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Abstract—The Integral Equation Method (IEM) is applied for about
ten years to model the surface scattering phenomenon. Recently, Fung
published in [1] an extra improved version of the IEM model.

In this paper, numerical and experimental validations of the model
are investigated. In backscattering, as in bistatic scattering, number
of numerical validations are made on a wide frequency band, by
comparing IEM predictions with a reference method results (Method
of Moments). IEM results are also compared with those of some
asymptotic models such as Small Perturbation Method (SPM) and
Kirchhoff Model (KM) in the frequency domains where these latter
are applicable.

The improved model validation is achieved by presenting
confrontations of the simulation results with experimental data, some
of them have been collected in appropriate papers, and the others come
from experiments we conducted at the ElectroMagnetism and Radar
Department (DEMR) of the Office National d’Etudes et de Recherches
Aérospatiales (ONERA)-Toulouse (France).
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1. INTRODUCTION

Early approaches to the theory of rough surface scattering were based
on asymptotic approximations. In the low-frequency limit, Rice pro-
posed the use of the Small Perturbation Method (SPM) [2]. At high
frequencies, the Kirchhoff Model (KM) can be applied when the surface
appears smooth on the scale of the wavelength [3, 4]. Much work over
the past several decades has been devoted towards searching model
which can assure the continuity between SPM and KM [5–7]. On the
other hand, as scattering elements of rough surfaces present a complex
geometry and are randomly distributed, their electromagnetic scat-
tering involves complex interactions. Thus, this context leads us to
focus our investigation in the rigorous model of the Integral Equation
Method (IEM).

The first complete version of the IEM model was developed and pro-
posed by A. K. Fung in [8] and [9], based on a more rigorous solution of
the integral equation of the electric field. In this model, a simplifying
assumption was made on the spectral form of the Green function [10],
by ignoring the phase term, as it is shown in (1).

G(u, v) = − 1
2π

∫ j
q

ej[u (x′−x′′)+v (y′−y′′)] e−jq|z′−z′′|︸ ︷︷ ︸
phase term

dudv (1)

where
q =

√
k2 − u2 − v2 (2)

z′ and z′′ are the random variables representing the surface heights at
different locations on the random surface, u and v are spatial variables
and k is the wave number.
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This approximation is valid and useful in backscattering and
forward scattering calculations [8], but turns out to be false for bistatic
and multiple scattering modeling. Thus, some additional studies were
led by the principal authors of IEM in order to take into account in a
better way the interactions between the surface and the incident wave
[11–14], but some of these models still show some hiatuses in their
theoretical formulations.

In 2001, Álvarez-Pérez [15] proposed an other model of IEM,
including the phase term and some other modifications; following this
previous article, Fung has recently published an improved IEM model
[1].

The objectives of this study is to analyse this improved IEM
model and compare the numerical results obtained with experimental
data published in litterature or acquired by ourselves at the
Electromagnetism and Radar Department (DEMR) of ONERA-
Toulouse (France).

In the following section the most important theoretical results
obtained by the development of IEM are briefly recalled. The third
section is devoted to numerical simulations of the behavior of scattering
by rough surfaces. A comparative study between IEM, KM and SPM is
led on a wide range of frequencies, in monostatic and in bistatic cases,
in order to demonstrate that IEM tends to bridge the gap between
the two classical methods. Then, in bistatic case, the evolutions
of the coherent and incoherent scattering mechanisms are observed
and compared according to the surface roughness. Finally, in order
to complete the validation of the IEM model, simulation results are
confronted with some experimental values, some of them are taken from
litterature, and the others come from measurements we realized at the
DEMR. Discussions and concluding remarks are given in Section 5.

2. SURFACE SCATTERING COEFFICIENT
CALCULATION FOR SMALL OR MODERATE
ROUGHNESS (ksz ≤ 2)

2.1. Model Development

The Integral Equation Method or IEM is worked out to calculate the
surface scattering of a given medium. This method gives a solution
of the Stratton-Chu integral equation [16] through a reformulation of
the governing equations of the tangential electric and magnetic surface
fields (3), (4) [17]. They are expressed as a sum of two terms: the
field calculated by the Kirchhoff Model and a complementary term
which takes into account the wave interactions with the surrounding
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roughness [9].
(n̂ ∧ −→

E ) = (n̂ ∧ −→
E )k + (n̂ ∧ −→

E )c (3)

(n̂ ∧ −→
H ) = (n̂ ∧ −→

H )k + (n̂ ∧ −→
H )c (4)

Accordingly, the scattered electric field, which is obtained by an
estimation of the surface tangential fields, can be written as shown in
(5). This formulation allows to obtain a more rigorous solution than
those calculated by the more classical analytical methods; its validity
domain overlaps those of Kirchhoff and Small Perturbation methods
[18, 9].

Es
qp = Esk

qp + Esc
qp (5)

Esk
qp is the Kirchhoff field and Esc

qp is the complementary field, they are
expressed by,

Esk
qp = KE0

∫
S′
fqp ej[(�ks−�ki)·�r′] dx′ dy′ (6)

Esc
qp =

KE0

8π2

∫ ∫
S′

∫
S′′

Fqp ej[u (x′−x′′)+v (y′−y′′)−q|z′−z′′|]

× ej[�ks·�r′−�ki· �r′′] dx′′ dy′′ dx′ dy′ du dv (7)

where
K = − jk

4πR
e−jkR

R is the distance between emitting and receiving antennas.
The subscripts p and q respectively denote the polarizations of

the emitting and receiving antennas.
In the above scattered field expressions, fqp and Fqp are

respectively called Kirchhoff and complementary coefficients [9]. Their
expressions are reported in Appendix A at the end of this paper.

The average scattered power is calculated from the electric
scattered field by the well-known following relation,

P s
qp =

1
2η1

〈Es
qp E

s∗
qp〉 (8)

where η1 is the intrinsic impedance of the medium and “∗” is the
symbol for complex conjugate.

With the field expression given by (5), the average scattered power
(8) is expressed as the sum of three terms:

P s
qp =

1
2η1

[
〈Esk

qp E
sk∗
qp 〉 + 2Re〈Esc

qp E
sk∗
qp 〉 + 〈Esc

qp E
sc∗
qp 〉

]
= P sk

qp + P skc
qp + P sc

qp (9)
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where Re is the real part operator. The powers related to Esk
qp and Esc

qp
are respectively called Kirchhoff power and complementary power. The
power related to the both fields is called cross power.

On the other hand, the scattering process is composed of two
types of mechanisms [4]: the coherent scattering and the incoherent
scattering (Fig. 1),

P s
qp = P s

qpcoh
+ P s

qpincoh
(10)

incoherent component

incoherent
component

fading
coherent
component

coherent
component

specular direction

Figure 1. Evolution of the scattering according to the surface
roughness.

