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Abstract—The boundary value solution of electromagnetic radiation
from an axis-asymmetric slot antenna on a perfectly conducting
prolate spheroid coated with a confocal sheath is presented. The
electromagnetic fields are expanded in terms of prolate spheroidal
vector wave functions. The unknown expansion coefficients are
determined from a set of linear equations derived from the application
of boundary conditions on the tangential fields’ components.
Numerical results for radiation patterns and power are presented. It
is found that the thickness of the sheath has a significant effect on the
radiated fields, and the radiated power is greatly enhanced for certain
values of the sheath thickness.
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1. INTRODUCTION

The analysis of spheroidal antennas can be applied to the modeling of
antennas with a variety of different geometries [1–7]. For example, the
analysis of spheroidal antennas with a confocal sheath is helpful in the
understanding of the radiation from antennas mounted on an aircraft
or a space shuttle, where the protection coating layer of the aircraft or
a space shuttle can be modeled by a confocal sheath.

Perhaps one of the most notable contributions to spheroidal
antennas is that of Schelkunoff [2], who analyzed the radiation from a
prolate spheroidal antenna excited by a specified field over an axial
symmetric gap on its surface. For this symmetric case, the field
components are independent of the φ-coordinate and can be split
into two groups that can be analyzed separately according to the
applied fields on the gap. This leads to a simplified two-dimensional
problem. Schelkunoff analyzed the case of spheroidal antenna excited
by a voltage source between two halves of a spheroid, and calculated
the input admittance of the antenna. Following Schelkunoff, other
researchers further explored this type of spheroidal antenna. Weeks
[3] and Wait [4] analyzed radiation from prolate spheroidal antennas
with the excitation gap arbitrarily located along the spheroid, and
also presented the solution for a prolate spheroid antenna coated
with a confocal sheath. Do-Nhat and MacPhie [5] investigated the
problem of an excitation gap with a finite width. The input admittance
for the antenna was obtained and compared to those of circular
cylindrical dipole antennas for three types of gap fields: Dirac’s
function, uniform and ultraspherical distributions. Most recently, Li
et al. [6] revisited the antenna excited by a delta voltage across an
infinitesimally narrow gap and enclosed in a confocal radome coated
with two dielectric confocal layers. Zhang and Sebak [7] have presented
an analytical solution for the radiation from an axially-asymmetrical
slot antenna on a perfectly conducting prolate spheroid. In their
work, the radiation fields were expanded in terms of prolate-spheroidal



Characteristics of axially asymmetrical slot antenna 311

vector wave functions. Using the boundary-matching technique over
the excitation aperture, a system of equations was set up to solve for
the unknown expansion coefficients. Numerical results for radiation
patterns and conductance for various configurations of the spheroid
were obtained.

In the present paper, the analysis of radiation from an axially
asymmetric slot spheroidal antenna enclosed in a confocal dielectric
sheath is developed. The approach is an analytic one and is based
on separating the wave equation in the spheroidal coordinates. The
spheroidal structure is centrically excited through a narrow slot
with azimuthally sinusoidal source. The introduction of the coating
region increases the mathematical difficulty in formulating the problem
because of the dependency of the angular spheroidal functions on the
properties of the medium. This work also investigates the effect of the
thickness of the sheath on the radiated fields and the radiated power.

2. FORMULATION OF THE PROBLEM

2.1. Geometry

Consider the axially asymmetric slot spheroidal antenna enclosed in
a confocal dielectric sheath, as illustrated in Figure 1. Using the
conventional notation for the spheroidal coordinate system (ξ, η, φ),
the narrow slot is 2L(|φ| ≤ φ1) long and 2∆η wide, and located
on the perfectly conducting spheroidal surface ξ1. From Figure 1,
φ1 (= 2L/b′) is the subtended angle of the slot with respect to the
z-axis, and b′ is the local radius of the slot arc at the location of η1.
The conducting surface ξ1 is coated with a homogenous material layer
(sheath) bounded on an outer confocal spheroidal surface specified by
ξo. The relative permittivity and permeability of the material are
εr and µr respectively. The semi-major and semi-minor axes of the
conducting surface ξ1 (or inner surface of the sheath) are a and b, and
the semi-major and semi-minor axes of the confocal outer surface ξo

are c and d, respectively. These two surfaces are confocal with the
semi-interfocal distance F . It then follows that

ξ1 =
a

F
= a(a2 − b2)−1/2, (1a)

ξo =
c

F
= c(c2 − d2)−1/2. (1b)
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Figure 1. Geometry of axially asymmetric slot antenna on a perfectly
conducting prolate spheroid with a homogeneous material confocal
sheath.

