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Abstract—Space-Time reversal symmetry properties of free-Space
electromagnetic Green’s tensors for complex and bianisotropic
homogeneous media are discussed. These properties are defined by
symmetry of the medium under consideration, of the point sources and
of the vector S connecting the source and the point of observation.
The constraints imposed on Green’s tensors by the restricted Time
reversal, by the center and anticenter of symmetry are independent on
the vector S orientation. Other Space-Time reversal operators lead to
constraints on Green’s tensors only for some special directions in Space.
These directions are along the (anti)axes and (anti)planes and normal
to the (anti)axes and (anti)planes. The full system of the continuous
magnetic point groups for description of Space-Time reversal symmetry
of Green’s tensors is defined and a general group-theoretical method
for calculation of simplified forms of Green’s tensors is presented.
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1. INTRODUCTION

Electromagnetic problems involving Maxwell’s equations are formu-
lated in terms of sources (their distribution and geometry), medium
properties (in terms of constitutive relations or equation of motion)
and boundary conditions with corresponding geometry. All these con-
stituents of the problems may be considered from the point of view
of Space-Time reversal symmetry. Space symmetry includes rotation-
reflection and displacement symmetry operations, whilst Time reversal
operation T presents changing the sign of Time (t → −t). In some
cases of magnetic structures, combined Space-Time reversal symmetry
can exist. The resultant Space-Time reversal symmetry governs some
general characteristics of the solutions of Maxwell’s equations and in
particular of the symmetry properties of Green’s tensors.
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Green’s tensors (dyadics, functions) are a powerful tool for solving
different types of linear differential equations found in electromagnetic
radiation, scattering and diffraction. Green’s tensors represent the
solution to a given inhomogeneous equation with a point source.
The problem of Green’s tensor calculations is rather complicated.
The complexity depends on the properties of material media and
on the boundary conditions. In case of free-Space electromagnetic
problems, boundaries are not present (in order to obtain unique
solutions, one should use radiation conditions). However, even with
this simplification, analytic solutions for Green’s tensors for a general
bianisotropic medium are not known. Examples of calculations of
dyadic Green’s tensors for complex and bianisotropic media can
be found in publications of Cheng, Olyslager, Kong, Lindell, Tai,
Weiglhofer and many others (see our list of references [1–3, 5, 7, 10–
27] which is by no means exhaustive).

In the Space-Time domain (r, t), the 6×6 combined Green’s tensor
of second rank Ḡ(r, r0; t, t0) of the problem under consideration is
defined by

Ḡ(r, r0; t, t0) =

(
Ḡee(r, r0; t, t0) Ḡem(r, r0; t, t0)

Ḡme(r, r0; t, t0) Ḡmm(r, r0; t, t0)

)
, (1)

where Ḡee(r, r0; t, t0) and Ḡmm(r, r0; t, t0) are the 3× 3 Green tensors
of second rank of the electric and magnetic type, respectively,
Ḡem(r, r0; t, t0) and Ḡme(r, r0; t, t0) are the 3 × 3 Green’s tensors of
second rank of the mixed type.

Maxwell’s equations with constitutive relations and corresponding
differential equations for Green’s tensors can possess different types of
symmetry. The symmetry conditions force upon some restrictions on
Green’s tensors. For example, invariance of the problem with respect
to arbitrary linear Space-Time displacements leads to some known
general restrictions on Green’s tensors [1]. Namely, Green’s tensors
for unbounded homogeneous stationary media depend only on the
difference (r− r0) of the position vectors of the point of observation r
and of the source point r0, and on the difference (t− t0), i.e.,

Ḡ(r, r0; t, t0) = Ḡ(r− r0; t− t0). (2)

Also, the duality principle, i.e., the internal symmetry of
Maxwell’s equations with respect to interchange of magnetic and
electric quantities [2] gives some general relations. Duality leads to
the following restrictions on Green’s tensors (written in the Space-
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frequency domain (r, ω)):

Ḡee( ε̄, µ̄, ξ̄, ζ̄, r, r0 ) = Ḡmm( µ̄, ε̄,−ζ̄,−ξ̄, r, r0 ),

Ḡem( ε̄, µ̄, ξ̄, ζ̄, r, r0 ) = − Ḡme( µ̄, ε̄,−ζ̄,−ξ̄, r, r0 )
(3)

where ε̄, µ̄, ξ̄ and ζ̄ are the 3× 3 constitutive tensors of bianisotropic
media.

For reciprocal media, other important constraints on Green’s
tensors exist [2]:

Ḡ(r0 − r) = (Ḡ◦)t(r− r0). (4)

where t denotes transposition, the symbol ◦ stands for an operation
which is called the adjugation. The adjugation changes the sign of
the off-diagonal block tensors of the mixed type Ḡem(r − r0) and
Ḡme(r− r0) (see Section 3.6).

Loss-free media possess a special type of symmetry which also
manifests itself in Green’s tensors. For lossless anisotropic media, the
Green’s tensors satisfy the following relation [1]:

Ḡ(r0 − r) = −(Ḡ∗)t(r− r0), (5)

where the symbol ∗ denotes complex conjugation.
It is possible to obtain some relations for Green’s tensors which

follow from a general Space-Time reversal symmetry consideration.
Discussing this problem, Altman and Suchy [3] showed that for two
regions of Space defined by orthogonal mapping r′ = R̄ · r and
r′0 = R̄ · r0, where R̄ is a 3× 3 mapping operator (see Appendix B),
Green’s tensor Ḡ(r, r0) is mapped as follows:

Ḡ′(r′, r′0) = R̄6 · Ḡ(r, r0) · R̄t
6, (6)

and the adjoint Green’s tensor as

Ḡ′(r′0, r
′) = R̄6 · (Ḡ)t(r, r0) · R̄t

6, (7)

where 6 × 6 matrix R̄6 is the mapping operator corresponding to R̄.
The operator R̄6 is defined below by Eq. (23). In the theory of Altman
and Suchy, the vector S = (r− r0) defined by the point of a source r0

and the point of observation r changes its position and orientation
in Space after mapping so that the tensors Ḡ′(r′, r′0) and Ḡ(r, r0)
correspond in general to different regions of Space (medium) and these
regions possess different electromagnetic properties.

It is well-known that Space (rotation, reflection)-Time reversal
symmetry of a medium leads to a simplified structure of constitutive
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tensors [6]. One can expect that this symmetry is reflected also in
the structure of Green’s tensors. However, Green’s tensors are more
complex mathematical objects as compared with constitutive tensors.
Therefore, this problem requires a special consideration.

The main aim of this work is to demonstrate that using Space-
Time reversal symmetry of media, one can simplify Green’s tensors.
The results of Altman and Suchy [3] are a basis for our work. Another
basis is the theory of magnetic groups (see Appendix A).

We shall investigate symmetry properties of Green’s tensors for the
cases when the transformed Green’s tensor is in the same environment
(in the same medium) as the original (not transformed) tensor. This
allows us to find some relations between the tensor elements. We shall
treat in this paper the cases where the vector S is invariant with respect
to the corresponding Space-Time reversal symmetry transformations
or at most changes the sign preserving its orientation in Space. In cases
of high symmetry of the medium (a spherical symmetry), the theory
allows us to find some general restrictions on the tensor elements,
and these restrictions do not depend on the vector S orientations.
In cases of lower symmetries (for example, axial ones) we can define
those directions in Space which lead to the simplest, canonical forms
of Green’s tensors and to calculate the structure of these tensors. The
structure of the Green’s tensors for these special directions (with the
proper orientation of the coordinate system) is defined by symmetry
of media.

We shall not be interested in the explicit expressions of Green’s
tensors in terms of S and medium parameters. Group-theoretical
methods used in this paper do not allow one to obtain such expressions.
Our interest lies in the structure of Green’s tensors. This structure is
defined by the equality of some of the entries of the tensors to zero
(i.e., Gij(S) = 0) and equality of some of the entries among themselves
(i.e., Gij(S) = Gji(±S) or Gij(S) = −Gji(±S)). Thus, our problem
is to obtain the information about Green’s tensors which follow from
the Space-Time reversal symmetry properties of the media. We shall
illustrate the obtaining the simplified structure of Green’s tensors with
some examples.

Also, one of the main concerns of this paper is to introduce the
full system of the continuous magnetic point groups for description of
Space-Time reversal symmetry of Green’s tensors. The full system
of the continuous magnetic groups allows one to calculate and to
catalogue all the admissible structures (forms) of Green’s tensors for
media with these symmetries.

