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Abstract—In this paper,the design idea and technique of the
ferrite phase shifter in substrate integrated waveguide (SIW) has
been reported. The characteristics of the millimeter-wave ferrite
phase shifter have been firstly calculated analytically, and the
relative parameters of the device have been decided on the basis of
optimization. At the same time, the design procedure of transition
from ferrite phase shifter in SIW to CPW has been introduced;
the agreement between the simulation results of the final integrated
structure and the experimental results of an equivalent model has
shown the good performance of this integrated structure.
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1. INTRODUCTION

The past decade has witnessed a rapid development of commercial
millimeter-wave wireless systems, such as local multipoint distribution
service (LMDS) and advanced collision-avoidance radar. Hence
design and manufacturing costs of such systems are probably the
most critical issue in the assessment of the commercial vitality of
the wireless systems. Integration of active and passive components
made of the rectangular waveguide generally requires transitions from
planar to non-planar circuits. In any case, various approaches to
solving this problem have been proposed that yield some complex
mounting structures [1–3]; on the other hand,high-precision mechanical
adjustment or a subtle tuning mechanism is needed to obtain good
performance for mass production; and a planar microstrip circuit often
needs to be cut into a specific shape, which is hard to realize in the
millimeter-wave range; above-mentioned issues has inevitably blocked
the rapid development of those wireless communication systems.
Moreover, rectangular-waveguide components are voluminous and
expensive to manufacture, which inevitably make the planar/non-
planar integration structure bulky and costly.

Recently, the concept of the integrated rectangular waveguide has
been proposed [4] in which an “artificial” waveguide is synthesized
and constructed with linear arrays of metallized via-holes or posts
embedded in the same substrate used for the planar circuit. Several
transitions have been proposed [5–7] to excite the waveguide. In
all these structures, the planar circuits,such as a microstrip line or
coplanar waveguide, and the rectangular waveguide are built onto the
same substrate and the transition is formed with a simple matching
geometry between both structures.
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As we have known, ferrite steroidal phase shifters have excellent
electrical performances and are used as phasing elements in phased
array antennas. They take advantages of high Q value, high power
handling capability etc. [8–11]. However, their drawbacks, such as
heavy weight, large volume, difficulty to be integrated with planar
circuits etc., hobble their applications in wireless communication. On
the basis of above motivation, one novel design integrating the ferrite
phase shifter into the substrate-integrated waveguide (SIW) [12–15]
has been proposed in this letter to demonstrate the full potentials of
the integrated-waveguide scheme. The substrate-integrated waveguide
combines the advantages of microstrip lines and waveguide, and
has shown its promising future. Undoubtedly, based on this great
integration of ferrite phase shifter into a planar structure, it is possible
to develop large phased array, integrating the ferrite phase shifters and
the excited circuits on a same substrate, which takes the features of
low profile, small volume and light weight etc., and therefore exists
promising applications in millimeter wave field.

In this paper, the analytical model of the ferrite phase shifter in
SIW and formulae are firstly introduced; relative characteristics such
as differential phase shift and insertion loss is calculated analytically.
In addition, the optimum parameters of the phase shifter have been
given. Furthermore, the design idea and procedures of transition
from ferrite phase shifter in substrate-integrated waveguide (SIW)
to Coplanar Waveguide (CPW) has been investigated. Finally, the
integrated structure of ferrite phase shifter and transition has been
simulated, and the measured data of an equivalent model has been
proved to agree with the simulation results.

2. PARAMETERS OF THE FERRITE PHASE SHIFTER

The analytical model for the ferrite phase shifter in substrate-
integrated waveguide is illustrated in Fig. 1. In addition, the
transcendental equation of propagation constant of the ferrite phase
shift in rectangular waveguide is expressed as:
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Figure 1. Analytical model of the ferrite phase shifter in SIW.
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Here, γ = 2.8 × 106 Hz/Oe, 4πMr is the remanence magnetization
of the ferrite material, f is the operating frequency. Using the
aforementioned formulae,we calculated the differential phase shift
and insertion loss of the ferrite phase shifter and the optimized
characteristics are illustrated in Fig. 2 and Fig. 3. Therefore, it is
not hard to decide the optimum parameters of the ferrite phase shifter
in substrate-integrated waveguide as followings:

a = 0.373λ0, af = 0.0711λ0, ad = 0.0047λ0, b = 0.1870λ0

4πMr = 5000.0Gs, εr1 = 2.0, εrf = 15.0, εrd = 5.0

3. DESIGN TECHNIQUE OF SIW

Judging from its electrical performance, the synthesized integrated
waveguide is a good compromise between the air-filled rectangular
waveguide and planar circuit. A schematic view of the substrate-
integrated waveguide is shown in Fig. 4. In reference [5], the authors
have indicated the detailed procedure and requirements on the design
of SIW, that is

d < λg

/
5, p < 2d
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Figure 2. Optimized differential phase shift of the MM ferrite phase
shifter.
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Figure 3. Optimized insertion loss of the MM ferrite phase shifter.
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a a d p
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Figure 4. The schematic geometry of one SIW section.