The relation between the outer ratio of c/d and the inner ratio of a/b
is given by

c

d
=

1√√√√1 −
(
a

c

)2
(

1 −
(
b

a

)2
) . (2)

2.2. Spheroidal Wave Functions

The antenna with coating sheath, as shown in Figure 1, has two regions,
namely the coating (sheath) region I (ξ1 ≤ ξ ≤ ξo) and external region
II (ξo ≤ ξ ≤ ∞). The electromagnetic fields in these regions satisfy
Maxwell’s vector wave equations, written as
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Region I

∇2 �E + k2
1
�E = �0, (3)

∇2 �H + k2
1
�H = �0, (4)

Region II:

∇2 �E + k2
o
�E = �0, (5)

∇2 �H + k2
o
�H = �0, (6)

where ko and k1 are the wave numbers in free-space and the sheath.
The electromagnetic fields in the above vector wave equations of (3)–
(6) can be formed by solving the scalar wave equation in the spheroidal
coordinate system

∇2Ψ + k2Ψ = 0 (7)

The particular solutions of equation (7) can be obtained by using
the separation of variable technique, expressed as [8]:

Ψ(j)
e
om,n

= Sm,n(h, η)R(j)
m,n(h, ξ)

cos
sin

mφ, (8)

Sm,n(h, η) and R
(j)
m,n(h, ξ) are, respectively, the angular function and

the j-th kind of radial function with order m and degree n, and h = kF .
The superscript j may take the values of 1, 2, 3 or 4, representing one
of the four kinds of radial functions [8]. The subscripts e and o refer
to even and odd φ-dependence, respectively. In terms of the scalar
wave functions given in (8), solutions for the vector wave equations of
(3)–(6) in the spheroidal coordinates can be obtained as [8]:

�M
	q(j)
e
om,n

= ∇Ψ(j)
e
om,n

× q̂ (9)

�N
	q(j)
e
om,n

= k−1∇× �M
(j)
e
om,n

(10)

where the vector q̂ is an arbitrary unit constant vector, which could
be x̂, ŷ, ẑ, or the unit position vector r̂. Both vectors �M and �N are
solenoidal.

2.3. Excitation Field

Assume that the narrow slot of Figure 1 is centrically excited with
the electric field, which is polarized in the η-direction, and given as a
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common sinusoidal form by:

Eex
η =




Vo

2hη1∆η
sin[k1(L−b′|φ|)], |b′φ|≤φ, η1 − ∆η ≤ η ≤ η1 + ∆η

0 otherwise
(11)

where

hη1 = F

√
ξ2
1 − η2

1 − η2
, b′ = F

√
(1 − η2

1)(ξ
2
1 − 1)

and Vo is the voltage across the slot and ∆η is the slot width. The
time dependent factor ejωt is assumed and suppressed throughout. To
solve the problem in the spheroidal coordinate system, the excitation
field Eex

η is expanded in the following form,

Eex
η (η, φ) =

∞∑
m=0

Eex
ηm cos(mφ), (12)

where the expansion coefficients Eex
ηm are given by

Eex
ηm =

V0

(1 + em,0)πhη1(∆η)
×

L/b′∫
0

sin[k1(L− b′φ)] cos(mφ)dφ

=
V0

πhη1(∆η)
Em, (m = 0, 1, 2 . . .) (13)

with

Em =




1
k1

[1 − cos(k1L)], m = 0

2k1b
′

π [(k1b′)2 −m2]

[
cos

(
m

L

b′

)
− cos(k1L)

]
, m �= 0 or k1b

′

L

b′
sin(k1L), m = k1b

′

(14)
and

em,0 =
{

1 m = 0
0 m �= 0 .

2.4. Radiated and Transmitted Fields

For the present problem, electromagnetic fields �E and �H are purely
solenoidal, and may be expanded in terms of vector wave functions �M
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and �N . This is analogous to radiating problems developed in spherical
coordinates.

In Region II, the fields �E and �H are radiated fields, which must
satisfy the radiation condition and have the same φ-dependency as the
applied excitation field. Thus, the fourth kind of vector wave functions
of �M

r(4)
e
om,n

and �N
r(4)
e
om,n

must be used. The radiated electric and magnetic
fields are expressed as:

�ER =
∞∑

m=0

∞∑
n=m

[
γm,n

�M
r(4)
e
om,n

(ho, ξ, η, φ) + δm,n
�N

r(4)
e
om,n

(ho, ξ, η, φ)
]
, (15)

�HR =
j

Zo

∞∑
m=0

∞∑
n=m

[
γm,n

�N
r(4)
e
om,n

(ho, ξ, η, φ)+δm,n
�M

r(4)
e
om,n

(ho, ξ, η, φ)
]
.(16)

γm,n and δm,n are two unknown coefficients to be determined from
boundary conditions, Zo is the intrinsic impedance of free space and
j =