Group-theoretical formalism adopted here is general and can be
used in both the time and frequency domains. Here, the general ideas
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Figure 1. The position vectors r and r0 of Green’s tensor Ḡ(r− r0)
and the vector S = (r− r0).

will be demonstrated in the frequency domain (more exactly, in the
(r, ω) domain). The results of the analysis are compared with some of
the analytical solutions available in the literature.

2. SYMMETRY DESCRIPTION OF THE PROBLEM

We shall consider an unbounded homogeneous linear bianisotropic and
in general lossy medium which can be described by a symmetry G1.
G1 is a general notation of a magnetic group of the first, second or the
third category (see Appendix A). The groups of the first category will
be denoted by the usual letters, the groups of the second category by
bold type and the groups of the third category by the symbol G(H)
where H is a unitary subgroup of the group G. Discussing the concrete
magnetic groups, we shall use the Schoenflies notations [4].

The three-dimensional Dirac delta function δ(r − r0)̄I (̄I is the
3 × 3 unit matrix) used below for Green’s tensor calculations belongs
to the so-called generalized functions [5]. It describes an idealized
physical object. From the point of view of symmetry, delta function
has a peculiarity. From one side it presents a point object because
it does not have a length or a volume and does not have directional
properties. It means that we can consider delta function as a scalar.
From the other side, its argument S = (r− r0) is a vector (this vector
in Cartesian coordinate system is shown in Fig. 1). Geometrically
we can present the delta function as a small sphere with the vector
S connecting the center of the sphere and a point in Space which is
the point of observation. It is reasonable to consider the above two
symmetry properties of the delta function separately.

Thus, Space-Time reversal properties of Green’s tensors for a
bianisotropic medium are defined by the following constituents:
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• medium with a symmetry G1,
• point source described by the group G2,
• the vector S = (r− r0) described by the group G3.

The groups G1, G2 and G3 will be defined below.
The resultant symmetry Gres of these three constituents can be

defined by Curie’s principle of symmetry superposition. This principle
states that the symmetry Gres of our complex object consisting of a
medium, the point source and the vector S is the highest common
subgroup of the groups G1, G2, and G3, i.e.,

Gres = G1 ∩G2 ∩G3. (8)

It is clear that because of presence of the vector S, the complete
symmetry with respect to full rotation group in this case is impossible,
and we can consider at the most an axial symmetry.

Bianisotropic and complex media can have different magnetic
and nonmagnetic symmetry G1 described by the three categories of
magnetic groups, from the highest group Kh of the first category
corresponding to an isotropic achiral medium to the full absence
of symmetry described by the group C1 of the second category
(see Appendix A). In the case of an unbounded homogeneous
medium, any point of it possesses the symmetry G1. The
symmetry G1 of the medium is reflected in the structure of the
constitutive tensors ε̄, µ̄, ξ̄ and ζ̄ [6]. Some particular cases of
a general bianisotropic medium under consideration are isotropic,
chiral, anisotropic, double anisotropic and magnetized ferrite media,
cold (ionospheric) magnetoplasma, moving media, many new artificial
electromagnetic materials (such as for example, chiroferrites).

Now, we apply to the symmetry of the current point sources.
One should make the following remark with respect to the delta
function δ(r − r0)̄I describing the point sources. The static electric
field of a point electric charge has the spherical symmetry. Because
of nonexistence of the magnetic monopoles, static magnetic field
with spherical symmetry does not exist. As far as concerned the
oscillating electromagnetic fields, symmetry analysis leads to the
following statement: all spherically symmetric distributions do not
radiate [8], or equivalently, electromagnetic sources with spherically
symmetric radiation do not exist [28]. But nevertheless the idealized
model of a point source with spherical symmetry which radiates
isotropically is often used in theoretical investigations.

Finally we consider symmetry of the position vector S. The vector
S = (r−r0) is a polar one which has the axis of infinite order C∞ and an
infinite number of planes of symmetry σv (the subscript v for vertical)
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passing through the axis C∞. The vector S remains unaltered after
the rotation by any angle around the axis C∞ and after reflection in a
plane σv. The elements C∞ and σv will be used to find some relations
between the entries of the tensor Ḡ(r− r0).

There are other rotation-reflection operations which can give
information about the properties of Green’s tensors as well. The plane
σ̃h (the subscript h for horizontal) which is perpendicular to C∞ and
bisects the vector is not a plane of symmetry because under reflection
in this plane, S changes its sign. Under inversion ĩ with respect to
the point of bisection, the vector S changes its sign as well. The
same is valid for the rotations C̃2 through angle π around the axis
which is perpendicular to C∞. The reflection σ̃h, the inversion ĩ and
the rotations C̃2 which interchange the positions of the points r and
r0 will be called the elements of additional symmetry. In order to
distinguish them from the usual elements C∞ and σv, we have denoted
the elements of additional symmetry with a tilde.

Notice, that the transformation properties of the vector S under
the operations σ̃h, ĩ and C̃2 are defined by a certain irreducible
representation of the group D∞h of the first category. But for sake
of simplicity, we shall not refer here to the theory of representations.
The elements of additional symmetry can be used in order to find some
relations for the entries of the tensor Ḡ(r−r0) and the tensor Ḡ(r0−r),
i.e., for the tensors with opposite orientation of the vector S.

Now, we consider the symmetry of the vector S under Time
reversal. Strictly speaking the position vector S does not depend on
the sign of Time, i.e., it is even in Time. But for our purposes, we
shall associate it with the wave vector k. The Time reversal operator
changes the sign of the wave vector k, i.e., the direction of wave motion.
Associating S with k we should consider the vector S as being odd in
Time. That is, the vector S changes its sign under Time reversal
indicating the exchange the position of the source and the point of
observation. This artifice will allow us in Section 3 to use the combined
Space-Time reversal operators of the magnetic groups and to formalize
the procedure of obtaining constraints to Green’s tensors.

Thus, in addition to the elements C∞ and σv, we can consider
the antireflection Tσv which changes the sign of S (notice that
the antirotation TC∞ does not exist). Also, we can consider the
antielements of symmetry T σ̃h, T ĩ and TC̃2. The element T changes
the sign of S, but each of the elements σ̃h, ĩ and C̃2 changes the sign
of S once more so that the antielements T σ̃h, T ĩ and TC̃2 preserve the
sign of S. These antielements give some relations between the entries
of Ḡ(r− r0).

Summarizing we can consider the following elements, elements of
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additional symmetry and antielements of symmetry of the vector S:

• the elements of symmetry C∞ and σv which do not change the
vector S,

• the elements of additional symmetry σ̃h, ĩ and C̃2 which change
the sign of S,
• the pure Time reversal T which changes the sign of the vector S,
• the antireflection Tσv which changes the sign of S,
• the antielements of symmetry T σ̃h, T ĩ and TC̃2 which preserve

the vector S.

Notice that side by side with the discrete transformations σv, ĩ,
C2, T , the admissible symmetries contain also an element of continuous
symmetry C∞.

The above analysis shows that the highest possible symmetry
group of our problem is defined by the vector S and it is the group
D∞h of the first category. All the other possible continuous groups
of symmetry are subgroups of D∞h and they can be found from the
subgroup decomposition depicted on Fig. 2.

C h C v CC (C )h C (C )v D (C )D

C

D h DD (C )h h D (D )h C hC v D (C )h v

D

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞

∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞

∞h

∞

Figure 2. Subgroup decomposition of the continuous magnetic point
group of the first category D∞h.

Thus, the point sources and the vector S discussed above have
the fixed symmetries, but the material medium can possess different
symmetries. The number of magnetic point groups which define
symmetry of bianisotropic media is rather large. The constitutive
tensors for the 122 crystallografic magnetic point groups and 21
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magnetic continuous groups have been calculated in [9]. In this paper,
we shall restrict ourselves by consideration of the continuous magnetic
groups which are the leading groups for their discrete subgroups.

Having defined the symmetry of the constituents and the pos-
sible resultant symmetries of our problem, we can proceed to the
group-theoretical formulation of the Space-Time reversal properties of
Green’s tensors.

3. SPACE-TIME REVERSAL SYMMETRY PROPERTIES
OF GREEN’S TENSORS

3.1. Definition of Green’s Tensors

We shall discuss in this paper Space-Time reversal symmetry properties
of the Green’s tensors. It is pertinent to remind the notion of symmetry
of a tensor. Space-Time reversal symmetry of a tensor is its property
to be invariant under Space-Time reversal transformations. The tensor
has a symmetry element ((anti)axis, (anti)plane, (anti)center) if all its
components are transformed into themselves under the transformation
corresponding to this element. These symmetry properties lead to
some restrictions on the tensor elements.