Where λg is the guided wavelength in the substrate-integrated
waveguide. These two rules ensure that the radiation loss is kept at a
very low level and SIW can be modeled by a conventional rectangular
waveguide. In this design, according to the analysis in previous
sections, the required width for the millimeter-wave ferrite phase shifter
in SIW is aeqv = 0.467λ0 and the width of the equivalent waveguide
used in the simulation and design has been found to be a = 0.512λ0,
d = 30 mil, p = 60 mil.

In order to verify the above-mentioned design rules, we simulate
the SIW with different via distance p, and the simulation results have
been illustrated as Fig. 5a, Fig. 5b, Fig. 5c and Fig. 5d. From the
simulation results, it is not hard to see that, when via distance p is
beyond of 60 mil, there is some energy leaked into the waveguide, or
leak out of the waveguide. In any case, in our design, we usually select
p = 60 mil.

4. TRANSITION FROM SIW TO COPLANAR
WAVEGUIDE (CPW)

A conventional CPW on a dielectric substrate consists of a center strip
conductor with semi-infinite ground planes on either side [17, 18]. This
structure supports a quasi-TEM mode of propagation. The CPW offers
several advantages over conventional microstrip line. In millimeter-
wave range, the coplanar waveguide (CPW) is a very promising
transmission line. Furthermore, increasing dielectric substrate height
may not affect too much inherent CPW characteristics. This
transmission line is therefore well suitable for the on-substrate hybrid
integration with the rectangular waveguide and other uni-planar
structures, since the substrate thickness can be increased to reduce
conductor loss in the waveguide design without having adverse impact
on planar components. In this letter, a new integrated circuit of CPW-
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Figure 5. (a) the leaky wave coupled into the SIW (p = 60 mil), (b)
the leaky wave coupled into the SIW (p = 65 mil), (c) the leaky wave
coupled into the SIW (p = 70 mil), (d) the leaky wave coupled into the
SIW (p = 80 mil).

ferrite phase shifter in rectangular waveguide has been presented. All
the structures are realized on a single PCB using a standard process,
integrating both structures on a single PCB layer allows the design of
transition without tuning or mechanical mounting.

However, now we want to integrate the ferrite phase shifter into
the SIW, which is a good compromise between air-filled rectangular
waveguide and microstrip line. The top and bottle grounds of the
microstrip circuit form the broad-wall of the rectangular waveguide,
and the periodic via structures realize the bilateral walls. In order to
position the ferrite torpid in the SIW, some substrate will be removed
and replaced by the ferrite torpid. In addition, one conducting line
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Figure 6. Geometrical structure of the transition from ferrite PS in
SIW to CPW.

should pass through from the air hole of the ferrite toroid, in order to
excite the ferrite. The expected structure has been illustrated in Fig. 6.
A commercial package using finite element method (FEM) is used to
simulate and optimize the structure. Among which, a taper transition
[6] has been employed to realize multi-step impedance match. However,
because the ferrite material is still under process, we replaced the ferrite
with the equivalent dielectric material to synthesize and simulate the
performance of the integrated structure.

5. RESULTS AND DISCUSSION

The simulation result is depicted in Fig. 7 and Fig. 8, which show
that the equivalent model can be used to simulate approximately some
characteristics of the practical integrated circuit, such as the return loss
and insertion loss etc., Clearly, the bandwidth of return loss is about
14% (15 dB). In addition, the measured return loss of the equivalent
model has been approved to agree well with the simulation results,
which show that the performance of the CPW transition is rather good.
However, the measured insertion loss is bigger than the simulation
results, several factors can be found to contribute to this phenomenon.
(1) The loss tangent of the dielectric material is given at f = 10 GHz,
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Figure 7. The return loss of the integrated structure.
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Figure 8. The insertion loss of the integrated structure.
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but at higher frequencies, it is bigger. However, we didn’t take into
account the increase of loss tangent with frequencies. (2) We didn’t
consider the metal thickness of the planar structure in the simulation,
but it indeed causes conductor losses. (3) The radiation loss was
omitted in the simulation, but it really exists in the CPW structure. In
the near future, we will fabricate one practical SIW ferrite phase shifter
and measure its phase shift characteristics, and integrate the driving
circuit onto the planar structure; the further results are expected to
report soon. We believe that the success of this device will provide
valuable guidance to the research of low profile, small-volume phased
array, and lead the success to other millimeter-wave ferrite devices in
substrate-integrated waveguide.

6. CONCLUSION

In this work, millimeter-wave ferrite phase shifter in substrate-
integrated waveguide has been investigated. First, the characteristics
of the ferrite phase shifter have been analyzed. Based on the
theoretical results, the optimal parameters of the ferrite material and
the geometrical dimensions of the ferrite torpid have been decided. In
order to design a transition with good performance, large numbers of
simulation using HFSS and ADS have been carried out. Considering
the practical conditions, the main attention has been focused on the
CPW transition. In this work, the ferrite phase shifter and the
CPW transition have been integrated into the same substrate; the
simulation results has been approved to agree with the measured data
of the equivalent model. At the same time, the difference between the
measured data and the simulation results has been explained, and the
future work has been proposed.
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