The coherent scattered power P s
qpcoh

is the power scattered in the
specular lobe. It decreases when the roughness increases and is
calculated from the mean squared power as follows,

P s
qpcoh

=
1

2η1
〈Es

qp〉 〈Es∗
qp〉

=
1

2η1

[
〈Esk

qp〉 〈Esk∗
qp 〉 + 2Re〈Esc

qp〉 〈Esk∗
qp 〉 + 〈Esc

qp〉 〈Esc∗
qp 〉

]
= P sk

qpcoh
+ P skc

qpcoh
+ P sc

qpcoh
(11)

The incoherent contribution, which represents the power scattered
outwards the specular, is obtained by subtracting the previous coherent
power from the total power (12). It increases with the roughness.

P s
qpincoh

=
1

2η1

[
〈Es

qp E
s∗
qp〉 − 〈Es

qp〉 〈Es∗
qp〉

]
= P sk

qpincoh
+ P skc

qpincoh
+ P sc

qpincoh
(12)

Finally, the calculation of the total scattered power can be
schematically summarized by Fig. 2.

The normalized scattering coefficient is related to the scattered
average power by,

σ0
qp =

4πR2P s
qp

A0P i
p

(13)

where P i
p = 1

2η1
E2

0 is the incident power and A0 is the illuminated area.
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P s
qp=

1
2η1

〈Es
qpE

s∗
qp 〉

P s
qpcoh

=
1

2η1
〈Es

qp〉 〈Es∗
qp〉 P s

qpincoh
= P s

qp− P s
qpcoh

P sk
qpcoh

P skc
qpcoh

P sc
qpcoh

P sk
qpincoh

P skc
qpincoh

P sc
qpincoh

Figure 2. Total scattered power calculation by IEM.

Two forms of IEM have been developped by Fung and his
colleagues, one for small to moderate scale roughness (ksz ≤ 2),
and the other for large scale roughness. In the following sections,
the coherent and incoherent scattering mechanisms are separately
considered from smooth to moderately rough surfaces. The expressions
of the Kirchhoff, complementary and cross terms of each contribution
are recalled.

2.2. Coherent Scattering Coefficient Calculation

The coherent scattered power is calculated from (11). The three
terms in that equation must be evaluated one by one. However
Figs. 3 and 4 clearly show that the complementary and the cross
terms are insignificant in comparison with the Kirchhoff term whatever
the surface roughness. This may be explained by the fact that
complementary field allows to take into account multiple scattering,
which does not occur in a coherent way.

The coherent power is then simply expressed by,

P s
qpcoh

= P sk
qpcoh

=
1

2η1

[
〈Esk

qp〉 〈Esk∗
qp 〉

]
(14)

To carry out the average operations, the height distributions of the
concerned surfaces are assumed to be Gaussian. Wave numbers of
incidence and scattering are defined as �ki = kxx̂ + kyŷ − kz ẑ and
�ks = ksxx̂+ ksyŷ + ksz ẑ.
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Figure 3. Evolution of the coherent scattering terms for a slightly
rough conducting surface.
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Figure 4. Evolution of the coherent scattering terms for a rough
conducting surface.

Thus replacing in (14) the Kirchhoff field by its expression leads
to,

P sk
qpcoh

=
1

2η1
|KE0fqp|2

∣∣∣∣〈∫
S′

ej[(ksx−kx)x′+(ksy−ky)y′+(ksz+kz)z′] dx′dy′〉
∣∣∣∣2

(15)
The details of the calculations can be found in literature [19, 20], only
the final results are given in the case of two different classical surface
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geometries.

• In the case of a circular surface, P sk
qpcoh

is given by

P sk
qpcoh

=
1

2η1
|KE0fqp|2 4A2

0 e−s2
z(ksz+kz)2

∣∣∣∣J1(Rmax × M)
Rmax × M

∣∣∣∣2 (16)

where M =
√

(ksx − kx)2 + (ksy − ky)2, A0 = πR2
max is the illuminated

area and Jm is the Bessel function of first kind and of m-order.
Applying (13) to this case leads to the scattering coefficient given

by:

σk0
qpcoh

=
k2

π
|fqp|2 A2

0 e−s2
z(ksz+kz)2

∣∣∣∣J1(Rmax × M)
Rmax × M

∣∣∣∣2 (17)

• In the case of a rectangular surface, P sk
qpcoh

changes to:

P sk
qpcoh

=
1

2η1
|KE0fqp|2 A2

0 e−s2
z(ksz+kz)2

× | sinc [(ksx − kx)x0] sinc [(ksy − ky)y0]|2 (18)

where sinc u = sin u
u and A0 = 2x0 × 2y0.

The expression of the scattering coefficient from a rectangular
surface is then,

σk0
qpcoh

=
k2

π
|fqp|2 A2

0 e−s2
z(ksz+kz)2 | sinc [(ksx−kx)x0] sinc [(ksy−ky)y0]|2

(19)
In the next subsection, the calculation of the three terms composing
the incoherent scattering coefficient is briefly set out.

2.3. Incoherent Scattering Coefficient Calculation

The incoherent power is obtained by the following equation,

P s
qpincoh

= P s
qp − P s

qpcoh

=
1

2η1

[
〈Es

qp E
s∗
qp〉 − 〈Es

qp〉 〈Es∗
qp〉

]
(20)

The calculation of the three terms are available in [9, 21, 15, 20], only
the major steps and the final results are reported in this paper.
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2.3.1. Evaluation of the Kirchhoff Term

First considering the Kirchhoff term given below by,

P sk
qpincoh

=
1

2η1

[
〈Esk

qp E
sk∗
qp 〉 − 〈Esk

qp〉 〈Esk∗
qp 〉

]
(21)

In the case of small or moderate roughness (ksz ≤ 2), it is a standard
practice to expand the exponential terms in series [9], and then
integrate over the spatial variables.

Finally the Kirchhoff term of the incoherent scattered power
expression is,

P sk
qpincoh

= 2π
|KE0fqp|2

2η1
e−s2

z(ksz+kz)2

×A0

∞∑
n=1

[s2
z(ksz + kz)2]

n

n!
W (n)(ksx − kx, ksy − ky) (22)

where W (n)(ksx−kx, ksy−ky) is the roughness spectrum of the surface
related to the nth power of the surface correlation function ρ(ξ, ζ) by
the Fourier transform as follows,

W (n)(ksx − kx, ksy − ky) =
1
2π

∫
ρn(ξ, ζ) ej[(ksx−kx)ξ+(ksy−ky)ζ] dξdζ

(23)
The Kirchhoff incoherent scattering coefficient is then deduced from
(13) and (22),

σk0
qpincoh

=
k2

2
|fqp|2e−s2

z(ksz+kz)2
∞∑

n=1

[s2
z(ksz+kz)2]

n

n!
W (n)(ksx−kx, ksy−ky)

(24)