In order to compact mathematical description of our electromag-
netic problem, we shall employ the six-vector notations [10]. The com-
bined 6×6 Green’s tensor of the problem is defined by Eq. (1). We con-
sider unbounded homogeneous media, therefore Green’s tensors depend
only on the difference (r− r0), i.e., Ḡ(r, r0) = Ḡ(r− r0). Thus, in the
(r, ω) domain our object of investigation is the Green’s tensor

Ḡ(r− r0) =

(
Ḡee(r− r0) Ḡem(r− r0)

Ḡme(r− r0) Ḡmm(r− r0)

)
. (9)

If the Green’s tensor Ḡ(r − r0) is known, the solution of Maxwell’s
equations for a source J(r0) can be written as

F(r) = iω

∫
V

[ Ḡ(r− r0) · J(r0) ]d3r0, (10)

or, more explicitly

E(r) = iω

∫
V

[ Ḡee(r− r0) · Je(r0) + Ḡem(r− r0) · Jm(r0) ]d3r0, (11)

H(r) = iω

∫
V

[ Ḡme(r− r0) ·Je(r0)+ Ḡmm(r− r0) ·Jm(r0) ]d3r0. (12)
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In Eq. (10), the six-vectors of the electromagnetic field F(r) and the
electric-magnetic current density J(r0) are

F(r) =
(

E(r)
H(r)

)
and J(r0) =

(
Je(r0)
Jm(r0)

)
. (13)

Eq. (10) can be considered as a linear integral transform of the source
J(r0) with the kernel Ḡ(r− r0) into the field F(r).

3.2. Time Reversal and Space Inversion Transformations of
Green’s Tensors

In our considerations, two symmetry operations play a special role.
These are Time reversal and Space inversion (see Section 4). The Time
reversal and Space inversion transformation properties of the Green’s
tensors follow from defining equation (10). For example, the electric
current density Je(r0) changes its sign under Time reversal, i.e., it
is odd in Time. The electric field E(r) retains its sign under Time
reversal, i.e., it is even in Time. Taking into account that the Time
reversal operator complex conjugates all the quantities, the multiplier
iω changes its sign as well. Thus, to preserve the form of equation (10)
under Time reversal, the tensor Ḡee(r − r0) should be considered as
even in Time. Analogous consideration of three other tensors shows
that Ḡmm(r−r0) is also even in Time, but Ḡem(r−r0) and Ḡme(r−r0)
are odd in Time. Thus, we can write symbolically the transformation
as follows:

Ḡee(r− r0)
T−→ (Ḡee)∗(r− r0),

Ḡmm(r− r0)
T−→ (Ḡmm)∗(r− r0),

Ḡem(r− r0)
T−→ −(Ḡem)∗(r− r0),

Ḡme(r− r0)
T−→ −(Ḡme)∗(r− r0).

(14)

In the above transformation rules, we still did not use our convention
of changing the sign of (r− r0) under Time reversal. It will be used in
Section 3.6.

One can meet in literature (for example, in [3,13]) a defining
equation for the Green’s tensors (10) in a little bit different form,
namely without the multiplier iω. In this case one should consider
Ḡee(r − r0) and Ḡmm(r − r0) as tensors which are odd in Time, but
Ḡem(r− r0) and Ḡme(r− r0) as tensors even in Time.

Comparing the Space inversion properties of currents J(r0) and
fields F(r) in Eq. (10), we can also define Space inversion properties
of Ḡ(r− r0). For example, the electric current density Je(r0) and the
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electric field E(r) are polar vectors. Therefore, the tensor Ḡee(r− r0)
must be a polar one. However, the magnetic current Jm(r0) is an axial
vector, therefore the tensor Ḡem(r−r0) which couples Jm(r0) and E(r)
must be an axial tensor. Analogous consideration of two other tensors
shows that Ḡmm(r− r0) is a polar tensor, but Ḡme(r− r0) is an axial
one. The Space inversion transformation (which is denoted by i) of the
Green’s tensors can be written symbolically as follows:

Ḡee(r− r0)
i−→ Ḡee(r0 − r),

Ḡmm(r− r0)
i−→ Ḡmm(r0 − r),

Ḡem(r− r0)
i−→ −Ḡem(r0 − r),

Ḡme(r− r0)
i−→ −Ḡme(r0 − r).

(15)

Notice that under i, the signs of the arguments of the polar
tensors Ḡee and Ḡmm are changed. The axial tensors Ḡem and
Ḡme themselves and their arguments change their signs under
Space inversion (transformation properties of tensors are discussed in
Appendix C).

3.3. Differential Equations for Green’s Tensors in (r, ω)
Domain

Maxwell’s equations (with time dependence in the form of exp(iωt)
which is suppressed) combined with the constitutive relations can be
written concisely as

MF(r) ≡ ( D̄ + iωK̄(r) ) · F(r) = −J(r), (16)

where M is Maxwell’s operator which consists of the differential part
D̄ and the algebraic part iωK̄ with K̄ being the medium six-tensor.
The differential part of Maxwell’s operator has the following form:

D̄ =

(
0̄ −∇× Ī

∇× Ī 0̄

)
, ∇× Ī =




0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0


 .

(17)
The combined constitutive tensor K̄(r) couples the flux-density vectors
D(r) and B(r) to the field-intensity vectors E(r) and H(r):(

D(r)
B(r)

)
= K̄(r) ·

(
E(r)
H(r)

)
with K̄(r) =

(
ε̄ ξ̄
ζ̄ µ̄

)
, (18)
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where ε̄, µ̄, ξ̄ and ζ̄ are the 3× 3 constitutive tensors. For unbounded
homogeneous media, the tensor K̄(r) does not depend on r.

The current density J(r) can be presented in the form

J(r) =
∫
V

[
δ(r− r0)̄I6 · J(r0)

]
d3r0, (19)

where

δ(r− r0)̄I6 =

(
δ(r− r0)̄I 0̄

0̄ δ(r− r0)̄I

)
, (20)

Ī6 is the unit 6× 6 matrix, Ī is the unit 3× 3 matrix and 0̄ is the 3× 3
zero matrix.

Substituting Eq. (19) and Eq. (10) into Maxwell’s equations (16),
one can deduce the differential equation for the Time-harmonic Green’s
tensor Ḡ(r− r0):

MḠ(r− r0) ≡
(
D̄ + iωK̄(r)

)
· Ḡ(r− r0) = −δ(r− r0)

(
1
iω

)
Ī6. (21)

In order to obtain a unique solution to these equations, one should use
radiation conditions at infinity.

From Eq. (21), we can write the decoupled differential equations
for the tensors Ḡee(r−r0), Ḡmm(r−r0), Ḡem(r−r0) and Ḡme(r−r0).
For example, for the tensor of electric type we have:[(

∇× Ī− iωξ̄
)
· µ̄−1 · (∇× Ī + iωζ̄)− ω2ε̄

]
·Ḡee(r−r0) = −δ(r−r0)̄I.

(22)
Using Space inversion-Time reversal transformation properties of

the constitutive tensors ε̄, µ̄, ζ̄, ξ̄, of the operator ∇ × Ī and of the
Dirac delta function δ(r − r0)̄I in Eq. (22), we can once more verify
that Ḡee(r− r0) is even in Time polar tensor.

3.4. Symmetry Operators

Let our object be invariant under a magnetic group of symmetry. It
means that the medium, the point source and the vector S = (r− r0)
are invariant under the corresponding operations. In other words,
any of the symmetry operations transforms our object into a new
configuration which is not distinguishable from the original one. The
only admissible change is the sign of the vector S = (r − r0), i.e., the
source and the point of observation can interchange their positions.

In the following discussion, we shall use the active transformation
of the configuration space (in our case the configuration space is the
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medium in which electromagnetic sources and fields are defined). Thus,
the configuration space is rotated or reflected while the coordinate
system is kept fixed in Space.

Let us denote a discrete or continuous Space operator correspond-
ing to rotation-reflection symmetry elements as R (three-dimensional
matrix representations of these elements are given in Appendix B).
Then, a combined Space-Time reversal operator can be written as T R,
where T is the restricted Time reversal operator [3] corresponding to
the Time reversal T .

