex

∂t
= − 1

µ

∂By

∂z
(53)

The general solutions for the magnetic field component of the
homogeneous TM-type waves take the form:

By = M exp(−jk0z) + N exp(jk0z), (54)

so the corresponding electric field component can be written as:

Ex =
k0

ωµε
{M exp(−jk0z) − N exp(jk0z)} , (55)

where M and N are (complex) constants independent of {x, y, z, t},
representing the coefficients for the down- and up-going homogeneous
plane waves. From equations (2) and (3) in free space, the components
of the homogeneous TE-type waves can be written

ε0
∂Ey

∂t
=

−1
µ

∂Bx

∂z
, (56)

∂Bx

∂t
= −∂Ey

∂z
. (57)
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The general solutions for the electric field component of the
homogeneous TE-type waves then can take the form:

Ey = P exp(−jk0z) + Q exp(jk0z), (58)

so the corresponding magnetic field component can be written as:

Bx =
k0

ω
{P exp(−jk0z) − Q exp(jk0z)}, (59)

where P and Q are (complex) constants independent of {x, y, z, t},
representing the coefficients for the down- and up-going homogeneous
plane waves.

4. TM-TYPE WAVE INCIDENCE

Consider a TM-type wave incident upon the anisotropic half-space at a
skew angle of incidence θ. Since the ordinary and extraordinary waves
in the anisotropic half-space couple all field components, then a TE-
type wave must also be reflected, in addition to the reflected TM-type
wave. The problem is to determine the constants P , N , Ax′ , and Az′ .
in terms of the amplitude of the incident TM-type wave, M . There are
four continuity conditions for the horizontal field components. First,
Az′ must be expressed in terms of Ax′ from continuity of the horizontal
components of the TE-type wave that is generated and reflected. At
the boundary z = 0, setting P = 0 in equation (58), only an up-
going TE-type wave in air is considered. Equating the fields of the
reflected TE-type wave with the corresponding field components in
the anisotropic half-space, using equations (58) and (59), then

Ey

∣∣∣
z=0

= Q, (60)

Bx

∣∣∣
z=0

= −k0

ω
Q. (61)

Equating equations (60) and (61) with equations (46) and (48)
respectively leads to the relation

Ax′ =
(k0 − k2) cos θ sinα

(k0 − k1) sin θ(cosα − 1)
Az′ . (62)

From equations (49) and (62), then:

By = FTEAx′ , (63)
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Where:

FTE = jk1 sin θ(cosα − 1) + j

(
k2

1 − k2
2

µσt

)
(k0 − k1) tan θ(cosα − 1)

(k0 − k2) tanα
.

(64)
Similarly:

By = GTEAz′ , (65)

where:

GTE = jk1(k0 − k2) cos θ sinα + j

(
k2

1 − k2
2

µσt

)
cosα. (66)

Now, all field components for the electromagnetic field at the surface
of the half-space can be expressed in terms of Bx:

Ex =

[
−jω

1
FTE

(
cos2 θ+sin2 θ cosα

cos θ

)
+jω

1
GTE

sin θ sinα

]
Bx, (67)

Ex =
[
−jω

1
FTE

sin θ(cosα − 1) + jω
1

GTE
cos θ sinα

]
Bx, (68)

Ez′ =

[
−jω

1
FTE

tan θ sinα +

(
k2

1 − k2
2

µσt

)
1

GTE
cosα

]
Bx, (69)

By =

[
−jk1

1
FTE

(
cos2 θ+sin2 θ cosα

cos θ

)
+jk2

1
GTE

sin θ sinα

]
Bx, (70)

Bz = 0. (71)

Note that when θ = 0◦ or 180◦:

Zxy =

√
jωµ

σt
{1 + (λ2 − 1) sin2 α}, (72)

Zxy =

√
jωµ

σt
. (73)

When θ = 90◦ or 270◦:

Zxy = 0, (74)

Zyx =

√
jωµ

σt
{1 + (λ2 − 1) sin2 α}. (75)

Equations (72) to (75) correlate to the expected values of the surface
impedance when the source fields are parallel and perpendicular to the
strike of the anisotropic half-space [17].
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Figure 2. |Zxy| (in ohms) of a homogeneous TM-type plane wave as
a function of θ for a half space with σt = 0.001 S/m, σn = 0.01 S/m,
and α = 45◦.