√
−1. In the above expressions, functions �M

r(4)
e
om,n

and �N
r(4)
e
om,n

have

been adopted by setting q̂ = r̂ in (9) and (10). The reason for this
selection is that the far-zone radiated fields should take similar forms
to those in the corresponding spherical case. This may be verified
by using asymptotic forms for �M

r(4)
e
om,n

and �N
r(4)
e
om,n

as hoξ → ∞ in

expressions (15) and (16) [8]. The far-radiated fields for the slotted
antenna can then be written as

ER
η =

e−jkor

kor

∞∑
m=0

∞∑
n=m

jn
(
−mjSm,n(ho, cos θ)

sin θ
γm,n

+ sin θ
dSm,n(ho, cos θ)

d(cos θ)
δm,n

)
cos(mφ) (17a)

ER
φ =

e−jkor

kor

∞∑
m=0

∞∑
n=m

jn
(
j sin θ

dSm,n(ho, cos θ)
d cos θ

γm,n

− mSm,n(ho, cos θ)
sin θ

δm,n

)
sin(mφ) (17b)

HR
η = −ER

φ /Zo (17c)

HR
φ = ER

η /Zo (17d)

These forms are similar to those of the spherical case in the far-zone,
except for the angular function Sm,n(ho, η).

In the sheath region (ξ1 ≤ ξ ≤ ξo, Region I), the first and second
spheroidal vector wave functions are both finite. The outgoing and
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incoming waves must be taken into account. The transmitted fields
may be expressed in the form,

�ET =
∞∑

m=0

∞∑
n=m

[
α(1)

m,n
�M

r(1)
o

m,n
(h1, ξ, η, φ) + β(1)

m,n
�N

r(1)
e

m,n
(h1, ξ, η, φ)

+ α(2)
m,n

�M
(2)

o
m,n

(h1, ξ, η, φ) + β(2)
m,n

�N
(2)

e
m,n

(h1, ξ, η, φ)
]
, (18)

�HT =
j

Z1

∞∑
m=0

∞∑
n=0

[
α(1)

m,n
�N

r(1)
o

m,n
(h1, ξ, η, φ) + β(1)

m,n
�N

r(1)
e

m,n
(h1, ξ, η, φ)

+ α(2)
m,n

�N
(2)

o
m,n

(h1, ξ, η, φ) + β(2)
m,n

�M
(2)

e
m,n

(h1, ξ, η, φ)
]
, (19)

where α
(1)
m,n, β

(1)
m,n, α

(2)
m,n and β

(2)
m,n are the unknown coefficients to be

determined, h1 = k1F and Z1 =
√

µ
ε is the intrinsic impedance of

the sheath. In the above expression, the even (e) or odd (o) vector
wave functions have been chosen according to the φ-dependence of the
excitation fields, described in (12).

2.5. Formation of Boundary Conditions

The unknown expansion coefficients in the above expressions for the
radiated fields, (15) and (16), and transmitted fields, (18) and (19),
are determined by using the boundary conditions on both surfaces.
Explicitly the conditions can be expressed as:

ET
η = ER

η and ET
φ = ER

φ , at ξ = ξo, (20)

HT
η = HR

η and HT
φ = HR

φ , at ξ = ξo, (21)

ET
η =

{
Eex

η , ξ = ξ1, |b′φ| ≤ φ and η1 − ∆η ≤ η ≤ η1 + ∆η

0, Otherwise
,

(22)

and
ET

φ = 0 at ξ = ξ1. (23)

Substituting the field expressions (15), (16), (18) and (19) into these
boundary conditions and applying the orthogonal properties of the
trigonometric functions, a set of equations, for m = 0, 1, 2, . . .,
involving series with unknown coefficients can be obtained. In this
set of equations, each term is a complicated combination of the
angular variable η, the spheroidal angular function Sm,n(h, η), and
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its derivative. This situation is quite similar to that in [7], but
in the present case the complication arises due to the dependency
of Sm,n(h, η) on the properties of the sheath material. To set up
a system of equations for the six unknown expansion coefficients
α

(1)
m,n, β

(1)
m,n, α

(2)
m,n, β(2)

m,n, γm,n and δm,n, we perform the following three
steps:

(1) Multiply the equations representing the continuity of η-
components at the surface ξ1 by the factor (ξ2

1−η2)5/2Sm+1,m+N+1

(h1, η) and those at the surface ξo by the factor (ξ2
o −

η2)5/2Sm+1,m+N+1(h1, η),
(2) Multiply the equations representing the continunity of φ-

components at the surface ξ1 by the factor (ξ2
1 − η2)(ξ2

1 −
1)−1/2Sm+1,m+N+1(h1, η) and those at the surface ξo by the factor
(ξ2

o − η2)(ξ2
o − 1)−1/2Sm+1,m+N+1(h1, η);

(3) Integrate the resulting equations over η (−1 ≤ η ≤ +1) and
use the quasi-orthogonality [8] of the spheroidal angular function
Sm,n(h, η) and the orthogonality of Legendre function.