The effect of a symmetry operator on equation (21) differs for the
two cases:

(a) the symmetry operator does not contain the Time reversal
operator T ,

(b) the symmetry operator is a combined operator T R or it is the
operator T itself.

Dealing with the six-vector formalism, we should replace the
operator T R by its 6× 6 matrix representation R̄6:

R̄6 =

(
R̄ 0̄
0̄ ±det( R̄) R̄

)
, (23)

where det( R̄) denotes the determinant of an orthogonal matrix R̄.
R̄ is the three-dimensional representation of the rotation-reflection
operator R. Inclusion of det( R̄) in formula (23) allows one to take
into account the axial nature of the tensors Ḡem(r− r0), Ḡme(r− r0),
ξ̄ and ζ̄. In formula (23), the signs + and − in front of det( R̄) are
for cases (a) and (b), respectively. The matrix R̄6 has the property
R̄t

6 = R̄−1
6 where the superscript t denotes transposition.

The simplest particular cases of the matrix R̄6 are

R̄I = Ī6 =

(
Ī 0̄
0̄ Ī

)
, R̄T =

(
Ī 0̄
0̄ − Ī

)
, R̄i = − R̄T =

(
− Ī 0̄
0̄ Ī

)
,

(24)
where R̄I is the unit 6 × 6 matrix which corresponds to the unit
group element. The matrix R̄T is employed for Time reversal, and
this matrix was called in [3] “the Poynting-vector reversing operator”
because it reverses the sign of the magnetic field H and consequently,
the sign of the Poynting vector. The matrix R̄i corresponds to the
Space inversion operator.
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3.5. Space (Rotation-Reflection) Symmetry of Green’s
Tensors

First, we consider case (a) which is simpler. Let us apply the
operator R to Eq. (21):

RM Ḡ(r− r0) = −R δ(r− r0)
(

1
iω

)
Ī6. (25)

Substituting R by R̄6 (with the sign + in front of det( R̄) in
formula (23)), multiplying Eq. (21) from the right by R̄−1

6 , we obtain
the transformed Maxwell’s equations for the transformed Space r′ =
R̄ · r, r′0 = R̄ · r0, (r′ − r′0) = R̄ · (r− r0) (see Appendix C):(

D̄′(r′) + iωK̄′(r′)
)
·G′(r′ − r′0) = − δ(r′ − r′0)

(
1
iω

)
Ī6, (26)

where

D̄′(r′) = R̄6·D̄( R̄−1·r)· R̄−1
6 , K̄′(r′) = R̄6·K̄( R̄−1·r)· R̄−1

6 , (27)

G′(r′−r′0) = R̄6·G(r′−r′0)· R̄
−1
6 , δ(r′−r′0) R̄6 ·̄I6· R̄−1

6 = δ(r′−r′0)̄I6.
(28)

The constitutive tensor K̄(r) is invariant with respect to R. It
means that the transformed tensor K̄′(r′) is equal to the original tensor
K̄(r′) at the transformed point r′, i.e., K̄′(r′) = K̄(r′). But for a
homogeneous infinite medium, the tensor K̄(r) is independent on r,
and the point r is indistinguishable from the point r′ = R̄−1 · r. The
tensor K̄(r) calculated for the points r and r′ must have identical
values. Thus, invariance of the medium with respect to R can be
expressed as follows:

K̄′(r′) = R̄6 · K̄(r) · R̄−1
6 = K̄(r). (29)

It can also be shown [3] that for the rotation-reflection operations, the
transformed differential operator D̄′(r′) in Space r′ has the same form
as the original one D̄(r) in Space r. But the transformed Space is the
same homogeneous unbounded medium. This allows us to write

D̄′(r′) = R̄6 · D̄(r′) · R̄−1
6 = D̄(r). (30)

Delta-function δ(r− r0)̄I6 can at most change the sign of its argument
(r− r0).

Thus, transformed Eq. (26) can be rewritten as follows:

( D̄(r) + iωK̄(r) ) ·G′(r′ − r′0) = − δ(r′ − r′0)
(

1
iω

)
Ī6. (31)
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Comparing Eqs. (31) and (21) we see that the operator R preserves
the form of the equations for Green’s tensors, i.e., they are invariant
under the corresponding symmetry transformation. Hence, the Green’s
tensor being the solution of these equations must be also invariant,
i.e., G′(r′ − r′0) = G(r′ − r′0), with possible changing the sign of
(r′ − r′0) = ±(r− r0), and this will be discussed below.

The vector S = (r− r0) is not changed under transformations C∞
and σv. Therefore, we can write down the condition of invariance of
Green’s tensor Ḡ(r− r0) with respect to the operations C∞ and σv:

Ḡ(r− r0) = R̄6 · Ḡ(r− r0) · R̄−1
6 , (32)

where R̄6 is the matrix representation of the symmetry element C∞
or σv. Relation (32) signifies that Ḡ(r− r0) commutes with R̄6.

Similarly, for the elements of additional symmetry σ̃h, ĩ and C̃2

we obtain:
Ḡ(r0 − r) = R̄6 · Ḡ(r− r0) · R̄−1

6 , (33)

where R̄6 is the matrix representation of the element σ̃h, ĩ or C̃2.
Notice the interchange of the source and field point positions in Green’s
tensors on the left- and right-hand sides of Eq. (33).

3.6. Combined Space (Rotation-Reflection)-Time Reversal
Symmetry of Green’s Tensors

In case (b), on acting with a combined symmetry operator T R on
equation (25), we obtain:

T RM Ḡ(r− r0) = −T R δ(r− r0)̄I6. (34)

It is not difficult to show the following transformation property of the
operator T :

T
(
D̄ + iωK̄(r)

)
= −

(
D̄ + iωK̄◦(r)

)t T , (35)

where the symbol ◦ stands for an operation which is called the
adjugation [10]. It is used in order to adjust even and odd in Time
quantities in Eq. (21). This operation changes the sign of the off-
diagonal block tensors and operators of this equation. In particular,
it changes the sign of the off-diagonal block tensors entering into
Ḡ(r − r0), i.e., the signs of the Green’s tensors of the mixed type
Ḡem(r−r0) and Ḡme(r−r0). In mathematical description below, this
changing is achieved by use of the matrix ĪT .
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Thus, employing the properties of the restricted Time reversal
operator T described in Appendix C, substituting R by R̄6 and
multiplying from the right by R̄−1

6 , we can rewrite Eq. (34) as follows

(
D̄′′(r′)− iωK̄′′(r′)

)
·G′′(r′ − r′0) = δ(r′ − r′0)

(
1
iω

)
Ī6, (36)

where

D̄′′(r′) = R̄6 · D̄t(r′) · R̄−1
6 , K̄′′(r′) = R̄6 · K̄t(r′) · R̄−1

6 , (37)

G′′(r′ − r′0) = R̄6 ·Gt(r′ − r′0) · R̄
−1
6 ,

δ(r′ − r′0)̄I6 = δ(r′ − r′0) R̄6 · Ī6 · R̄−1
6 = δ(r′ − r′0)̄I6.

(38)

As we agreed at the beginning of Section 3.4 the constitutive tensor
K̄(r) is invariant with respect to T R, or equivalently, the medium is
transformed into itself under T R. This can be expressed as follows:

K̄′′(r′) = R̄6 · K̄t(r) · R̄−1
6 = K̄(r). (39)

Taking into account the properties of the differential operator D̄(r) =
D̄t(r) and D̄◦(r) = −D̄(r) we can write

D̄′′(r′) = R̄6 · D̄t(r′) · R̄−1
6 = −D̄(r). (40)

Under T R, delta-function δ(r − r0)̄I6 can at most change the sign of
its argument (r− r0).

Thus, transformed Eq. (36) can be rewritten as follows:

(
D̄(r) + iωK̄(r)

)
·G′′(r′ − r′0) = −δ(r′ − r′0)

(
1
iω

)
Ī6, (41)

Depending on the operator T R, the argument (r− r0) of the Green’s
function can preserve or change its sign, i.e., (r′ − r′0) = ±(r − r0).
Comparing Eqs. (41) and (21), we see that the differential equations
for Green’s tensors are invariant with respect to T R.

To this point, it is pertinent to make a remark concerning
application of the Time reversal in classical electrodynamics. In spite of
invariance of Maxwell’s equations under Time reversal, the solutions
of the Time-reversed problems, strictly speaking, are “non-physical”
because a lossy medium is transformed in an active one and therefore,
attenuating waves are transformed into growing waves. Besides, the
sources are transformed in sinks, retarded waves and Green’s functions
are transformed into non-causal advanced ones. Nevertheless, using
the restricted Time reversal operator (which preserves a lossy or active
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character of the medium and consequently, attenuating or growing
character of waves) and considering only the ray path between the
point source and the point of observation, we can obtain the correct
results in our calculations. An illuminating discussion of this problem
can be found in [3].

