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Abstract—In the framework of buried object detection and subsurface
sensing, some of the main difficulties in the reconstruction process are
certainly due to the aspect-limited nature of available measurement
data and to the requirement of an on-line reconstruction. To limit these
problems, a multi-source (MS) learning-by-example (LBE) technique
is proposed in this paper. In order to fully exploit the more attractive
features of the MS strategy, the proposed approach is based on a
support vector machine (SVM). The effectiveness of the MS-LBE
technique is evaluated by comparing the achieved results with those
obtained by means of a previously developed single-source (SS) SVM-
based procedure for an ideal as well as a noisy environment.
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1. INTRODUCTION

The detection of natural as well as man-made subsurface targets,
the identification of cracks and voids included in a host structure,
the location of sedimentary layers under the sea water represent
few examples of a large number of practical applications where the
reconstruction of an unknown object embedded in a not-accessible
region is required.

As a matter of fact, the arising problem can be reformulated in
terms of an inverse scattering problem where the problem-unknowns
(i.e., the image of the subsurface target) are obtained starting from the
observation of the electromagnetic interactions between the object and
a probing electromagnetic source. However, a large set of subsurface
retrieval problems, unlike standard imaging problems, presents some
peculiar requirements and characteristics:

• the aspect-limited measurement setup (and, consequently, a
limited achievable information content);

• the need of a real-time processing.

As far as the information achievable from scattered data is concerned,
due to the system geometry (being both electromagnetic sources and
measurement points located on the same half-space), the inverse-
problem data are acquired only on a finite set of measurement positions
(aspect-limited data) resulting in a troublesome reconstruction process
[1] particularly if a single-source single-illumination strategy is taken
into account.

In order to enhance the reconstruction accuracy, enlarging
the information content of the input data, a MS strategy can
be usefully adopted. As a matter of fact, single-source multi-
illumination strategies have been already successfully employed in the
framework of conventional inverse scattering problems [2, 3]. However,
when conventional nonlinear single-source multi-illumination inverse
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scattering techniques are used, large computational resources are
required strongly limiting the possibility for a real or quasi-real-time
processing. Then, to fully exploit the effectiveness of a microwave
imaging method, allowing an on-line detection also for large values of
the contrast function, the use of so-called LBE techniques results very
attractive. The detection problem is reformulated into a regression
one, where the data (i.e., the measures of the anomalous field) and the
unknowns (i.e., the position of the object as well as its geometric and
dielectric characteristic according to the adopted parameterization)
are related by means of an approximated function to be estimated
through an off-line data fitting process (training phase). As a matter
of fact, approaches based on both neural networks (NNs) [5, 6] and
SVMs [7, 8] have been satisfactorily applied for buried object detection
in presence of single-illumination acquisition systems. On the other
hand, the use of a multi-illumination strategy certainly would improve
the localization accuracy of the LBE-based approach, but could greatly
complicate the mandatory training procedure. Consequently, in order
to increase the data information content jointly limiting the overall
computational burden during the training phase, an innovative, to the
best of authors’ knowledge, LBE-approach based on a multi-source
strategy is taken into account in this paper.

In more detail, the manuscript is organized as follows. Starting
from the description of the detection problem (Section 2), Section 3
presents the mathematical formulation of the multi-source SVM-based
approach. After a deep assessment of the potentialities and current
limitations of the method (Section 4), some conclusions and final
remarks are reported in Section 5.

2. FORMULATION OF THE REGRESSION PROBLEM

Let us consider the half-space geometry shown in Figure 1, where the
upper region is assumed to be free-space (εr1 = 1.0, σ1 = 0.0) and
the lower region is representative of a lossy ground, whose relative
permittivity and electric conductivity are εr2 and σ2, respectively.
A two-dimensional circular cylinder of diameter dcil is buried in
the lossy earth at an unknown position ρ

cil
= xcilx̂ + ycilŷ. The

transmitters and receivers are located in the free-space, along a straight
line parallel to the air-earth interface. Moreover, let us suppose
that the buried cylinder is contained in an investigation domain
DI =

{
−L

2 ≤ x ≤ L
2 ;−L

2 ≤ y ≤ L
2

}
. Consequently, the permittivity
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Figure 1. Problem geometry.

distribution of the investigation domain results

εDI

(
ρ
)

=

{
εrcil ρ ∈ Scil
εr2 otherwise

(1)

σDI

(
ρ
)