From these steps, we obtain the following system of equations for the
six unknown coefficients:

∞∑
n=0

[
α

(1)
m,m+nA

(1)
m,N,n(h1, h1, ξ1) + β

(1)
m,m+nB

(1)
m,N,n(h1, h1, ξ1)

+ α
(2)
m,m+nA

(2)
m,N,n(h1, h1, ξ1) + β

(2)
m,m+nB

(2)
m,N,n(h1, h1, ξ1)

]
= Fm+1,m+N+1(h1, ξ1) (24a)

∞∑
n=0

[
α

(1)
m,m+nC

(1)
m,N,n(h1, h1, ξ1) + β

(1)
m,m+nD

(1)
m,N,n(h1, h1, ξ1)

+ α
(2)
m,m+nC

(2)
m,N,n(h1, h1, ξ1) + β

(2)
m,m+nD

(2)
m,N,n(h1, h1, ξ1)

]
= 0 (24b)

∞∑
n=0

[
α

(1)
m,m+nA

(1)
m,N,n(h1, h1, ξo) + β

(1)
m,m+nB

(1)
m,N,n(h1, h1, ξo)

+ α
(2)
m,m+nA

(2)
m,N,n(h1, h1, ξo) + β

(2)
m,m+nB

(2)
m,N,n(h1, h1, ξo)

]

=
∞∑

n=0

[
γm,m+nA

(4)
m,N,n(ho, h1, ξo)+δm,m+nB

(4)
m,N,n(ho, h1, ξo)

]
(24c)

∞∑
n=0

[
α

(1)
m,m+nC

(1)
m,N,n(h1, h1, ξo) + β

(1)
m,m+nD

(1)
m,N,n(h1, h1, ξo)
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+ α
(2)
m,m+nC

(2)
m,N,n(h1, h1, ξo) + β

(2)
m,m+nD

(2)
m,N,n(h1, h1, ξo)

]

=
∞∑

n=0

[
γm,m+nC

(4)
m,N,n(ho, h1, ξo)+δm,m+nD

(4)
m,N,n(ho, h1, ξo)

]
(24d)

Zr

∞∑
n=0

[
α

(1)
m,m+nB

(1)
m,N,n(h1, h1, ξo) − β

(1)
m,m+nA

(1)
m,N,n(h1, h1, ξo)

+ α
(2)
m,m+nB

(2)
m,N,n(h1, h1, ξo) − β

(2)
m,m+nA

(2)
m,N,n(h1, h1, ξo)

]

=
∞∑

n=0

[
γm,m+nB

(4)
m,N,n(ho, h1, ξo)−δm,m+nA

(4)
m,N,n(ho, h1, ξo)

]
(24e)

Zr

∞∑
n=0

[
−α

(1)
m,m+nD

(1)
m,N,n(h1, h1, ξo) + β

(1)
m,m+nC

(1)
m,N,n(h1, h1, ξo)

− α
(2)
m,m+nD

(2)
m,N,n(h1, h1, ξo) + β

(2)
m,m+nC

(2)
m,N,n(h1, h1, ξo)

]

=
∞∑

n=0

[
−γm,m+nD

(4)
m,N,n(ho, h1, ξo)+δm,m+nC

(4)
m,N,n(ho, h1, ξo)

]
(24f)

where m,N = 0, 1, 2, . . .∞, ho = koF, h1 = k1F and Zr = Zo/Z1 =√
εr
µr

. The coefficients of A, B, C, D and F in the above system of
equations can be calculated as:

A
(j)
m,N,n(x, y, ξ) =−mξR

(j)
m,m+n(x, ξ)

·
[
(ξ2−1)2I1mNn(x, y)+2(ξ2−1)I2mNn(x, y)

]
,(25)

B
(j)
m,N,n(x, y, ξ) =

1
x

{[
(2ξ2 − 1)R(j)

m,m+n(x, ξ)

+ ξ(ξ2 − 1)
d

dξ
R

(j)
m,m+n(x, ξ)

]

×
[
(ξ2 − 1)I4mNn(x, y) + I5mNn(x, y)

]
−2ξ2(ξ2 − 1)R(j)

m,m+n(x, ξ)I4mNn(x, y)

+
[ [

(λm,m+n(x) − x2ξ2)(ξ2 − 1) + m2
]

·R(j)
m,m+n(x, ξ) −2ξ(ξ2 − 1)

d

dξ
R

(j)
m,m+n(x, ξ)

]

·I6mNn(x, y) +

[
λm,m+n(x) − x2ξ2 +

m2

(ξ2 − 1)

]
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·I7mNn(x, y)R(j)
m,m+n(x, ξ)

+m2R
(j)
m,m+n(x, ξ)

[
(ξ2 − 1)I8mNn(x, y)