Now, we can discuss restrictions imposed on Ḡ(r − r0) by
antielements of symmetry. First, we should justify our agreement that
the Time reversal operator T changes the sign of (r−r0). The Green’s
tensors Ḡ(r− r0) and the Lorentz-adjoint Green’s tensors ḠL(r− r0)
(see Appendix D) are related as ḠL(r− r0) = (Ḡ◦)t(r0 − r), i.e., with
opposite signs of their arguments (r − r0). It was shown by Altman
and Suchy [3] that the restricted Time reversed and the Lorentz-adjoint
Maxwell’s systems are identical. Thus, we can formally attribute to
the Time reversal the property of changing the sign of (r− r0).

Let us consider the element of symmetry Tσv, that is the antiplane
of symmetry which is perpendicular to the vector (r−r0). The element
σv does not change the sign of (r − r0). In accordance with our
agreement, the Time reversal operator changes the sign of (r − r0).
Thus, for the symmetry element Tσv we obtain the following relation:

Ḡ(r0 − r) = R̄6 · Ḡt(r− r0) · R̄−1
6 (42)

with the matrix R̄6 corresponding to Tσv.
Analogously for the combined operators T σ̃h, T ĩ, and TC̃2 which

do not change the sign of (r− r0), we obtain:

Ḡ(r− r0) = R̄6 · Ḡt(r− r0) · R̄−1
6 , (43)

where R̄6 corresponds to T σ̃h, T ĩ or TC̃2.
Relations (32), (33), (42) and (43) are a basis for the following

calculations.

4. CONSTRAINTS ON GREEN’S TENSORS FOR
MEDIA SYMMETRICAL WITH RESPECT TO THE
RESTRICTED TIME REVERSAL AND FOR MEDIA
WITH CENTER AND ANTICENTER OF SYMMETRY

Four important cases which deserve a special consideration are:

• media invariant with respect to the Time reversal T ,
• media possessing the center of symmetry ĩ,
• media with the anticenter of symmetry T ĩ,
• media which possess simultaneously T and ĩ.
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Here, the time reversal T denotes the restricted operator T .

Media invariant with respect to the Time reversal T .

The “pure” restricted Time reversal operator is a particular case
of T R where R is the unit operator of the group and R̄6 is the unit
matrix. Therefore, from Eq. (42) we have the symmetry conditions
imposed by T upon Ḡ(r− r0):

Ḡ(r0 − r) = (Ḡ◦)t(r− r0). (44)

Relation (44) coincides with the known restriction on Green’s tensors
for reciprocal bianisotropic media which has been obtained in [11] by
an electrodynamical method.

It is noted in [3] that “Lorentz reciprocity is an expression of
the invariance of Maxwell’s equations under time reversal”. Thus,
invariance of a bianisotropic medium with respect to the restricted
Time reversal operator, i.e., the condition K̄ = (K̄◦)t means its
reciprocity and imposes restriction (44) on Green’s tensors.

Relation (44) written in terms of Ḡmm, Ḡee, Ḡem and Ḡme

gives [2]:

Ḡee(r0−r) = (Ḡee)t(r−r0), Ḡmm(r0−r) = (Ḡmm)t(r−r0), (45)

Ḡem(r0 − r) = −(Ḡme)t(r− r0). (46)

Media possessing the center of symmetry ĩ.

For the media with the center of symmetry ĩ, the cross-coupling
constitutive tensors ξ̄ and ζ̄ are zero. The operation ĩ transforms the
vector S into −S. Using relation (33) we can find the following general
restrictions on Green’s tensors for such media:

Ḡmm(r0 − r) = Ḡmm(r− r0), Ḡee(r0 − r) = Ḡee(r− r0), (47)

that is Ḡmm and Ḡee are even functions of S. Also,

Ḡme(r0 − r) = −Ḡme(r− r0), Ḡem(r0 − r) = −Ḡem(r− r0), (48)

i.e., Ḡme and also Ḡem are odd functions of S. A particular case of
these symmetrical media, namely, the so–called diagonal medium has
been considered in [10].

Media with the anticenter of symmetry T ĩ.
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The operation T ĩ preserves the direction of S. Therefore, using
relation (43) we obtain the following restrictions on Green’s tensors for
media with the anticenter of symmetry T ĩ:

Ḡmm(r− r0) = (Ḡmm)t(r− r0), Ḡee(r− r0) = (Ḡee)t(r− r0), (49)

i.e., the tensors Ḡmm and Ḡee are symmetrical with respect to the
main diagonal, and

Ḡme(r− r0) = (Ḡem)t(r− r0). (50)

Media which is invariant with respect to both T and ĩ.

From the theory of magnetic groups, it is known that if a group
possesses T and ĩ, it has also T ĩ as an element of symmetry. Hence,
combining the above restrictions (45)–(50) we can obtain the symmetry
conditions for Green’s tensors for media with such a symmetry.

5. GREEN’S TENSORS FOR BIANISOTROPIC
UNI-AXIAL MEDIA

The symmetry elements T , ĩ and T ĩ discussed above are in a sense
“universal”. They give information about Green’s tensors for any
orientation of the vector S. Other symmetry elements such as an
(anti)axes and/or (anti)planes, give restrictions of the tensor elements
only for parallel or perpendicular orientation of S with respect to these
(anti)axes and/or (anti)planes. Below, we shall discuss these symmetry
elements in more detail.

Symmetry of a tensor is its intrinsic property which does not
depend on the chosen coordinate system. But the structure of the
tensor depends on the orientation of the coordinate axes with respect to
the axes and planes of symmetry of the medium. In our case of Green’s
tensors, their symmetry depends also on the vector S orientation. In a
general case with an arbitrary orientation of the vector S with respect
of the coordinate axes and medium axes and planes, Green’s tensors
have all the elements different from zero. The only exclusion is the
simplest case of an isotropic achiral medium which will be discussed in
Section 6.

With a special choice of the vector S orientation, we can obtain a
simplification of Green’s tensor structure. Such a choice for example,
corresponds to orientation of this vector parallel the axes x, y or z
(with orientation of the (anti)axes and (anti)planes of the medium
also parallel or normal to these axes). This special choice of the
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vector S orientation is analogous to the transformation of a second-
rank material tensor to its principal axes where the tensor acquires the
simplest form [32].

In order to illustrate the method, we apply to media with uniaxial
symmetries. Below, analyzing the symmetry properties of Green’s
tensors, we shall assume that the principal axis C∞ of the media which
is in every continuous group of Fig. 2 will be oriented along the axis z
of a Cartesian coordinate system. Though we shall investigate in detail
the case of the vector S and the axis C∞ orientation along the axis z
or, symbolically, S ‖ z ‖ C∞ where the symbol ‖ means parallel, this
procedure can also be used for the cases S ‖ x ⊥ C∞ and S ‖ y ⊥ C∞
where the symbol ⊥ stands for perpendicular.

From the point of view of symmetry, we can divide all the
continuous groups of Fig. 2 into two blocks A and B.

Table 1. Structure of Green’s tensors for media with the symmetry
C∞ for the case S ‖ z ‖ C∞.

Ḡmm(r− r0) Ḡee(r− r0) Ḡem(r− r0) Ḡme(r− r0)

Gmm11 Gmm12 0
−Gmm12 Gmm11 0

0 0 Gmm33

Gee11 Gee12 0
−Gee12 Gee11 0

0 0 Gee33

Gem11 Gem12 0
−Gem12 Gem11 0

0 0 Gem33

Gme11 Gme12 0
−Gme12 Gme11 0

0 0 Gme33
( (

( (( (( (

A. The groups of block A contain the axis of symmetry C∞ and
do not contain the planes σv. These groups are C∞, C∞h(C∞),
C∞v(C∞), C∞h, D∞, C∞, D∞(C∞), D∞h(C∞h), D∞h(D∞),
D∞, D∞ and C∞h. Using relation (32) for the element of symmetry
C∞, we have calculated a general structure of Green’s tensors for
this block of groups. They are given in Table 1. Other elements
of symmetry if they are present in the group give some additional
information. Let us consider some of the groups of block A in more
detail.