5. DISCUSSION

From equations (67) to (71), the elements of the impedance tensor can
be calculated:

Zmn =
µEm

Bn
. (76)

The principal interest of this work is for TM-type propagation problems
related to VLF propagation and surface impedance measurements.
Polar diagrams for one of the principle components and one of the
additional components of the surface impedance tensor for a 10 kHz
homogeneous plane wave at all angles of skew incidence upon a
homogeneous half-space with σt = 0.001 S/m, σn = 0.01 S/m, and
α = 60◦ are presented in Figures 2 and 3. Note that the values converge
to the expected impedances for θ = 0◦, 90◦, 180◦ and 270◦. It should
be observed that Figures 2 and 3 correlate to the additional impedance
polar diagrams expected from a two-dimensional structure [18]. The
principle impedance polar diagram exhibits the phase of a one-
dimensional half- space, but has the magnitude characteristics of a two-
dimensional half-space [18]. This reinforces the well-known principle of
the existence of ambiguity in surface impedance measurements, where
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Figure 3. |Zyy| (in ohms) of a homogeneous TM-type plane wave as
a function of θ for a half space with σt = 0.001 S/m, σn = 0.01 S/m,
and α = 45◦.

it is difficult to differentiate between the surface impedance response
of a one-dimensional homogeneous and anisotropic half-space, and a
two-dimensional homogeneous (and anisotropic) half-space.

As a further case, we examine the effect of an anisotropic half-
space on the measured electric and magnetic fields in an ideal one-
dimensional surface impedance measurement. Writing ψ as the angle
between the orientation of the surface impedance meter and the
direction of propagation, i.e., the angle of the instrument with respect
to θ. The fields induced in the horizontal electric and magnetic dipoles
of the surface impedance meter will be proportional to the electric and
magnetic field components of the total fields in the direction of the
dipole axes. Ignoring the influences of the radiation patterns of the
electric and magnetic dipoles, for any ψ, components of the observed
electric and magnetic fields are:

Eobs = Ex cosψ + Ey sinψ, (77)

Hobs = −Hx sinψ + Hy cosψ. (78)

If the homogeneous half-space was isotropic, then equations (77) and
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(78) would simply reduce to:

Eobs = Ex sinψ, (79)

Hobs = Hy cosψ, (80)

and the observed surface impedance Zs, at any ψ would be given by:

Zs =
Ex

Hy
tanψ, (81)

which exhibits asymptotes when θ = 90◦ or 180◦, as expected
for linearly polarized fields. As an example, consider a 10 kHz
homogeneous TM-type plane wave incident upon a homogeneous
half-space with σt = 0.001 S/m, σn = 0.01 S/m, and α = 60◦,
where θ = 45◦, 90◦ and 135◦. The fields were calculated used the
expressions derived in Section 4. From equations (77) and (78),
the one-dimensional surface impedance can be calculated, and the
corresponding polar diagrams for the normalized magnitude of the
magnetic and electric fields are shown in Figures 4 and 5 respectively.
It is observed in Figure 4 that at VLF frequencies, the polarization
of the horizontal magnetic field of a homogeneous TM-type plane
wave is independent of the anisotropy of the half-space. This verifies
the assumptions of previous authors [5, 9–11] that the magnetic field
maintained linear polarization above an anisotropic half-space. In
Figure 5, it is observed that at VLF frequencies, the polarization of
the horizontal electric fields of a homogeneous TM-type plane wave
are elliptically polarized and are dependent upon the anisotropy of
the half-space. For the model presented here, the major axis of the
electric field ellipse is observed to be rotated approximately 12◦ about
the horizontal plane with respect to the magnetic field, maximizing
for values of θ = 45◦ and 135◦. It is suggested that by measuring the
polar radiation fields of the electric field and magnetic fields in one-
dimensional surface impedance measurements, information about the
presence of anisotropy in the earth can be determined. It is emphasized
here that the inverse problem of solving for the direction of anisotropic
strike has not been considered in this paper.