+ 2I6mNn(x, y) +
I7mNn(x, y)

(ξ2 − 1)

]}
, (26)

C
(j)
m,N,n(x, y, ξ) = ξR

(j)
m,m+n(x, ξ)I4mNn(x, y)

− d

dξ
R

(j)
m,m+n(x, ξ)I6mNn(x, y), (27)

D
(j)
m,N,n(x, y, ξ) =−m

x

{[
ξ
d

dξ
R

(j)
m,m+n(x, ξ)+R

(j)
m,m+n(x, ξ)

]

·I1mNn(x, y) +
R

(j)
m,m+n(x, ξ)
(ξ2 − 1)

[I9mNn(x, y)

+I2mNn(x, y)
]}

, (28)

Fm+1,m+N+1(x, ξ) =−
η1+∆η∫

η1−∆η

Eex
m (ξ2 − η2)5/2Sm+1,m+N+1(x, η)dη. (29)

Where x, y = h1 or ho and λm,m+n(x) is the eigenvalue of the spheroidal
wave equation [8], and the superscript j indicates the j-th kind of
spheroidal prolate radial functions and takes the values of 1, 2 and 4.
The expressions for the integrals IpmNn(x, y)(p = 1, 2 . . . 9) are given
in [9].

From (13), (29) can be written in the form

Fm+1,m+N+1(x, ξ) = −
η1+∆η∫

η1−∆η

VoEm

xπ∆η

√
(1 − η2)(ξ2 − η2)2

·Sm+1,m+N+1(x, η)dη, (30)

where the expansion Em for the applied excitation is given in (14). For
the case of the narrow slot (∆η is very small), (30) can be expressed
as

Fm+1,m+N+1(x, ξ) = −VoEm

xπ

√
(1 − η2

1)(ξ
2 − η2

1)
2Sm+1,m+N+1(x, η1).

(31)
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2.6. Radiation Patterns and Power

Once the coefficients α
(1)
m,n, β

(1)
m,n, α

(2)
m,n β

(2)
m,n, γm,n and δm,n are

obtained, the transmitted fields in the sheath can be calculated by
using (18) and (19), and the radiated fields by using (15) and (16). The
radiation patterns can be obtained from the far-zone field asymptotic
expressions (17a) and (17b) as hoξ → ∞. To calculate the total
radiated power from the antenna, the time-average radial components
of the Poynting vector in free-space can be written as:

p =
1
2

(
�ER × �HR∗) · r̂ =

1
2Zo

(
|ER

η |2 + |ER
φ |2

)
, (32)

where as usual, r̂ is the unit vector in the radial direction. Integrating
expression (32) over an infinitely large spherical surface centered at the
antenna, the total radiated power can be expressed as:

P =
1

2Zoko

∞∑
m=0

∞∑
n=0

∞∑
N=0

(1 + em,0)
[
γm,m+nγ

∗
m,m+N + δm,m+nδ

∗
m,m+N

]

×
[
λm,m+n(ho)I10mnN (ho, ho) − h2

oI11mnN (ho, ho)
]
, (33)

where the symbol * denotes the complex conjugate, and the two
integrals I10mnN and I11mnN have been evaluated in [9].

3. NUMERICAL COMPUTATION AND RESULTS

The scheme developed by Sinha and MacPhie [10] has been employed
to compute eignvalues λm,n and the expansion coefficients dmn

r (h)
and amn

r (h) of the spheroidal angular and radial functions Sm,n(h, η)
and R

(j)
m,n(h, ξ). In addition, the system of equations (24) for

α
(1)
m,n, β

(1)
m,n, α

(2)
m,n β

(2)
m,n, γm,n and δm,n are also expressed in infinite

series. However, in order to generate numerical results we must invert
a matrix of infinite order. Therefore from practical point of view the
series solution must be truncated in a suitable fashion to obtain a finite
matrix by using an adequately large value No to achieve a convergent
solution with a reasonable degree of accuracy. The choice of this
number No was investigated by Sinha and MacPhie [10] and depends
on the electrical size and property of each region. They theoretically
and numerically shown that the amplitude of the spheroidal angular
function dampens down sharply, when m,n, or N > No. They also
showed that No depends on the maximum electrical size (wave number
times the semi-major axis) of the spheroidal geometries, and is larger
than or at least equal to the integral part of the maximum size plus 4.
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The convergent criterion was also tested by Sebak and Sinha [11] by
considering the scattering from a perfectly conducting spheroid coated
with a confocal dielectric layer. In our case, to determine the value
No, the maximum value between koc and k1a is firstly found, then
the calculations are repeated for consecutive incremental values of n,
commencing with the value stated by Sinha and MacPhie [10]. The
evaluation is executed until an acceptable convergent solution with the
required degree of accuracy is achieved.