2.3.2. Evaluation of the Complementary Term

The complementary power P sc
qpincoh

is then considered,

P sc
qpincoh

=
1

2η1

[
〈Esc

qp E
sc∗
qp 〉 − 〈Esc

qp〉 〈Esc∗
qp 〉

]
(25)

The substitution of the complementary field by its expression (7) in
(25) produces,

P sc
qpincoh

=
(2π)5

8η1

∣∣∣∣KE0

8π2

∣∣∣∣2 A0 e−s2
z(ksz+kz)2

× [c1(q, q′)+c2(q, q′)+c3(q, q′)+c4(q, q′)+c5(q, q′)+c6(q, q′)]
(26)
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Recalling that the q and q′ coefficients are given by (2), the
ci(q, q′)|i=1,...,6 terms are expressed by,

c1(q, q′) =
∑

r, r′=−1, 1

h(rkz, r
′kz) f1(rkz, r

′kz)

×Fqp(−kx,−ky, r) F ∗
qp(−kx,−ky, r

′) (27)

c2(q, q′) =
∑

r, r′=−1, 1

h(rkz, r
′ksz) f2(rkz, r

′ksz)

×Fqp(−kx,−ky, r) F ∗
qp(−ksx,−ksy, r

′) (28)

c3(q, q′) =
∑

r, r′=−1, 1

h(rksz, r
′kz) f3(rksz, r

′kz)

×Fqp(−ksx,−ksy, r) F ∗
qp(−kx,−ky, r

′) (29)

c4(q, q′) =
∑

r, r′=−1, 1

h(rksz, r
′ksz) f4(rksz, r

′ksz)

×Fqp(−ksx,−ksy, r) F ∗
qp(−ksx,−ksy, r

′) (30)

c5(q, q′) =
1
2π

∑
r, r′=−1, 1

∫
[h(rq, r′q) f1(rq, r′q) f4(rq, r′q)

×Fqp(u, v, r) F ∗
qp(u, v, r

′)] dudv (31)

c6(q, q′) =
1
2π

∑
r, r′=−1, 1

∫
[h(rq, r′q′) f2(rq, r′q′) f3(rq, r′q′)

×Fqp(u, v, r) F ∗
qp(u

′, v′, r′)] dudv (32)

knowing that u′ = −u− ksx − kx and v′ = −v − ksy − ky.
The different functions used in (27) to (32) are defined below

h(rq, r′q′) = e−s2
z [q2+q′2−(ksz−kz)(rq+r′q′)] (33)

f1(rq, r′q′) =
∞∑

n=1

[s2
z(ksz−rq)(ksz−r′q′)]n

n!
W (n)(ksx−kx, ksy−ky) (34)

f2(rq, r′q′) =
∞∑

n=1

[s2
z(ksz−rq)(kz+r′q′)]n

n!
W (n)(ksx−kx, ksy−ky) (35)

f3(rq, r′q′) =
∞∑

m=1

[s2
z(kz+rq)(ksz−r′q′)]m

m!
W (m)(ksx−kx, ksy−ky) (36)

f4(rq, r′q′) =
∞∑

m=1

[s2
z(kz+rq)(kz+r′q′)]m

m!
W (m)(ksx−kx, ksy−ky) (37)
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The scattering coefficient is calculated from (13), yielding:

σc0
qpincoh

=
k2

210π5
A0 e−s2

z(ksz+kz)2

× [c1(q, q′) + c2(q, q′)+c3(q, q′)+c4(q, q′)+c5(q, q′)+c6(q, q′)]
(38)

ci(q, q′)|i=1,...,6 are given by (27) through (32).

2.3.3. Evaluation of the Cross Term

The cross term is calculated from the expressions of both Kirchhoff
and complementary fields by

P skc
qpincoh

=
1

2η1

[
〈Esc

qp E
sk∗
qp 〉 − 〈Esc

qp〉 〈Esk∗
qp 〉

]
(39)

The substitution of the two fields by their expressions (6) and (7)
produces,

P skc
qpincoh

=
(2π)3

2η1

|KE0|2
24π2

A0 e−s2
z(k2

sz+k2
z+kszkz)

×Re
{
kc1(q) + kc2(q) + kc3(q)

}
(40)

where

kc1(q) =
∑

r=−1, 1

f ′1(rkz) f∗qp Fqp(−kx,−ky, r) (41)

kc2(q) =
∑

r=−1, 1

f ′2(rksz) f∗qp Fqp(−ksx,−ksy, r) (42)

kc3(q) =
1
2π

∑
r=−1, 1

∫
h′(rq)f ′1(rq) f

′
2(rq) f

∗
qp Fqp(u, v, rq) dudv (43)

and

h′(rq) = e−s2
z [q2−(ksz−kz)rq] (44)

f ′1(rq) =
∞∑

n=1

[
s2
z(ksz − rq)(ksz + kz)

]n

n!
W (n)(ksx − kx, ksy − ky) (45)

f ′2(rq) =
∞∑

n=1

[
s2
z(kz + rq)(ksz + kz)

]n

n!
W (n)(ksx − kx, ksy − ky) (46)
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Using (13), the scattering cross coefficient is then:

σkc0
qpincoh

=
k2

25π3
e−s2

z(k2
sz+k2

z+kszkz) Re
{
kc1(q) + kc2(q) + kc3(q)

}
(47)

kci(q)|i=1,...,3 are given by (41) through (43).

2.4. Surface Scattering Coefficient Summary

The complete representation of the bistatic scattering coefficient for a
randomly rough surface can be summarized as:

σ0
qp = σ0

qpincoh
+ σ0

qpcoh

= (σk0
qpincoh

+ σk0
qpcoh

) + σkc0
qpincoh

+ σc0
qpincoh

= σ0(S)
qp + σ0(M)

qp (48)

The terms are regrouped into two types: one representing single
scattering σ

0(S)
qp , and the other representing multiple scattering σ

0(M)
qp

(Fig. 5). The former corresponds to terms already integrated whereas
the latter involves more than one sum and requires further integrations.
Second-order scattering is considered at most.

Multiple scattering

Single scattering

Figure 5. Surface scattering mechanisms.

2.4.1. The Single Scattering Coefficient

The single scattering coefficient σ0(S)
qp is the sum of the coherent scat-

tering coefficient and the first-order incoherent scattering coefficient.
The first one is given by (17) or (19) according to the geometry of the
surface.

The first-order incoherent coefficient is the sum of the Kirchhoff
term and the terms already integrated of σc0

qpincoh
and σkc0

qpincoh
. Its
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expression is,

σ0(S)
qpincoh

=
k2

2
|fqp|2e−s2

z(ksz+kz)2
∞∑

n=1

[s2
z(ksz+kz)2]

n

n!
W (n)(ksx−kx, ksy−ky)

+
k2

210π5
e−s2

z(k2
sz+k2

z)[c1(q, q′) + c2(q, q′) + c3(q, q′)+ c4(q, q′)]

+
k2

25π3
e−s2

z(k2
sz+k2

z+kszkz)Re
{
kc1(q) + kc2(q)

}
(49)

ci(q, q′)|i=1,...,4 and kcj(q)|j=1,2 are respectively given by (27) to (30)
and by (41) and (42).