=

{
σcil ρ ∈ Scil
σ2 otherwise

(2)

where Scil indicates the cylinder cross-section.
Then, by assuming ẑ-directed electric current filaments as

electromagnetic sources, the scattered electric field measured at the
rth receiver position ρ

r
, r = 1, . . . , R due to T transmitters located at

ρ
t
, t = 1, . . . , T is given by

Escat
(
ρ
r

)
= k2

∫
DI

G12

(
ρ
r
, ρ

)
E

(
ρ
t
t = 1, . . . , T ; ρ

)
O

(
ρ
)
dρ (3)

where E
(
ρ
t
t = 1, . . . , T ; ρ

)
is the electric field at ρ ∈ DI due to the

illumination produced by T sources; G12

(
ρ
r
, ρ

)
is the Green function

when ρ
r

belongs to the upper half-space and ρ lies in the ground; O
(
ρ
)
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is the object function defined as follows

O
(
ρ
)

= Oε
(
ρ
)

+ j
1

ωεr1
Oσ

(
ρ
)

(4)

where Oε
(
ρ
)

= εDI (ρ)− εr2 and Oσ
(
ρ
)

= σDI

(
ρ
)
− σ2.

The detection problem is aimed at determining the unknown
function relating the measurement data to the unknowns of the inverse
scattering problem, that is to find a function � such that:

℘ = � (ΓE) (5)

being ℘ =
{
ρ
cil
, dcil, εrcil, σcil

}
and ΓE =

{
Escat

(
ρ
r

)
, r = 1, . . . , R

}
.

The arising problem is very complex and difficult to be managed
due to the nonlinearity and ill-posedness. However, if N examples
(i.e., couples of input-output pairs

{(
℘

)
n
, (ΓE)n

}
, n = 1, . . . , N) are

available, then (5) can be seen as an example of a regression problem
for which an approximation of � can be determined by means of a
SVM-based procedure as detailed in Section 3.

3. LBE-BASED TECHNIQUE FOR BURIED OBJECT
DETECTION — THE SVM ALGORITHM

Learning-by-examples techniques are based on the following underlying
idea: “to find an approximation of the unknown function � by means
of a data-fitting process”.

As far as the NN approach [9] is concerned, the data fitting is
carried out by means of a nonlinear interpolation of the N examples
in the R-dimensional input space, ΓE , (being R the input-space
dimension). However, NN-based solution generally does not allow the
model complexity control, sometime leading to an “over-fitting” of the
training data and resulting in an inability to correctly estimate the
output in presence of input data which do not belong to the original
training set.

Conversely, SVMs maintain generalization properties by consid-
ering a linear data-fitting in a transformed space where the original
examples are mapped through a nonlinear mapping. In more detail,
firstly each data array {ΓE}n is mapped into the so-called “feature
space” by means of a nonlinear transformation ϕ: �R → �R̃ being
R̃ 
 R. Then, the sample points on the feature space are linearly
interpolated according to the following relation

�̂ (ΓE) = w · ϕ (ΓE) + b (6)
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where w is the vector normal to the hyper-plane defined by (6) in the
feature space and b is the bias term. The selection of the proper hyper-
plane is carried out by solving the arising constrained minimization
problem:

minw{Ω(w)} (7)
under the constraints{ ∣∣∣℘(k)

n −
(
w · ϕ{(ΓE)n}+ b

)∣∣∣ ≤ ε + ξn

ξn ≥ 0
(8)

where

Ω{w} = Ω1{w}+ λΩ2{w} =
1
2
‖w‖2 + λ

N∑
n=1

ξn (9)

being ℘
(k)
n the kth component of the nth target of the training set.

Then, it results that the so defined hyper-plane is “as flat as possible”
(thus providing a simple linear data fitting in the feature space) and the
arising approximating function �̂ shows for a large number of examples
a deviation from the target lower than a fixed quantity, ε, and greater
deviations, ξn for some examples.