To examine the accuracy of the solution, two types of numerical
tests were considered. In the first type, the solution behavior over the
boundary surface ξ1 around the slot region, as given in (22), is checked;
while in the other type we make comparison with the corresponding
results of spherical structures, which can be considered as special cases
of the spheroidal geometries.

The tangential component of the transmitted electric field ET
η on

the surface ξ1 around the slot region was calculated using (18) for
various parameters. Some of the results are shown in Figure 2. It is
seen that the computed tangential component ET

η matches the applied
excitation field closely within the slot and only with slight ripples at
the slot edges. This shows the correct behavior of the electric field
on the boundary, and hence partially verifies the correctness of our
solution from the point of view of the near field.

Mushiake [12] analyzed the radiation problem from an aperture
(or an axial-asymmetric slot) on a perfectly conducting sphere, and
presented the numerical results for the far-field patterns. His work
provides another check for our solution in the far field zone. Consider
the spheroidal case with a ratio of a/b ≈ 1, as shown in Figure 1.
This is a special case of a spheroidal antenna excited with electric field
polarized in the θ-direction over an aperture (with length 2L = λo/2).
Furthermore, the sheath surrounding the antenna is assumed to be
filled with material parameters of εr ≈ 1 and µr ≈ 1, and hence
approximately transparent to free-space. This assumption, together
with the special geometry, lead to a quasi-spherical slot antenna
without coating, and excited with the same excitation source as given
in (22). This antenna has been analyzed by Mushiake [12].

Figure 3 shows the calculated relative patterns of a half-
wavelength (2L = λo/2) narrow slot antenna located at the equator
(η1 = 0 or θ1 = 90◦) on a perfectly conducting sphere without coating.
Very good agreement can be found between Mushiake’s results and
ours for a range of parameters. This case together with the correct
field distribution around the slot verifies the accuracy of our solution
in both near and far field zones. Thus the solution can be used to
analyze radiation from spheroidal antennas.
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koa = 3.0, koc = 5.0 a/b = 1.001 koa = 3.0, koc = 5.0 a/b = 1.2

koa = 3.0, koc = 5.0 a/b = 1.5 εr = 2.0 and µr = 1.0

φ(Degrees)

Figure 2. Tangential near electric field distribution around the slot
located at ηo = 0 on the inner surface ξ1 with the parameters: slot
length 2L = λo/2, koa = 3.0, µr = 1.0 and the ratios a/b = 1.001, 1.2
and 1.5. The half subtended angles of the slot with respect to these
ratio are |φo| = π/6, π/5 and π/4.

3.1. Radiation Patterns

The radiation patterns of the spheroidal half-wavelength slot antenna
for various parameter combinations were obtained, some of these
results being shown in Figures 4–6. These examples can be used to
predict the effects of varying the material and geometric parameters
on the radiation patterns. Figure 4 shows the patterns with a smaller
ratio value of a/c = 1/3 (or a combination of electrical sizes koa and
koc). According to (2), increasing the ratios of a/b from 1.2 to 2
causes a small departure of the outer surface of the sheath from a
spherical geometry (the outer ratio values of c/d is close to 1). These
are the cases for the spheroidal antenna coated with approximately
spherical sheath, their patterns vary from quasi-omni-directional, less-
directional to wide-directional beams.

Figure 5 shows the radiation patterns with a larger value of
a/c = 0.6, namely, almost twice the former value as given in Figure 4.
This value, plus the increase in the values of a/b, configures the
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a/b = 1.0001, εr = 1.001, and µr = 1.0This work ( )

εr = 1.0, and µr = 1.0              ( )Result by Mushiake [12]

Figure 3. Radiation patterns of a half-wavelength narrow slot antenna
on perfectly conducting quasi-sphere (a/b = 1.0001) in quasi-air
(εr = 1.001 and µr = 1.0). The results calculated in reference [12] for
a half-wavelength narrow slot antenna on perfectly conducting sphere
are displayed as a comparison.

coating sheath more spheroidally. The radiation patterns for those
configurations are significantly directional towards the front (φ = 0◦)
and back (φ = 180◦) ends, having a maximum value in the direction
of φ = 180◦. It may also be noted from the patterns in Figure 5 that
the magnitude of side lobes decreases as the ratio of a/b increases.

The effect on the radiation patterns due to the change of material
of the sheath is considered and shown in Figure 6. These patterns
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1.2a /b = 1.5a /b = 2.0a /b =

o

3.0k  c=o

εr = 2.0, µr = 1.0              ( and            or            )ηo θo= 0.0 = 90 o

Figure 4. Radiation patterns of a half-wavelength narrow slot antenna
located at η1 = 0 on perfectly conducting prolate spheroid coated with
electric type (µr = 1.0) material εr = 2.0, with the ratios of a/b = 1.2,
1.5 and 2.0, and the electrical lengths of koa = 1 and koc = 3.

were obtained from configurations with the same parameters as those
given in Figure 5, but with a dielectric constant εr increased to 4.
By comparing Figures 5 and 6, the main beam directions are changed
by 180◦ for the cases a/b = 1.2 and 1.5. This result may be useful
in antenna design by coating the antenna with different materials to
change the main beam direction.