Combining the different terms in an appropriate way [9] leads to
the following expression,

σ0(S)
qpincoh

=
k2

2
e−s2

z(k2
sz+k2

z)
∞∑

n=1

s2n
z |I(n)

qp |2W
(n)(ksx − kx, ksy − ky)

n!
(50)

where

I(n)
qp = (ksz + kz)nfqp e−s2

zkszkz

+
1
4

∑
r=−1, 1

[e−s2
z [q2−(ksz−kz)rq](ksz − rq)nFqp(−kx,−ky, rq)

+e−s2
z [q2−(ksz−kz)rq](kz + rq)nFqp(−ksx,−ksy, rq)] (51)

The single scattering coefficient is the most important term in co-
polarized backscattering and forward scattering coefficients. In this
polarization the multiple scattering contribution is generally small.
On the other hand, in cross polarization, the multiple scattering
contribution is the most important one in backscattering and forward
scattering coefficients, because the single scattering coefficient vanishes
in the incident plane. The multiple scattering component is evaluated
in the next subsection.

2.4.2. The Multiple Scattering Coefficient

Only the terms of the complementary and the cross terms requiring
further integrations compose the coefficient representing multiple
scattering [14, 21–23]. So from (38) and (47), the coefficient is given
by the following three terms,

σ0(M)
qpincoh

=
k2

210π5
e−s2

z(k2
sz+k2

z) [c5(q, q′) + c6(q, q′)]

+
k2

25π3
e−s2

z(k2
sz+k2

z+kszkz) Re{kc3(q)} (52)



Numerical and experimental validations of IEM 217

c5(q, q′), c6(q, q′) and kc3(q) are respectively given by (31), (32) and
(43).

In this section, scattering coefficients expressions were deduced
from theoretical formulations of the total scattered power, using an
improved IEM model. The two following sections are devoted to the
validation of the model. In Section 3, numerical simulations of the
scattering coefficient behavior are made: either in monostatic case,
or in the bistatic one, IEM results are confronted with those of other
methods in order to demonstrate the extent of the applicability domain
of the model. In Section 4 experimental validation of the IEM model
is investigated.

3. NUMERICAL SIMULATIONS BY IEM, SPM AND KM
OF THE SURFACE SCATTERING COEFFICIENT
BEHAVIOR, COMPARED WITH MM AND
EXPERIMENTAL DATA

3.1. The Backscattering Case

3.1.1. Comparisons with SPM and KM

Figs. 6, 7 and 8 show the evolution of backscattering coefficients from
Gaussian correlated perfectly conducting surfaces. The numerical
results obtained by IEM are compared with those obtained by SPM
and KM on a wide frequency band. The limits of the validity domains
of SPM and KM are illustrated by Table 1 [19].

Table 1. Applicability domains of SPM and KM for a Gaussian
correlated surface.

Models ksz klc

SPM > 0.3 >
√

2
0.3ksz

KM (klc)2

17.39 > 2π

The asymptotic models are also confronted with the Method of
Moments (MM). These last results have been collected in [9].

First, it is worth noticing that, for all frequencies, the IEM
predictions are in good agreement with the MM results.

Fig. 6 shows that when ksz < 0.3 and klc <
√

2
0.3ksz, SPM is in good

agreement with IEM over most part of the angular range considered,
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Figure 6. Comparisons of IEM, KM, SPM and MM in the frequency
domain where SPM is applicable.
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Figure 7. Comparisons of IEM, KM, SPM and MM in the frequency
domain where neither SPM nor KM are applicable.

but deviates from the improved model at incident angles larger than
60◦.

Then when the frequency increases by a factor of two (Fig. 7),
the surface parameters fall into the intermediate frequency region
where neither SPM nor KM are applicable. The IEM co-polarized
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Figure 8. Comparisons of IEM, KM, SPM and MM in the frequency
domain where KM is applicable.

backscattering coefficient starts deviating from the SPM solution and
approaches the KM one.

In Fig. 8, IEM and SPM values differ significantly because the
latter is no longer applicable. However KM is now valid, and its
simulation results exactly coincide with those of IEM.

3.1.2. Parametrical Study of the Backscattering Coefficient

The study presented is focused on the evolution of the backscattering
coefficient as a function of the surface roughness. An exponential
correlated asphalt surface is considered for example at millimeter-wave
frequencies (94 GHz). Its RMS height sz increases regularly whereas
correlation length lc is constant at 2λ. The characteristic parameters
of the asphalt surface were collected in [24].

Fig. 9 shows that backscattered power increases with the
roughness of the surface, except near the normal incidence where the
scattering coefficient decreases when the roughness increases. This may
be explained by the fact that the scattering diagram is widening while
no extra energy is brought to the system.

Finally, when sz = λ
3 , no scattering direction is no longer

privileged.
A zoom of the behavior of backscattering coefficient near grazing

incidence is showed in Fig. 10.
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Figure 9. Backscattering by an exponential correlated asphalt
surface.
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Figure 10. Backscattering near grazing incidence by an exponential
correlated asphalt surface.

3.1.3. Comparisons with Experimental Results and Validation

A set of monostatic measurements from known Gaussian correlated,
dielectric smooth to rough surfaces were reported by the the European
Microwave Signature Laboratory (EMSL), installed at the Joint
Research Centre (JRC) in Ispra, Italy [25–27]. The surface considered
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Figure 11. Comparison of IEM with experimental HH and VV
measurements at incident angle of 10◦.

2 3 4 5 6 7 8 9 10
-40

-30

-20

-10

0

10

meas.
IEM

HH polarization - θi = 20◦

B
ac

ks
ca

tt
er

in
g

C
oe

ffi
ci

en
t

(d
B

)

Frequencies GHz(      )
2 3 4 5 6 7 8 9 10

-40

-30

-20

-10

0

10

meas.
IEM

VV polarization - θi = 20◦

B
ac

ks
ca

tt
er

in
g

C
oe

ffi
ci

en
t

(d
B

)

Frequencies GHz(      )

Figure 12. Comparison of IEM with experimental HH and VV
measurements at incident angle of 20◦.

in these papers presents a RMS height of 4 mm and a correlation
length of 60 mm. Polarimetric backscattering measurements proposed
were performed between 10◦ and 30◦ in co-polarization over a range of
frequencies from 2 to 10 GHz.