In order to solve (7), the original problem is usually reformulated
in its “dual form” by introducing N Lagrange multipliers, αn, n =
1, . . . , N (see [10] for a detailed mathematical description)

min
αn
{Ψ(αn, n = 1, . . . , N)}

= min
αn

1
2

N∑
i=1

N∑
j=1

αiαjK
(
ϕ {(ΓE)i} , ϕ{(ΓE)j}

)

+ ε
N∑
n=1

|αn| −
N∑
n=1

αn℘
(k)
n

}
(10)

N∑
n=1

αn = 0 αn ∈ [−λ, λ] (11)

where K
(
xi, xj

)
= ϕ(xi) · ϕ(xj) is the kernel function. Provided

that K be positive-defined, the quadratic problem (10)–(11) has an
unique solution and standard algorithms [11, 12] can be used in order
to determine the αn coefficients. Consequently, it is possible to
analytically express w as follows

w =
N∑
n=1

αnϕ{(ΓE)n} (12)
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and to compute the value of the bias term, b, according to [12]

b = ℘(k)
n −

N∑
j=1

[
αjϕ{(ΓE)n} · ϕ{(ΓE)j} − ε · sign(αn)

]
. (13)

According to (6) and (12), the approximating function �̂ can be
rewritten as

�̂(ΓE) =
N∑
n=1

αnK{(ΓE)n,ΓE}+ b (14)

where only the knowledge of support vectors, {αj �= 0, j = 1, . . . , J},
and of the kernel function is needed. It should be pointed that its
is not required to explicitly define the nonlinear function ϕ and the
nonlinear mapping is realized by selecting a function K so that it
represents a positive-definite kernel function. In this paper, gaussian
kernel functions, whose effectiveness in dealing with subsurface sensing
has been already assessed [5], are taken into account.

4. RESULTS

In order to test the effectiveness of the proposed approach, a set
of selected numerical examples is considered. With reference to the
problem geometry illustrated in Figure 1, the following geometry
and dielectric parameters are taken into account. The subsurface
relative permittivity and conductivity are εr2 = 4.0 and σ2 = 1 mS/m,
respectively. The investigation domain is a λ × λ square region
where an unknown lossless circular pipe, dcil = λ/6 in diameter and
characterized by a relative permittivity equal to εrcil = 5.0, is located.
The multi-source system is organized as follows. Transmitters and
receivers are located at ht = hr = λ/6 above the air-earth interface and
R = 16 receivers are positioned along the linear observation domain
(L = λ long) with an inter-element distance equal to ∆r = λ/15.
Moreover, illuminating sources are positioned one λ/4 far from the
other (∆t = λ/4) on the same linear domain. The measurement data
are numerically computed by means of a finite-element-based simulator
and by considering an additive white gaussian noise with assigned
signal-to-noise ratio (SNR) to simulate a realistic noisy environment.

As far as the generation of the training and of the test sets are
concerned, the target cylinder is moved in Ntrain = 676 and Ntest = 625
different positions according to the following scanning rule

ρ(i)
n

=
(
x(i)
pq , y

(i)
pq

)
n = 1, . . . , N (i) (15)
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where the superscript i is related to the “training” (train) or to the
“test” (test), and

x
(i)
pq = x

(i)
start + (p− 1)∆x(i) p = 1, . . . , N (i)

x

y
(i)
pq = y

(i)
start + (q − 1)∆y(i) q = 1, . . . , N (i)

y

N (i) = N
(i)
x ×N

(i)
y

(16)

being x
(train)
start = y

(train)
start = −λ/2, ∆x(train) = ∆y(train) =

λ/25, N
(train)
x = N

(train)
y = 26, and x

(test)
start = y

(test)
start =

−12λ/25, ∆x(test) = ∆y(test) = λ/25, N
(test)
x = N

(test)
y = 25,

respectively.
In the first test case, T = 3 unit sources, located so that the

medium one is central with respect to the investigation domain, are
considered in an almost ideal environment scenario (SNR = 100 dB) to
preliminary assess the effectiveness of the proposed multi-source LBE-
based approach (MSLBE). To this end, in order to allow a quantitative
estimation of the localization accuracy, the following error figures are
then defined

• Local Errors

δnx =
|xpq − x̃pq|

D
δny =

|ypq − ỹpq|
D

n = p + (q − 1)N (test)
x

p = 1, . . . , N (test)
x

q = 1, . . . , N (test)
y

(17)

being (x̃pq, ỹpq) and (xpq, ypq) estimated and actual coordinates of the
scatterer, respectively, and D = L the maximum error.