3.2. Radiated Power

Several investigators [13, 14] have examined the radiation from axially
symmetric slot antennas on perfectly conducting spheres coated with
homogeneous material. It was found that the thickness of the coating
layer has a significant effect on the radiated fields, and the radiated
power is greatly enhanced for some values of the thickness. However,
this effect has not been studied for either axially symmetric or
asymmetric spheroidal slot antennas.

Before performing the investigation for axially asymmetric
spheroidal slot antennas, it is desirable to further verify our solution
by considering an axially symmetric spheroidal slot antenna with a
homogeneous sheath and excited with a delta gap source. This is a
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3.0k  a=

1.2a /b = 1.5a /b = 2.0a /b =
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= 0.0 = 90 o

Figure 5. Radiation patterns of a half-wavelength narrow slot antenna
located at η1 = 0 on perfectly conducting prolate spheroid coated with
electric type (µr = 1.0) material εr = 2.0, with the ratios of a/b = 1.2,
1.5 and 2.0, and the electrical lengths of koa = 3 and koc = 5.

simplified example of our analysis, and many researchers [13, 14] have
investigated its radiation patterns for the special case a/b ≈ 1.

This simplified antenna model can easily be obtained by extending
the slot length from 2L (arbitrary length) to the entire circumference
to form a complete circular gap on the surface ξ1, as illustrated in
Figure 7. The excitation source given in (11) over the slot is replaced
with a simple delta gap, which is independent of φ and can be written
as:

Eex
η =

Vo

2hη∆η
δ(η − η1), (34)

where Vo is the voltage across the slot, and hη = F

√
ξ2
1−η2

1

1−η2
1

. The

excitation term given in (29) can then be simplified to:

F1,N+1(h1, ξ1) = −Vok1

h1

√
(1 − η2

1)
(
ξ2
1 − η2

1

)
S1,N+1(h1, η1), (35)
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Figure 6. Radiation patterns of a half-wavelength narrow slot antenna
located at η1 = 0 on perfectly conducting prolate spheroid coated with
electric type (µr = 1.0) material εr = 4.0, with the ratios of a/b = 1.2,
1.5 and 2.0, and the electrical lengths of koa = 3 and koc = 5.

The total radiated power may be expressed as:

P =
1

Zoko

∞∑
n=0

∞∑
N=0

|δ1 n+1|2

·
[
λ1 1+n(ho)I10 1nN (ho, ho) − h2

oI11 1nN (ho, ho)
]
. (36)

To investigate the effect of the sheath thickness, the radiated
power ratio (P/Po) with and without the sheath (P and Po

respectively) was obtained in terms of the ratio (t/λr) of the sheath
thickness (t) to the wavelength (λr) in the coating materials. Based on
the analysis for the axially symmetric slot antenna described above,
the radiated power from the spherical slot antenna was calculated
by setting a/b ≈ 1. Some of the results for a range of parameters
are presented in Figure 8 for an electric type sheath and in Figure 9
for a magnetic type sheath. It can be seen that for certain sheath
thicknesses, the radiated power is greatly enhanced, and becomes
resonant. Our results are in an excellent agreement with those of Shafai
[13] using spherical wave function analysis. Based on this validation,
we explored the effect of the sheath thickness on the radiated power
from the axially symmetric and asymmetric spheroidal slot antennas.
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Figure 7. Geometry of axially symmetric slot antenna on a perfectly
conducting prolate spheroid with a homogeneous material confocal
sheath, a special case of Figure 1.

Figures 10 and 11 show the results for an axially symmetric
spheroidal slot antenna. The ratios P/Po were plotted as functions
of the sheath thickness ratio t/λr, with varying parameters. The two
types of sheaths, the electric (εr) and magnetic (µr) types, have been
presented in Figures 10 and 11, respectively. In both Figures, the
enhancement in the radiated power becomes more significant as the
material constant εr or µr increases. However, with the exception
of the resonant points, the radiation power with the magnetic type
sheath is always smaller than that without a magnetic sheath. This
is because the magnetic sheath has a larger relative impedance than
that of the electric sheath. A further comparison can be made between
the results obtained from the spherical and spheroidal antennas to see
the effect of the ratio of a/b on the radiated power. The results of
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Figure 8. Radiation power of axially symmetric slot spherical antenna
(quasi-sphere: a/b = 1.001) at θ = 90◦ versus the sheath thickness for
koa = 2.0, µr = 1.0 and εr = 4.0 and 9.0.