Figs. 11 to 13 show comparisons between IEM predictions and
experimental measurements for HH and VV polarizations. Good
agreement is obtained at each angle and for the two polarizations.
However, at an incidence of 30◦, and above 8 GHz, theoretical results
begin to underestimate experimental coefficients; experimental data
tend to a constant value whereas the model predicts a decreasing of



222 Koudogbo, Combes, and Mametsa

2 3 4 5 6 7 8 9 10
-40

-30

-20

-10

0

10

meas.
IEM

HH polarization - θi = 30◦

B
ac

ks
ca

tt
er

in
g

C
oe

ffi
ci

en
t

(d
B

)

Frequencies GHz(      )
2 3 4 5 6 7 8 9 10

-40

-30

-20

-10

0

10

meas.
IEM

VV polarization - θi = 30◦

B
ac

ks
ca

tt
er

in
g

C
oe

ffi
ci

en
t

(d
B

)

Frequencies GHz(      )

Figure 13. Comparison of IEM with experimental HH and VV
measurements at incident angle of 30◦.

the backscattering coefficient. For these values, the proximity of the
noise floor of the experimental setup can be a possible explanation of
these discrepancies.

3.2. The Bistatic Case

3.2.1. Comparisons with SPM and KM

This study is led according to the numerical results obtained by Fung
in [1]. As in this article, Fig. 14 shows a good agreement between
IEM and SPM predictions in the frequency domain where this latter
is applicable, except for large scattering angles (θs > 60◦).
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Figure 14. Comparison between IEM, SPM and KM at a frequency
of 4.7 GHz.



Numerical and experimental validations of IEM 223

0 10 20 30 40 50 60 70 80 90
-70

-60

-50

-40

-30

-20

-10

0
IEM
SPM
KM

HH polarization

Sc
at

te
ri

ng
 C

oe
ff

ic
ie

nt
 (

dB
)

Scattering Angle (  )◦sθ ,
0 10 20 30 40 50 60 70 80 90

-70

-60

-50

-40

-30

-20

-10

0
IEM
SPM
KM

VV polarization

Sc
at

te
ri

ng
 C

oe
ff

ic
ie

nt
 (

dB
)

Scattering Angle (  )◦sθ ,

Figure 15. Comparison between IEM, SPM and KM at a frequency
of 14.3 GHz.

In Fig. 15, frequency is increased from 4.7GHz to 14.3GHz, KM is
now valid, and, as it is also noticed in monostatic configuration, IEM
and KM predictions exactly coincide in the two polarizations.

3.2.2. Comparisons with an Exact Method

This section concerns the study of the bistatic scattering by a
rectangular perfectly conducting smooth surface. IEM results are
confronted with those of a software available at the Electromagnetic
and Radar Department (DEMR) of ONERA and based on the Method
of Moments (MM).

This study is carried out at a frequency of 35GHz. The illuminated
area was delimited at a squared surface A0 = 8λ× 8λ in order to find
a good compromise between a reasonable computing time by the MM
and large enough dimensions for the use of Physical Optics model.

Fig. 16 shows the results obtained. IEM gives results which are
in good agreement with those of the method of reference. The most
significant errors appear near grazing observation angles. Indeed, it is
at grazing angles that edge effects (not taken into account in the IEM
model) become important, so they are less and less negligible. The
dimensions of the illuminated surface, which are limited by the exact
method, are not large enough compared with the wavelength to allow
to neglect edge effects.
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Figure 16. Comparisons of IEM scattering coefficient with MM
simulations in the case of a smooth conducting surface.

3.2.3. Parametrical Study of the Scattering Coefficient

To compare the evolution according to the surface roughness, of
the coherent (17) and incoherent (50) scattering coefficients, their
variations are represented in the upper half-space. The incidence
angle is 40◦, the scattering angle and the scattering azimuthal angle
respectively vary between 0◦ and 90◦ and 0◦ and 360◦, to describe the
upper half-sphere. The cases of a smooth, then two rough surfaces are
illustrated. The frequency is 94 GHz.

In the case of the smooth surface (sz = 0 mm), the principal
lobe is really noticeable and exactly corresponds to the specular
direction (Fig. 17).

When the surface roughness increases (0mm < sz <
λ
3 = 1.0 mm),

the coherent scattering regularly decreases whereas the incoherent
scattering gradually increases, the power being scattered in the other
directions (Fig. 18).

Finally, when the surface is very rough (sz = λ
3 = 1.0 mm), the

scattering diagram is widened, the incoherent component increases
until there is nearly no privileged direction of scattering (Fig. 19).

3.2.4. Comparisons with Experimental Results and Validation

A set of bistatic measurements from known Gaussian correlated,
perfectly conducting surfaces were reported by the EMSL in [28]. The
surface considered presents the same roughness characteristic as the
one concerned in the backscattering study. The measurements are
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Figure 17. Coherent and incoherent scattering coefficients (in dBm2)
from a smooth surface at 94 GHz - sz = 0 mm.
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Figure 18. Coherent and incoherent scattering coefficients (in dBm2)
from a moderately rough surface at 94 GHz - sz = λ

10 = 0.3 mm.
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Figure 19. Coherent and incoherent scattering coefficients (in dBm2)
from a rough surface at 94 GHz - sz = λ

3 = 1.0 mm.
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Figure 20. Comparison between IEM and experimental HH and VV
measurement at 5 GHz and incidences of 20◦ and 40◦.

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
-60

-50

-40

-30

-20

-10

0

10

20

IEM HH
meas. HH
IEM VV
meas. VV

Sc
at

te
ri

ng
 C

oe
ff

ic
ie

nt
 (

dB
)

Scattering Angle (  )◦sθ ,

f = 10 GHz - θi = 20◦

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
-60

-50

-40

-30

-20

-10

0

10

20

IEM HH
meas. HH
IEM VV
meas. VV

Sc
at

te
ri

ng
 C

oe
ff

ic
ie

nt
 (

dB
)

Scattering Angle (  )◦sθ ,

f = 10 GHz - θi = 40◦

Figure 21. Comparison between IEM and experimental HH and VV
measurement at 10 GHz and incidences of 20◦ and 40◦.

taken at different frequencies at incidences of 20◦ and 40◦.
Comparison between IEM predictions and those bistatic measure-

ments is proposed at 5GHz and 10GHz, respectively on Figs. 20 and 21.
At the lower frequency, the model well reproduces experimental data
for HH and VV polarizations. At the upper frequency, the same trend
is observed between the two types of results for HH polarization and
scattering angle higher than −20◦; for −60◦ < θs < −20◦, the model
underestimates experimental values, especially in VV polarization.
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3.3. Conclusion on the Numerical Study

In this section, numerical studies on scattering coefficient were carried
out. In monostatic and bistatic configurations, it is proved that IEM
tends to SPM and KM in the frequency domains where these latter are
applicable. It is verified on the whole frequency band that IEM is in
good agreement with a reference method (MM). It is thus confirmed
that IEM is applicable over the whole frequency band and presents a
wider range of applicability with respect to other classical models such
as SPM or KM.

Moreover, a study of the variations of the bistatic scattering
coefficient allows to highlight the behavior, according to the degree
of roughness, of the coherent and incoherent scattering components.