• The group C∞ of the second category has only one axis which has
been used for calculations of Green’s tensors presented in Table 1.
Since this group has no other elements of symmetry, we can not
obtain any new information. In particular, relations between the
tensors Ḡ(r− r0) and Ḡ(r0 − r) remain indeterminate.

• The group C∞ of the first category has additionally the Time
reversal T . Therefore we can use formulas (45) and (46) in order
to obtain relations between the tensors Ḡ(r− r0) and Ḡ(r0 − r):
Ḡmm(r0 − r) = (Ḡmm)t(r − r0), Ḡee(r0 − r) = (Ḡee)t(r − r0).
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The tensors Ḡme and Ḡem become related to each other:
Ḡem(r0 − r) = −(Ḡme)t(r− r0).
• In the group C∞h(C∞), there exists the element of symmetry
T σ̃h, so that using formula (43) we obtain additional relations:
Gmm12 (r−r0) = 0, Gee12(r−r0) = 0, Ḡme(r−r0) = (Ḡem)t(r−r0).

• The group C∞v(C∞) contains along with C∞ also the antielement
Tσv, and with the help of relation (42) we obtain the following
relations: Ḡmm(r0 − r) = Ḡmm(r − r0), Ḡee(r0 − r) =
Ḡee(r− r0), Ḡme(r0 − r) = Ḡem(r− r0).
• Besides the axis C∞, the group D∞(C∞) has also the antielement
TC̃2 (C2 is rotation by π around axis x or y) which gives
Ḡem(r− r0) = −Ḡme(r− r0).

Table 2. Structure of Green’s tensors for media with the symmetry
C∞v for the case S ‖ z ‖ C∞.

Ḡmm(r− r0) Ḡee(r− r0) Ḡem(r− r0) Ḡme(r− r0)


Gmm11 0 0

0 Gmm11 0
0 0 Gmm33





Gee11 0 0

0 Gee11 0
0 0 Gee33





 0 −Gem12 0
Gem12 0 0

0 0 0





 0 −Gme12 0
Gme12 0 0

0 0 0




B. Let us apply to the groups of block B. Besides the axis of
symmetry C∞, the groups of this block C∞v, C∞v, D∞h(C∞v) and
D∞h have also an infinite number of planes of symmetry σv passing
through the axis. The calculated Green’s tensors for this case are
presented in Table 2. These tensors have been calculated using only
two elements of symmetry, namely, C∞ and σv. Now we shall consider
some of the groups listed in block B.

• The group C∞v of the second category does not contain other
elements of symmetry except C∞ and σv which have already been
used. Thus, we can not say anything else about the structure of
the Green’s tensors.

• The group C∞v of the first category contains also the Time
reversal T . As a result of the use of this element, we have
Ḡmm(r0 − r) = Ḡmm(r − r0), Ḡee(r0 − r) = Ḡee(r − r0),
Gem12 (r0 − r) = Gme12 (r− r0).
• The antielement T σ̃h of the group D∞h(C∞v) gives the following

additional information: Gem12 (r− r0) = −Gme12 (r− r0).
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• In case of the group D∞h, the elements σ̃h and T lead to the
following relations: Ḡmm(r0 − r) = Ḡmm(r−r0), Ḡee(r0−r) =
Ḡee(r − r0), Gem12 (r0 − r) = −Gem12 (r − r0), Gme12 (r0 − r) =
−Gme12 (r− r0), Gem12 (r0 − r) = Gme12 (r− r0).

6. GREEN’S TENSORS FOR ISOTROPIC ACHIRAL
MEDIA

Now, we shall compare our calculations with the known analytical
solutions of Green’s tensors for two important classes of media. These
media are isotropic achiral and isotropic chiral ones. The constitutive
tensors for media in both cases are degenerate to scalars.

First, we consider isotropic achiral media. This medium is
characterized by two scalars: the permittivity ε and the permeability
µ. Green’s dyadics in the closed-form for this medium are written, for
example in [7]:

Ḡee(r− r0) = −iωµ
(

Ī +
∇∇
k2

)
exp(−ikr)

4πr
,

Ḡme(r− r0) =
(
∇× Ī

) exp(−ikr)
4πr

,

(51)

Ḡem(r− r0) = −Ḡme(r− r0), Ḡmm(r− r0) =
ε

µ
Ḡee(r− r0), (52)

where k = ω
√
εµ, ω is the frequency, r = |r − r0| = |S|. In tensor

notations, the structure of these Green’s tensors is presented in Table 3.
We see that the tensors Ḡmm(r− r0) and Ḡee(r− r0) are symmetrical
about the main diagonal, but the tensors Ḡem(r−r0) and Ḡme(r−r0)
are antisymmetrical with all diagonal elements equal to zero. It is the
unique case where Green’s tensors contain zero elements in general (for
any orientation of the vector S).

Table 3. Structure of Green’s tensors for isotropic achiral media for
an arbitrary orientation of the vector S with respect to rectangular
coordinate system.

Ḡmm(r− r0) Ḡee(r− r0) Ḡem(r− r0) Ḡme(r− r0)


Gmm11 Gmm12 Gmm13
Gmm12 Gmm22 Gmm23
Gmm13 Gmm23 Gmm33





Gee11 Gee12 G

ee
13

Gee12 Gee22 G
ee
23

Gee13 Gee23 G
ee
33





 0 −Gem12 Gem13
Gem12 0 −Gem23
−Gem13 Gem23 0





 0 Gem12 −Gem13
−Gem12 0 Gem23
Gem13 −Gem23 0
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It is known that any antisymmetrical axial tensor of the second
rank which has three independent parameters describes a polar vector.
Thus, we can state that the symmetry of the Green’s tensors Ḡme and
Ḡem of Table 3 corresponds to the symmetry of a polar vector which
is obviously the vector S.

From the point of view of symmetry, the isotropic medium is
described by the highest point magnetic group of the first category
Kh (this group is often denoted as O(3)). The group Kh besides the
rotations possesses also the center of symmetry ĩ and infinite number
of planes of symmetry. The medium with this symmetry is reciprocal.
Green’s tensors for this medium have the symmetry D∞h. These
tensors calculated by group-theoretical method coincide in the form
with those obtained by electrodynamic methods (see Table 3).

If we choose the orientation of the vector S along the axis z,
Green’s tensors acquire the simplified form presented in Table 2. The
tensors Ḡmm(r − r0) and Ḡee(r − r0) become diagonal. The tensors
Ḡem(r−r0) and Ḡme(r−r0) contain only one independent parameter,
Gme12 (r− r0) = −Gem12 (r− r0). This is the simplest form of the Green’s
tensors which is achievable only for isotropic media. In order to come
back to a general form of the tensors we can make an arbitrary rotation
of these tensors (or the rectangular coordinate system) around the
origin. This rotation obviously will lead to a more complex structure
of the tensors namely, to the form presented in Table 3. But any
symmetrical tensor (in our case, Ḡmm and Ḡee) remains symmetrical
after any rotation, and any antisymmetrical tensor (Ḡem and Ḡme)
remains antisymmetrical under this transformation.

7. GREEN’S TENSORS FOR ISOTROPIC CHIRAL
MEDIA

Let us apply to an isotropic chiral medium which is the simplest
example of bianisotropic media called often as biisotropic one. This
medium is characterized by three scalars: ε and µ are the permittivity
and permeability, respectively, and ζ is the chirality parameter.
Green’s tensors for this medium have been discussed by many authors
(see for example, [12, 13]). These tensors are defined by the relations:

Ḡee(r− r0) = −iωµ
(
Ḡ1 + Ḡ2

)
, (53)

Ḡmm(r− r0) = −iωε
(
Ḡ1 + Ḡ2

)
, (54)

Ḡme(r− r0) = −(k1 − iωζ)Ḡ1 + (k2 + iωζ)Ḡ2, (55)
Ḡem(r− r0) = −Ḡme(r− r0), (56)
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where

Ḡ1,2(r− r0) =

(
k1,2Ī3 +

∇∇
k1,2
± (∇× Ī3)

)
exp(−ik1,2r)
4π(k1 + k2)r

, (57)

k1,2 = ω(±iζ +
√
εµ). (58)

Analysis of these expressions shows that in general, Green’s tensors
have all their elements different from zero. Green’s tensors contain
both symmetrical and antisymmetrical (with respect to the main
diagonal) parts.

Now, let us consider the structure of Green’s tensors from the
group-theoretical point of view. The chiral medium is described by
the group of symmetry of the first category K (notice, that this
non-Abelian continuous group of rotations in three dimensions is
often denoted also as SO(3)). This medium possesses only rotation
symmetry and it is reciprocal. Green’s tensors for this medium have
the symmetry D∞.