Figure 9. Radiation power of axially symmetric slot spherical antenna
(quasi-sphere: a/b = 1.001) at θ = 90◦ versus the sheath thickness for
koa = 2.0, εr = 1.0 and µr = 4.0 and 9.0.
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Figure 10. Radiation power of axially symmetric slot spheroidal
antenna a/b = 2.0 at η1 = 0 (or θ = 90◦ versus the sheath thickness
for koa = 2.0, µr = 1.0 and εr = 4.0 and 9.0.

Figure 11. Radiation power of axially symmetric slot spheroidal
antenna a/b = 2.0 at η1 = 0 (or θ = 90◦ versus the sheath thickness
for koa = 2.0, εr = 1.0 and µr = 4.0 and 9.0.
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Figure 12. Radiation power of axially symmetric slot spheroidal
antenna at η1 = 0 (or θ = 90◦) versus the sheath thickness for
koa = 1.0, a/b = 1.5, µr = 1.0 and εr = 4.0, 9.0 and 16.0.

the spherical antenna, as given in Figures 8 and 9, display higher and
narrower resonant peaks, and occurring more frequently compared to
the corresponding spheroidal antenna cases as shown in Figures 10
and 11. This is mainly due to the propagation of surface wave in the
sheath region and is similar that reported by Richmond [15] for coated
elliptic cylinders. He stated that an elliptic cylinder with a small a/b
value (slightly away from circular cylinder in shape) is related to a
nearly uniform sheath in thickness. The surface wave can propagate
all the way around the perimeter of the elliptic cylinder with very
small attenuation, such that the resonant peaks of radiated power are
high and narrow. Otherwise, for an elliptic cylinder with a lager a/b
value, the sheath thickness is highly varying, and the surface wave
propagating through the cylinder experiences a large attenuation with
the wave resonance significantly damped.

For the more general case of axially asymmetric slot antenna,
the power ratios are plotted in terms of the thickness of the coating
sheath and shown here as Figures of 12 to 14 for three parameter
combinations. Figures 12 and 13 show the effect of the coating material
for two different values of a/b. Although in both Figures the results
show that increasing the dielectric constant εr from 4 to 16 significantly
enhances the resonance, this effect can be greatly reduced by increasing
the ratio a/b values. Again, it can be seen that the resonant peaks
shown in Figure 12 with a smaller ratio of a/b = 1.5 are sharper and
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gure 13 

Figure 13. Radiation power of axially symmetric slot spheroidal
antenna at η1 = 0 (or θ = 90◦ versus the sheath thickness for
koa = 1.0, a/b = 2.0, µr = 1.0 and εr = 4.0, 9.0 and 16.0.

Figure 14. Radiation power of axially symmetric slot spheroidal
antenna at η1 = 0 (or θ = 90◦ versus the sheath thickness for
koa = 2.0, a/b = 1.5, µr = 1.0 and εr = 4.0 and 9.0.
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higher than those in Figure 13 with a larger ratio of a/b = 2.0. This
behavior is mainly due to the nearly- and non-uniform sheath thickness
in Figures 12 and 13, respectively, as reported by Richmond [15] for
the coated elliptic cylinder case.

Figure 14 shows the effect on the resonance due to increasing
electric size koa to 2 while the other parameters used in Figure 12 are
unchanged. By comparing Figures 12 and 14, it can be seen that with
a higher koa the resonant peaks are more significant. This situation is
quite similar to that of the axial slot spherical antenna with coating
layer investigated by Shafai [13].

4. CONCLUSION

An analytical solution to the problem of electromagnetic radiation
from an axially asymmetric prolate spheroidal antenna with a confocal
homogeneous lossless electric or magnetic material sheath has been
obtained. The problem is solved using the technique of separating
the vector wave equation in prolate spheroidal coordinates. The
radiated and transmitted fields were expanded in terms of the prolate
spheroidal vector wave functions and the expansion coefficients were
determined by applying the boundary conditions and the excitation
field. Numerical results were obtained for the near field, radiation
pattern and total radiated power. The validity and accuracy of the
numerical results were examined for both near and far fields.

Numerical calculations have been carried out with various design
parameters, e.g., the material constants and thickness of the sheath,
the shape and size of the antenna and sheath, to investigate the effect of
the parameters on the radiation patterns and power. This investigation
showed that the geometrical shape and size of the antenna and the
dielectric constant have significant effects on the radiation pattern.
Our results also showed that for certain thickness of the sheath, high
and sharp resonant peaks appear in the radiated power. In general,
increasing the dielectric or magnetic constant εr or µr has a significant
effect of enhancing the resonance, but this effect can be greatly reduced
by increasing the axial ratio of semi-major axis to semi-minor axis.
This conclusion is consistent with that obtained by investigating the
axial slot antenna on a dielectric-coated elliptic cylinder as reported
by Richmond [15].
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