To demonstrate this effect of anisotropy in a practical VLF survey,
the surface impedance of a VLF radio wave was measured at 10◦
instrument orientations with respect to the direction of propagation
of the VLF fields [19]. Measuring the 19.8 kHz fields of the North
West Cape (Western Australia) VLF transmitter, the surveys were
conducted at a Central Queensland coal mine in Queensland, Australia
in July 1997 at different times of day (5:15 am, 6:15 am, 7:15 am,
8:15 am, 9:15 am, 4:25 pm). The local site consisted of quartz
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Figure 4. Normalized observed (measured) magnetic field of a
homogeneous TM-type plane wave as a function of ψ for a half space
with σt = 0.001 S/m, σn = 0.01 S/m and α = 45◦ for θ = 45◦, 90◦ and
135◦. Note that the fields overlap, indicating that there is no variation
in the magnetic field polarization due to the anisotropy of the half
space.

Figure 5. Normalized observed (measured) electric field of a
homogeneous TM-type plane wave as a function of ψ for a half space
with σt = 0.001 S/m, σn = 0.01 S/m and α = 45◦ for θ = 45◦, 90◦ and
135◦.
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Figure 6. Observed (measured) magnetic field of a 19.8 kHz VLF
wave as a function of ψ measured at different times of day in July 1997
(data from [19]). Data is normalized for a maximum of one at every
angle.

sandstones and shales with shallow dips, at a strike approximately 30◦
to the direction of propagation. The magnitudes of the electric and
magnetic fields, and the phase difference between them were measured
using a meter similar to Thiel [7]. The magnetic field was measured
using a ferrite cored multi-turn loop antenna. The electric field was
measured using an electrically short, insulated dipole antenna, which
has been demonstrated to be an effective antenna for measuring the
horizontal electric field [20]. Figures 6 and 7 respectively present the
normalized magnetic and electric fields from these surveys.

It is noted that during the measurements between 6:15 am and
8:15 am relate to the sunrise period along the 3.5 Mm propagation
path between the transmitter and receiver sites, explaining rapidly
varying degradation in the magnetic and electric field polarizations
at those times. This is a result of the destructive interference that
occurs between TM01 and TM02 modes during periods of sunrise and
sunset [21]. However is observed in Figure 6 that the magnetic fields
demonstrate a linear polarization for stable waveguide propagation
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Figure 7. Observed (measured) electric field of a 19.8 kHz VLF wave
as a function of ψ measured at different times of day in July 1997 (data
from [19]). Data is normalized for a maximum of one at every angle.

conditions (5:15 am, 9:15 am, 4:25 pm). Comparing Figure 7 to
Figure 6, it is observed that the horizontal electric field is elliptically
polarised, with the major axis of the electric field polar pattern rotated
approximately 10◦ from the magnetic field polar pattern. As discussed
earlier in the model study, this suggests the presence of anisotropy in
the local earth. However, from the surface impedance data available, it
is not possible to determine whether the anisotropy is due to inclined
or lateral anisotropy in the local earth.

6. CONCLUSION

In this paper, the general expressions for the fields of TM-type
homogeneous plane waves at a skew angle of incidence upon an inclined
anisotropic half-space have been derived. Previous analyses have only
considered fields of homogeneous plane waves in the problems of a
laterally anisotropic half-space (i.e., α = 90◦), and have not considered
the problem of an inclined anisotropic half-space. Further, previous
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analyses have not considered the effect of mode conversions at the air-
half-space boundary, and in the case of TM-type wave, have assumed
linear polarization of the magnetic field is maintained. The results
presented in this paper have shown that the assumption that the
linear polarization of the magnetic field is maintained and further
the solutions obtained have been shown to converge on the expected
values for the special cases presented by Wilson and Thiel [17] and can
be considered as general solutions for the homogeneous plane wave
incident upon an inclined anisotropic half-space.
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