For a particular case of the vector S orientation along the axis
z, we obtain the simplified, canonical form of the tensors which are
presented in Table 1. These tensors have been calculated using only
the principal axis of symmetry C∞. Making use also the element of
symmetry TC̃2 where C̃2 is rotation by π around the axis x, we obtain
Ḡem(r − r0) = −Ḡme(r − r0) which coincides with Eq. (56). Time
reversal T gives additional constraints (45) and (46) on these Green’s
tensors.

8. GREEN’S TENSORS FOR MAGNETIC CHIRAL
MEDIA

In this Section, we shall demonstrate application of our method to
a medium with a large number of independent parameters of the
constitutive tensors. We shall investigate symmetry properties of the
magnetic chiral media (chiroferrites). A chiroferrite can be conceived
as a ferrite with randomly oriented small chiral elements embedded in
it. The magnetic group of symmetry of such media can be obtained by
symmetry superposition (see Section 2). An isotropic chiral medium
is described by the group K. The dc magnetic field has the symmetry
D∞h(C∞h). These two groups have in common one axis of infinite
order C∞ and besides, an infinite number of axes of the second order
C2 perpendicular to the main axis C∞ are converted under dc magnetic
field into the antiaxes TC2. Therefore, the resulting group is D∞(C∞).
The constitutive tensors for such a group for magnetization along the
z-axis are written in Table 4. The tensors contain 9 independent
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Table 4. Constitutive tensors for magnetic chiral media.

µ̄ ε̄ ξ̄ ζ̄


 µ11 µ12 0
−µ12 µ11 0

0 0 µ33





 ε11 ε12 0
−ε12 ε11 0

0 0 ε33





 ξ11 ξ12 0
−ξ12 ξ11 0

0 0 ξ33





−ξ11−ξ12 0

ξ12−ξ11 0
0 0 −ξ33




parameters. To our knowledge, an analytical solution for Green’s
tensors for this medium is not known.

Two orientations of the vector S give simplified Green’s tensor
forms. The first one is S ‖ z. The second orientation is S ⊥ z, i.e.,
the vector S lies in the plane x0y. For the case S ‖ z, the group of
symmetry of Green’s tensors coincides with the group of symmetry
of the medium, namely it is D∞(C∞). Any rotation about the z-
axis preserves the sign of S. In the antirotation TC̃2, the operator
C̃2 changes the sign of S and the operator T restores its sign. The
calculated Green’s tensors are written in Table 5. Notice that the

Table 5. Structure of Green’s tensors for magnetic chiral media for
the case S ‖ z ‖ C∞.

Ḡmm(r− r0) Ḡee(r− r0) Ḡem(r− r0) Ḡme(r− r0)


 Gmm11 Gmm12 0
−Gmm12 Gmm11 0

0 0 Gmm33





 Gee11 Gee12 0
−Gee12 Gee11 0

0 0 Gee33





 Gem11 Gem12 0
−Gem12 Gem11 0

0 0 Gem33





−Gem11 −Gem12 0

Gem12 −Gem11 0
0 0 −Gem33




tensors Ḡme(r− r0) in this Table are expressed in terms of the tensors
Ḡem(r−r0). Comparing Table 4 and Table 5, we see that the structures
of the constitutive tensors and Green’s tensors coincide.

For the orientation S ⊥ z, for example S ‖ x, the symmetry
of Green’s tensors is described by the discrete magnetic group of the
third category D2(C2) which is a subgroup of D∞(C∞). A rotation
C̃2 around the axis z by π changes the sign of S. The antiaxis TC2

coinciding with S changes the sign of S due to operator T . The
calculations give the structure of the tensors presented in Table 6. In
this case, the structures of the constitutive tensors and Green’s tensors
do not coincide, the Green’s tensors have a more complex form. The
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Table 6. Structure of Green’s tensors for magnetic chiral media for
the case S ‖ x ⊥ C∞.

Ḡmm(r− r0) Ḡee(r− r0) Ḡem(r− r0) Ḡme(r− r0)


 Gmm11 Gmm12 Gmm13
−Gmm12 Gmm22 Gmm23
Gmm13 −Gmm23 Gmm33





 Gee11 Gee12 Gee13
−Gee21 Gee22 Gee23
Gee13 −Gee23 G

ee
33





Gem11 Gem12 Gem13
Gem21 Gem22 Gem23
Gem31 Gem32 Gem33





−Gem11 Gem21 Gem31

Gem12 −Gem22 Gem32
Gem13 Gem23 −Gem33




tensor Ḡmm(r0 − r) is expressed in terms of Ḡmm(r− r0):

Ḡmm(r0 − r) =




Gmm11 (r− r0) Gmm12 (r− r0) −Gmm13 (r− r0)
−Gmm12 (r− r0) Gmm22 (r− r0) −Gmm23 (r− r0)
−Gmm13 (r− r0) Gmm23 (r− r0) Gmm33 (r− r0)


 .

(59)
The tensor Ḡem(r0 − r) in terms of Ḡem(r− r0) is:

Ḡem(r0 − r) =


 Gem11 (r− r0) Gem12 (r− r0) −Gem13 (r− r0)

Gem21 (r− r0) Gem22 (r− r0) −Gem23 (r− r0)
−Gem31 (r− r0) −Gem32 (r− r0) Gem33 (r− r0)


 .

(60)
For any other orientation of the vector S different from S ‖ z or

S ⊥ z, the theory of symmetry fails to give any information about
Green’s tensors. The tensors will have a general form.

9. DISCUSSION AND CONCLUSIONS

Using group theory one can obtain useful information of Green’s
tensors properties without solving the corresponding differential
equation. In particular, group theory allows one to reduce the number
of independent parameters of Green’s tensors. This method is general
and it can be applied to many physical problems where Space-Time
reversal symmetry exists.

We have analysed in this paper Space-Time reversal symmetry
properties of Green’s tensors for complex and bianisotropic media
described by continuous point magnetic groups. In the framework
of these groups, we have defined all the possible symmetries of the
problem. The method of tensor calculations suggested here is also
valid for the media described by discrete point magnetic groups which
are subgroups of the continuous ones. The information is important
because it is exact and the results of the analysis do not depend on
details of media and on frequency.
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Using our methods, one can catalogue all the admissible structures
(forms) of the Green’s tensors in the same way as it was made for
constitutive tensors of the second rank for complex and bianisotropic
media [9].

In order to define the simplified structure of Green’s tensors for
certain directions in a medium (with corresponding orientation of the
rectangular coordinate axes), we must know the group of symmetry
of this medium. The symmetry is defined by the symmetry of
particles constituting the medium, their arrangements in Space and
by symmetry of possible external perturbations. The isotropic achiral
medium has for example the symmetryKh, the isotropic chiral medium
possesses the symmetry K, the magnetized ferrite is described by
the magnetic group D∞h(C∞h), the moving dielectric media has the
symmetry D∞h(C∞v), etc. Knowing the symmetry it is an easy task
to calculate the structure of Green’s tensors.

It should be stressed that for the Time-reversal symmetry and for
the center and anticenter of symmetry, the results of calculations are
valid for any direction in media. For other symmetries, the structure of
Green’s tensors can be simplified only for some symmetrical directions
in Space. In general, the structure of Green’s tensors is different for
different directions.

The next remark is as follows. Comparing transformation
formulas of Green’s tensors (32), (33), (42), (43) and of the constitutive
tensors presented in [9] we can note a resemblance of them. In spite
of this resemblance, the structures of the calculated Green’s tensors
and the constitutive tensors for the same medium in general do not
coincide. The structure of Green’s tensors is usually more complex. We
can give here one illustrative example. Media with center of symmetry
have zero cross-coupling tensors ξ̄ and ζ̄, but the Green’s tensors of
the mixed type Ḡem(r− r0) and Ḡme(r− r0) are different from zero.
A comparison of symmetry properties of the constitutive tensors and
of the Green’s tensors for reciprocal bianisotropic media is given in
Appendix E.

We can state that the group of symmetry describing Green’s
tensors for a medium can not be higher than the group of symmetry
describing the corresponding medium. The reason of this is as follows.
The constitutive tensors define relations between the fields D, B and
E, H in one and the same point of medium (local property) therefore
the structure of the constitutive tensors depends only on symmetry
of medium. Green’s tensors define electromagnetic field in one point
of medium produced by a source located in another point (nonlocal
property) so that the structure of Green’s tensors depends also on the
orientation of the vector S in medium. The group of symmetry of the
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Green’s tensors is a subgroup of the group of symmetry of the medium
that keeps the direction S invariant.