Finally, both in monostatic and in bistatic configurations, good
agreement is obtained between experimental data reported by the the
European Microwave Signature Laboratory (EMSL), installed at the
Joint Research Centre (JRC) in Ispra, Italy and our simulations results.
All these results are an encouraging milestone of validation of the IEM
model.

4. EXPERIMENTAL ILLUSTRATIONS OF THE
SURFACE SCATTERING COEFFICIENT BEHAVIOR
AND IEM VALIDATION

4.1. Presentation of the Measurements Setup

The measurements setup [29], used for the experimentation, is
operating in the Ka-band (28–40GHz), and is presented in Fig. 22. It is
composed of two identical ellipsoidal bifocal reflectors whose diameters
and focal distances are respectively equal to 30 cm and 37 cm and a
sample-holder which allows to characterize samples of 297 × 297 mm2

dimensions.
Each ellipsoid is illuminated by a pyramidal horn, placed in its

first focus. The beam generated at the second focus is Gaussian with
a diameter close to 2λ at −3 dB aperture lobe. The variation of phase
in the focal plane is much lower than 45◦.

The antennas are laid out so that their second focus coincide; the
sample-holder is placed at this focus. It is located on a revolving pot
which allows the rotation of the incidence plane.

The antennas can turn around the radioelectric axis, which allows
measurements according to polarization. The network analyser, the
rotary translators and positioners are operating through a micro-
calculator.
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Figure 22. Measurements setup in Ka-band.

The setup allows, for any type of material, to make measurements
either in transmission or in reflection, according to the frequency, the
polarization, the incidence angle, the observation angle between the
two antennas.

4.2. Characterization of the Samples

For this experimental study, the Laboratoire Régional des Ponts et
Chaussées (LRPC) in Toulouse (France) provided us two types of
samples of road surfaces. The two samples, which will thereafter be
named ES and BBTM, are representative of 90% of the roadways of the
French road network. They were taken on the surface wearing various
roads. It is the part which supports the aggressions of surface. The
wearing consists of a surface treatment in which one or several layers of
aggregates are uniformly widespread on the roadway. The materials of
roadways are always composed of granular materials (sands), to which
a hydraulic binder (cement) or hydrocarbon (bituminizes) is possibly
added. An other characteristic of these materials is their compactness
which determines their porosity (it is often about only of a few percent).

As they were cut out with a diamond saw, the samples present a
smooth face and a rough face which are separately studied.
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240 mm

Figure 23. Smooth side of ES. Figure 24. Rough side of ES.

175 mm

Figure 25. Smooth side of BBTM. Figure 26. Rough side of
BBTM.

4.2.1. Presentation

ES is a cylindrical sample. Its two faces are presented below in Figs. 23
and 24. However let us underline that the smooth ES face presents
some irregularities due to its sawing up. The average thickness of the
ES sample is about 26.5 mm.

The other sample (BBTM) has undergone rigidity tests, and
presents, on its rough face, a rolling band. Measurements in back-
scattering and in reflection were made on this band. The photographs
in Figs. 25 and 26 present the smooth and rough faces of the BBTM
sample. The average thickness in the rolling band is about 47.8 mm.

4.2.2. Roughness and Dielectric Parameters Measurement

The heights of the irregularities on the surface of the samples are
measured with a mechanical roughometer. The roughness profile is
collected according to a diameter in the case of ES, and according to
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Figure 27. Rough profile of ES.
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Figure 28. Rough profile of BBTM.

the central line of the rolling band in the case of BBTM.
Figs. 27 to 32 give various information about the roughness of the

samples.
First the rough profiles of the samples are plotted in Figs. 27 and

28. The RMS height sz is deduced from the roughness profile as it
corresponds to standard deviation of the heights of the irregularities.
In order to determine an average value and the interval of variation in
which sz moves, several measurements were taken at different places
on each sample.

The measured height distribution is then confronted in Figs. 29
and 31 with those of a Gaussian process having the same RMS height.
Lastly, the evolution of the correlation coefficient C(R) corresponding
to the profile is shown on the curves of Figs. 30 and 32. The correlation
length can be evaluated as it corresponds to the classical distance for
which C(R) is equal to 1/e. The experimental curve were compared
with those of exponential and Gaussian correlation coefficients.

Within the framework of the simulation tool validation, the
studied surfaces are supposed to present Gaussian height distributions
and exponential autocorrelation functions.

Some informations on the dielectric characteristics of the samples
are also brought. The dielectric constant is calculated, at each
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Figure 29. Height distribution on
ES rough side.

Figure 30. Correlation coeffi-
cients of ES.
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BBTM rough side.

Figure 32. Correlation coeffi-
cients of BBTM.

frequency, from measurements in transmission and in reflection and
with an adapted software available at the DEMR and based on Physical
Optics. Thus, for each sample, an average permittivity is determined
on the Ka band.

Finally, the various characteristic parameters of the three studied
samples are listed in Table 2.

No variation interval is given for correlation lengths because these
parameters have no significant influence on the values of the scattered
coefficients in the specular directions where our measurements are
performed.
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Table 2. Characteristics of the samples.

Samples ES BBTM
sz (mm) 0.7 ± 10% 0.8 ± 10%
lc (mm) 14.5 10.0

εr 4.4 − 0.3i 4.8 − 0.5i
Thickness (mm) 26.5 47.8

4.3. Results of the Experimental Study in Backscattering
and Forward Scattering

The results obtained, for each sample, by the studies in backscattering
at normal incidence and in forward scattering for an incidence angle
of 30◦ are presented in this section.
Several measurements are made at various places on the two sides of
the samples in order to realize the randomness of the scattering by
rough surfaces. Let us recall, however, that on the BBTM sample, all
the measures are made in the rolling band.

Within the framework of measurements on the smooth faces of
the samples, we also compared the experimental values and the results
of simulations by IEM with those obtained by Physical Optics, which
allows an additional validation of the simulation tools.

The results in HH polarization are proposed on this paper.

4.3.1. Case of ES Sample

• Smooth side of ES

In backscattering as in reflection (Figs. 33 and 34), the theoretical
coefficients surestimate the measured scattering coefficients which
depend on the frequency. This is explained by the fact that the smooth
ES face presents some irregularities caused by its cutting. The addition
of a low roughness given by adequate values of sz and lc would allow
to take them into account and thus to compensate for the gap between
the two types of results.

On the other hand, the results obtained by IEM correspond to
an average of those of Physical Optics. As a matter of fact, the ES
sample has a small thickness and cannot be regarded as semi-infinite
on the concerned frequency band. So a fraction of the incident wave
penetrates in the medium and is reflected on the second interface.
The resulting field is added in a vectorial way to the field reflected
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Figure 33. Backscattering from smooth side of ES.
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Figure 34. Forward scattering from smooth side of ES.

by the first interface. This leads to the oscillations observed on the
experimental curves and those of Physical Optics.