• Local Average Errors

∆p
x =

∣∣∣∣∣∣∣Xp −
1

N
(test)
y

N
(test)
y∑
r=1

x̃pr

∣∣∣∣∣∣∣
D

p = 1, . . . , N (test)
x (18)

∆p
y =

∣∣∣∣∣∣∣Yq −
1

N
(test)
x

N
(test)
x∑
r=1

ỹrq

∣∣∣∣∣∣∣
D

q = 1, . . . , N (test)
y (19)

where Xp = xpq, ∀q = 1, . . . , N (test)
y and Yq = ypq, ∀p = 1, . . . , N (test)

x .
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• Global Average Errors

Θx =
1
D

√√√√√√ 1

N
(test)
y

N
(test)
y∑
p=1

Xp −
1

N
(test)
y

N
(test)
y∑
r=1

x̃pr


2

(20)

Θy =
1
D

√√√√√√ 1

N
(test)
x

N
(test)
x∑
q=1

Yp − 1

N
(test)
x

N
(test)
x∑
r=1

ỹrq


2

(21)

Figure 2 shows the local error in the estimation of both the target
coordinates as a function of the target position. For comparison
purposes, the results obtained with a single-source single-illumination
LBE-based approach (SSLBE) are also reported in Figure 3 (being
the unit source located at a central position with respect to the
investigation domain). As can be observed, the MSLBE technique
generally outperforms the SSLBE approach. In particular, the
horizontal resolution results very accurate as confirmed from the local
error statistics (Tab. 1) 1

3 lower than those related to SSLBE approach.

Table 1. Local error statistics.

(a)

avn {δnx} maxn {δnx} minn {δnx}
MSLBE-Approach 0.015 0.079 7.55× 10−5

SSLBE-Approach 0.058 0.274 6.80× 10−5

(b)

avn{δny } maxn{δny } minn{δny }
MSLBE-Approach 0.035 0.207 1.56× 10−5

SSLBE-Approach 0.035 0.224 3.09× 10−5

As far as the robustness to the environmental noise is concerned,
the performances of the proposed approach are evaluated in the
second test case dealing with a training data set related to examples
with SNR = 100 dB but test sets ranging from SNR = 100 dB to
SNR = 5 dB. Figure 4 shows the behavior of the global average error
in the estimation of the spatial x and y coordinates as a function
of the signal-to-noise ratio. As a comparison, the plots related to
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Figure 2. MSLBE approach. Local error as a function of the actual
position of the buried cylinder: (a) δx and (b) δy.

SSLBE approach are also reported. It can be noted that the MSLBE
approach guarantees an improvement in the localization accuracy also
in correspondence with lower SNR values. In more detail, if the use
of the multiple source strategy allows a consistent decrease in the
localization error along the horizontal direction, it retains the good
performances already shown by SSLBE in the estimation of the target
depth, slightly improving the localization effectiveness for strongly
noisy environments.
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Figure 3. SSLBE approach. Local error as a function of the actual
position of the buried cylinder: (a) δx and (b) δy.

Since the prediction of the horizontal position of the target is
more positively affected by the MSLBE strategy, in order to better
understand the arising positive “effects”, the relative local average is
reported in Figure 5. As expected, in correspondence with a fixed
signal-to-noise, the MSLBE approach better estimates the position of
the targets located near the lateral boundaries of the investigation
domain with a corresponding local average error lower than 0.05 for
SNR ≥ 10 dB when −0.3 ≤ Xp

λ ≤ 0.25.



196 Bermani et al.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  10  20  30  40  50  60  70  80  90  100

Θ
x

SNR

Multi-source

Single-source

(a)

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  10  20  30  40  50  60  70  80  90  100

Θ
y

SNR

Multi-source

Single-source

(b)

Figure 4. Behavior of the global average error versus SNR: (a) Θx

and (b) Θy.
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Figure 5. Behavior of the horizontal local average error in
correspondence with various SNR values: (a) MSLBE approach and
(b) SSLBE approach.
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5. CONCLUSIONS

In this paper a multi-source LBE-based electromagnetic approach
is presented for the detection of buried objects. The proposed
method allows to combine the advantages of a multi-source strategy
with those of a SVM-based methodology, satisfying the requirements
of both accurate and real-time processing. The effectiveness
of the approach has been assessed, also in comparison with a
previously developed SSLBE approach, by considering noiseless as
well as noisy environments. The obtained results demonstrated an
improved accuracy regardless to the modeled environmental noise and,
particularly, in predicting the horizontal coordinate of the target.
Future research activities will be devoted to the definition of the
optimal trade-off between number and location of illumination sources
in order to give some guidelines for the design of optimized sub-surface
electromagnetic applicators.
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