• Rough side of ES

In backscattering and reflection, Figs. 35 and 36 show that the
results given by IEM correspond, on the Ka-band, to an average of the
experimental results.
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Figure 35. Backscattering from rough side of ES.
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Figure 36. Forward scattering from rough side of ES.
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Figure 37. Backscattering from smooth side of BBTM.
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Figure 38. Forward scattering from smooth side of BBTM.

4.3.2. Case of BBTM Sample

• Smooth side of BBTM
In the case of the smooth surface of the BBTM, in backscattering

as in forward scattering (Figs. 37 and 38), the simulation results and
experimental data are in very good agreement.

On the other hand, Physical Optics and IEM results exactly
coincide because no reflection occurs at the second interface of the
BBTM sample and the material behaves on the Ka-band as a semi-
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Figure 39. Backscattering from rough side of BBTM.
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Figure 40. Forward scattering from rough side of BBTM.

infinite medium.

• Rough side of BBTM

In backscattering (Fig. 39), the results given by IEM are
comparable with the experimental measurements. In forward
scattering (Fig. 40), experimental data are overestimated by the model.
A possible explanation is the fact that the illuminated surface appears
a little larger because of incidence; moreover the non-uniformity of
roughness on extended surface is constated.

4.3.3. Conclusion on This Experimental Study and IEM Validation

The discrepancies sometimes observed are due to various types of
factors:

• The maximum errors of accuracy inherent in the system of
measurement in the case of a perfect sample are summarized in
Table 3. Currently, the accuracy of measurements depends on the
state of the surface, the parallelism of the sample faces and the
errors caused due to the instrumentation.
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Table 3. Defects of instrumentation.

Illumination Level (dB) Accuracy for incidence between 0◦ and 30◦

0 to -1 ±0.02

-1 to -3 ±0.1

-3 to -10 ±0.2

-10 to -40 ±0.5

beyond -40 > ±1

• Because of the tests undergone elsewhere and of their sawing, the
faces of the samples present lacks of flatness. These defects can
involve some errors in measurements, as the plane of measurement
on the sample does not exactly correspond to the reference plane
fixed during the calibration of the system.

• Lastly, the quasi-totality of the noticed differences are due to the
difficulties encountered during the characterization of the samples.
The measured dielectric and roughness paremeters do not exactly
describe the road samples, which are very difficult to characterize
because of the complexity of their manufacturing.

However, despite these difficulties, good agreements are generally
obtained between experimental measurements and the simulated
results by IEM.

5. CONCLUSION

This paper is devoted to the numerical and experimental validations
of the improved version of the Integral Equation Method recently
published by Fung, Liu, Chen and Tsay in [1].

First, as an introduction, the chronology of the successive
improvements made to the IEM theoretical formulation is briefly
detailed. Then, the major steps of the surface scattering coefficient
calculation by IEM are enumerated in the following section.

In the third part, numerical validations of the model have been
investigated. The IEM simulation results are compared with those
of Method of Moments (MM) on a wide frequency range, and with
Small Perturbation Method (SPM) and Kirchhoff Model (KM), in the
frequency domain where these latter are applicable. It is, thus, verified
and confirmed that IEM is applicable over the whole frequency band
and tends to bridge the gap between SPM and KM.



Numerical and experimental validations of IEM 237

Moreover, parametrical study of the surface scattering coefficient
is carried out in monostatic and bistatic cases. So, it is assessed that
the backscattered power increases with the surface roughness until
no scattering direction is no longer privileged. On the other hand,
the study of the variations of the bistatic scattering coefficient allows
to highlight the behavior, according to the roughness degree, of the
coherent and incoherent scattering components.

Finally, both in monostatic and in bistatic configurations, good
agreement is obtained between experimental data reported by the
European Microwave Signature Laboratory (EMSL), installed at the
Joint Research Center (JRC) in Ispra, Italy and IEM simulations
results. IEM validation is achieved by confronting the model
predictions with experimental data collected during measurements
on road surfaces at the Electromagnetism and Radar Department
(DEMR) of ONERA-Toulouse (France). Either in backscattering as
in forward scattering, the overall agreement between the model and
data is very satisfying.

These numerical and experimental validations allow to conclude
that the IEM model suit predict the scattering from random smooth
to moderate rough surfaces, on a wide range of frequencies and angular
observations.
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APPENDIX A. THE FIELD COEFFICIENTS
EXPRESSIONS

In this section, the expressions of the Kirchhoff and complementary
field is given in the general case. It is advised to refer to page 167
in [9], as the same set of coordinates and unit vectors are used as
reference.

A.1. Expressions of Kirchhoff Coefficients

The Kirchhoff coefficients expressions fqp, which allow to calculate the
Kirchhoff scattering coefficient, are given below, for each co and cross
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polarizations by (A1), (A2), (A3) and (A4).

fhh = − Rh

cos θs + cos θi
[ sin θs sin θi−(1+cos θs cos θi) cos(ϕs−ϕi)] (A1)

fvv =
Rv

cos θs + cos θi
[ sin θs sin θi − (1 + cos θs cos θi) cos(ϕs −ϕi)] (A2)

fvh = −2R[ sin(ϕs − ϕi)] (A3)

fhv = 2R[ sin(ϕs − ϕi)] (A4)

where Rh and Rv are horizontal and vertical reflection coefficients and
R = Rv−Rh

2 .

A.2. Expressions of Complementary Coefficients

The co and cross polarized complementary coefficient expressions are
calculated on Appendix 4B in [9]. The general expressions of the Ci

and Bi coefficients (A5 to A16) are given below when the phase term
is removed in the Green function (1).

• Ci coefficients

C1(�ks,�ki, rq) = k cos(ϕs − ϕi)

− k

(ksz−rq)(kz+rq)
×[(ksx+u) cosϕs + (ksy + v) sinϕs]

× [(kx + u) cosϕi + (ky + v) sinϕi] (A5)

C2(�ks,�ki, rq) = cos θi cos(ϕs − ϕi) rq

+
cos θi

kz+rq
[(kx+u) sinϕi−(ky+v) cosϕi][sinϕsu−cosϕsv]

+
sin θi

kz + rq
[(kx + u) cosϕs + (ky + v) sinϕs] rq

− cos θi

ksz−rq
[(ksx+u) cosϕs+(ksy+v)sinϕs][cosϕiu+sinϕiv]

− sin θi

(ksz − rq)(kz + rq)
[(ksx + u) cosϕs + (ksy + v) sinϕs]

× [(kx + u)u+ (ky + v)v] (A6)

C3(�ks,�ki, rq) =

{
cos θi

kz + rq
[(kx + u) cosϕi + (ky + v) sinϕi] − sin θi

}

×
{

1
ksz − rq

[(ksx + u) cosϕs + (ksy + v) sinϕs] rq
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+ [ cosϕs u+ sinϕs v]

}
(A7)

C4(�ks,�ki, rq) = k cos θs cos θi cos(ϕs − ϕi)

+
k cos θs sin θi

kz + rq
[(kx + u) cosϕs + (ky + v) sinϕs]

+
k sin θs cos θi

ksz − rq
[(ksx + u) cosϕi + (ksy + v) sinϕi] rq

− k cos θs cos θi

(ksz − rq)(kz + rq)
[(ksx + u) sinϕs − (ksy + v) cosϕs]

× [(kx + u) sinϕi − (ky + v) cosϕi]

+
k sin θs sin θi

(ksz−rq)(kz+rq)
[(ksx+u)(kx+u)+(ksy+v)(ky+v)]

(A8)

C5(�ks,�ki, rq) =− cos θs cos(ϕs − ϕi) rq

− cos θs

kz+rq
[(kx+u) cosϕi+(ky+v) sinϕi][cosϕsu+sinϕsv]

+
cos θs

ksz−rq
[(ksx+u) sinϕs−(ksy+v) cosϕs][sinϕiu−cosϕiv]

− sin θs

ksz − rq
[(ksx + u) cosϕi + (ksy + v) sinϕi] rq

− sin θs

(ksz − rq)(kz + rq)
[(kx + u) cosϕi + (ky + v) sinϕi]

× [(ksx + u) u+ (ksy + v) v] (A9)

C6(�ks,�ki, rq) =
1

(kz + rq)
[(kx + u) sinϕi + (ky + v) cosϕi]

×
{

− cos θs

(ksz − rq)
[(ksx + u) sinϕs − (ksy + v) cosϕs] rq

− cos θs [ sinϕs u− cosϕs v] +
sin θs

(ksz − rq)

× [(ksx + u) v − (ksy + v) u]

}
(A10)

• Bi coefficients

B1(�ks,�ki, rq) = k cos θs sin(ϕs − ϕi)
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− k sin θs

(ksz − rq)
[(ksx + u) sinϕi − (ksy + v) cosϕi]

− k cos θs

(ksz − rq)(kz + rq)
[(ksx + u) sinϕs − (ksy + v) cosϕs]

× [(kx + u) cosϕi + (ky + v) sinϕi] (A11)

B2(�ks,�ki, rq) = cos θs cos θi sin(ϕs − ϕi)

− cos θs cos θi

kz + rq
[(kx + u) sinϕi − (ky + v) cosϕi]

× [ cosϕs u+ sinϕs v]

+
cos θs sin θi

kz + rq
[(kx + u) sinϕs − (ky + v) cosϕs] rq

− cos θs cos θi

ksz − rq
[(ksx + u) sinϕs + (ksy + v) cosϕs]

× [ cosϕi u+ sinϕi v]

− sin θs cos θi

ksz − rq
[(ksx + u) sinϕi − (ksy + v) cosϕi] rq

− cos θs sin θi

(ksz − rq)(kz + rq)
× [(ksx+u) sinϕs−(ksy+v) cosϕs][(kx+u)u+(ky+v)v]

− sin θs cos θi

(ksz−rq)(kz+rq)
× [(kx+u) sinϕi−(ky+v) cosϕi][(ksx+u)u+(ksy+v)v]

− sin θs sin θi

(ksz−rq)(kz+rq)
[(ksx+u)(ky+v)−(ksy+v)(kx+u)]

(A12)

B3(�ks,�ki, rq) =

{
− cos θi

kz + rq
[(kx + u) cosϕi + (ky + v) sinϕi] + sin θi

}

×
{

cos θs

ksz − rq
[(ksx + u) sinϕs − (ksy + v) cosϕs] rq

− cos θs [ sinϕs u− cosϕs v] +
sin θs

ksz − rq

× [(ksx + u) v − (ksy + v) u]

}
(A13)

B4(�ks,�ki, rq) =−k cos θi sin(ϕs − ϕi)
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k sin θi

kz + rq
[(kx + u) sinϕi − (ky + v) cosϕi]

− k cosθi

(ksz − rq)(kz + rq)
[(ksx + u) cosϕs + (ksy + v) sinϕs]

× [(kx + u) sinϕi − (ky + v) cosϕi] (A14)

B5(�ks,�ki, rq) = sin(ϕs − ϕi) rq

+
1

kz+rq
[(kx+u) cosϕi+(ky+v) sinϕi][sinϕsu−cosϕsv]

+
1

ksz−rq
[(ksx+u) cosϕs+(ksy+v) sinϕs][sinϕiu−cosϕiv]

(A15)

B6(�ks,�ki, rq) =
1

kz + rq
[(kx + u) cosϕi + (ky + v) sinϕi]

×
{
− 1
ksz − rq

[(ksx + u) cosϕs + (ksy + v) sinϕs] rq

− [ cosϕs u+ sinϕs v]

}
(A16)
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Numerical and experimental validations of IEM 243

November 2002.
21. Hsieh, C.-Y., “Multiple scattering from randomly rough surfaces,”

University of Texas at Arlington, April 1996.
22. Hsieh, C.-Y., “Dependence of backscattering enhancement from

randomly very rough surfaces,” Proc. IGARSS ’99’, Vol. 4, 2197–
2199, June 28–July 2, 1999.

23. Hsieh, C.-Y., “Angular dependence of backscattering enhance-
ment from randomly very rough surfaces,” Chinese Journal of
Physics, Vol. 38, No. 3-I, 491–515, June 2000.

24. Li, E. S. and K. Sarabandi, “Low grazing incidence millimeter-
wave scattering models and measurements for various road
surfaces,” IEEE Transactions on Antennas and Propagation,
Vol. 47, No. 5, 851–861, May 1999.

25. Coppo, P., D. Tarchi, and M. Weinberger, “An experimental
model for surface scattering models validation at the European
Microwave Signature Laboratory,” Proc. IGARSS ’95’, Vol. 2,
930–932, July 1995.

26. Nesti, G., P. Coppo, M. Hallikainen, M. Mancini, P. Troch, and
M. von Shönermark, “Experimental research at the EMSL on
scattering properties of non vegetated terrains,” Proc. IGARSS
’95’, Vol. 3, 2020–2022, July 1995.

27. Nesti, G., J. Fortuny, and J. M. Lopez-Sanchez, “Polarimetric
microwave remote sensing experiments at the EMSL,” IEEE
Geoscience and Remote Sensing Society Newsletter, 6–11, March
2000.

28. Marcelloni, M., G. Nesti, P. Pampaloni, S. Sigismondi, D. Tarchi,
and S. Lolli, “Experimental validation of surface scattering and
emission models,” IEEE Transactions on Geoscience and Remote
Sensing, Vol. 38, No. 1, 459–469, January 2000.

29. Bolioli, S. and M. Lopez, “Microwave material characterization
using focused systems,” Proc. PIERS, Nantes, France, 1998.
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