The results of the presented theory which is free of approximations
can be used in the first place as exact references for calculations of
Green’s tensors by analytical and numerical methods. In the second
place, if an actual source (more complex than the idealized point
sources) and the medium have a certain resultant symmetry, the
simplified Green’s tensors can be used for analytical calculations of
electromagnetic field for some special directions in medium. These
directions are defined by symmetry operations which transfer a
direction into its equivalent one and the vector S into itself or into
−S. The directions are:

• along the (anti)axes of symmetry and normal to these axes for
rotations by π;
• in (anti)planes and in the directions normal to these (anti)planes.

The method can be used not only for free-Space Green’s
tensor analysis but also for calculations of Green’s tensors for the
electromagnetic wave radiation in complex and bianisotropic media
with obstacles and scattering if the corresponding problem has a Space-
Time reversal symmetry. In particular, many of the microwave and
optical boundary-value problems possess such a symmetry. In these
cases, we must also take into account symmetry of the geometry of the
object and symmetry of the boundary conditions.
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APPENDIX A. BRIEF DESCRIPTION OF POINT
MAGNETIC GROUPS

Time reversal operator. For magnetic structures, it is necessary
to include into consideration the Time reversal T as an element
of magnetic groups and combinations of space symmetry operations
with T . T changes the sign of time, i.e., (t) → −(t). The
Time reversal T commutes with all the space elements. It has the
property TT = T 2 = e (e is the unit element). The Time reversal
operator T corresponding to the group element T belongs to the so-
called antilinear operators [4].

When we deal with electromagnetic processes in the frequency
domain, the usual description of electromagnetic quantities is in terms
of complex functions. The effect of the operator T on time-harmonic
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quantities is expressed as follows. First of all, the operator reverses
the velocities and changes the current directions, the signs of electron
spins, magnetic fluxes, magnetic fields and Poynting’s vector. All
these quantities are odd in Time. Secondly, it complex conjugates
all the electromagnetic quantities. This property is verified easily by
considering Fourier transformation of the Time-reversed quantities [3].

Strictly speaking there no exists Time reversal symmetry in
physical processes. The main reason of this is causality, i.e., initial
conditions impose asymmetry with respect to the past and future. In
the presence of losses in a medium, the physical processes are not
the same in a given and in the Time reversed medium. For example, the
operator T converts a damping electromagnetic wave into a growing
one and vice versa because the dissipative processes are not Time
reversible.

Altman and Suchy [3] suggested to use along with T another
operator which they called the restricted Time reversal operator. Their
operator T fulfills the same functions as T with one exception: it is
not applied to the imaginary dissipative terms of the electromagnetic
quantities. This preserves the damping or growing character of the
wave under the Time reversal.

Categories of magnetic groups. There exist three categories of
discrete and continuous point magnetic groups. The group of the first
category G consists of a unitary subgroup H (in our case, it contains
the usual rotation-reflection elements) and products of T with all the
elements of H. The full group is then H + TH including T = Te.
Sometimes, these groups are called nonmagnetic ones.

In the case of magnetic groups of the second category G, there is
no Space elements combined with the Time reversal T , and T itself is
not an element of the groups. The nomenclature and the notations of
the groups of the first (nonmagnetic) category and that of the second
(magnetic) category coincide. In order to distinguish them, we use
bold-face type for the groups of the second category.

The magnetic groups of the third category G(H) contain in
addition to the rotation-reflection elements of the unitary subgroup H,
an equal number of antiunitary elements which are the product of T
and the usual geometrical symmetry elements. These combined
elements form a conjugate class TH ′ of the subgroup H and cause
the existence of antiaxes, antiplanes and anticenter of symmetry. The
full group is H + TH ′ without T . Notice that the elements of H ′ are
distinguished from those of H.

The unitary elements of a magnetic group of the third category
form a unitary subgroup of index 2. It means that in every group of the
third category there are equal number of elements with and without
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T . In contrast to the groups of the first category, the operator T
itself is not an element of the magnetic groups of the third category.
The content of the three categories of magnetic groups is presented in
Table A1.

Table A1. Content of magnetic groups of symmetry.

First category Second category Third category

G = H + TH G G(H) = H + TH ′, H ′ �= H

including T without T T only in combination
with rotation-reflections

APPENDIX B. MATRIX REPRESENTATIONS OF 3D
POINT SYMMETRY OPERATORS

In order to describe symmetry operations in 3D space such as rotations
and reflections, we use 3D matrix representations of the point groups.
Each element of a group corresponding to a point symmetry can be
presented by a 3×3 square orthonormal ( R̄−1 = R̄t

,det R̄ = ±1) real
matrix R̄. The unit element of the group has the unit 3× 3 matrix as
a representation. The matrices R̄ fulfilling rotations through an angle
α about the axis x, y, and z are

R̄Cx =


 1 0 0

0 cosα − sinα
0 sinα cosα


 , R̄Cy =


 cosα 0 sinα

0 1 0
− sinα 0 cosα


 ,

R̄Cz =


cosα − sinα 0

sinα cosα 0
0 0 1


 ,

(B1)

respectively.
The 3D matrix representations for reflections in the planes x = 0,

y = 0 and z = 0 are written respectively as

R̄σx =


−1 0 0

0 1 0
0 0 1


 , R̄σy =


 1 0 0

0 −1 0
0 0 1


 , R̄σz =


 1 0 0

0 1 0
0 0 −1


 ,

(B2)
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and the matrix representing inversion i (the center of symmetry) is

R̄i =


−1 0 0

0 −1 0
0 0 −1


 . (B3)

The determinant of R̄ for rotations (B1) is +1 but it is equal to −1
for reflections (B2) and inversion (B3).

APPENDIX C. SPATIAL AND TIME-REVERSAL
TRANSFORMATION PROPERTIES OF SCALAR AND
VECTOR FUNCTIONS, TENSORS AND THE CURL
OPERATOR

Maxwell’s equations relate fields and their sources in 3D Space and
Time. Let us consider the Space-Time reversal transformation prop-
erties of the quantities which are in Maxwell’s equations. Let R be a
rotation, reflection or inversion operator in Space which corresponds
to a group element R, and T is the restricted Time reversal operator
which corresponds to the Time reversal T (see Appendix A).

The position vector r and the differential operator ∂/∂r

Under a rotation-reflection operator R, the position vector r is
transformed in a new vector r′. Symbolically, we can describe this
operation as r′ = Rr. Using the 3D representation matrix R̄ of the
operator R (Appendix B), we can write this transformation as follows:

r′ = R̄ · r = r · R̄t
, (C1)

R̄t = R̄−1, the superscript t means matrix transposition, the
superscript −1 denotes the inverse matrix. The transformation of the
differential operator ∂/∂r is

∂/∂r′ = R̄ · ∂/∂r = ∂/∂r · R̄t
. (C2)

Obviously, the position vector r and the derivative are invariant with
respect to the Time reversal operator T .

Scalar and pseudoscalar functions

In this paper, we discuss homogeneous unbounded media. Thus,
all the possible scalar functions (for example, the permittivity ε(r)
in an isotropic media) and pseudoscalar functions (such as a chirality
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parameter in an isotropic chiral media) are independent of the position
vector r. However, our method is applicable also to inhomogeneous and
bounded media with symmetry. Therefore, for the sake of generality
and as a starting point for the following discussion of vectors and
tensors, we shall describe briefly the transformation properties of scalar
and pseudoscalar functions.

Under R, a scalar function f(r) is transformed into a new function
f ′(r) = Rf(r). The value of the new function f ′ at the transformed
point r′ must be equal to the value of the original function f at a given
point r, i.e.,

f ′(r′) = f(r), (C3)

or
f ′(r) = f(R−1r) = f( R̄−1 · r), (C4)

where R−1 is the inverse operator of R and R̄−1 is the inverse matrix
of R̄. Thus, on acting with R on f(r), the argument r of the scalar
function f(r) is transformed to R̄−1 · r.

The scalar function can be odd or even under Time reversal, i.e.,
it changes or does not change its sign under transformation (t)→ −(t).

A pseudoscalar function F (r) is transformed as follows:

F ′(r) = det(R̄)F (R−1r) = det(R̄)F ( R̄−1 · r), (C5)

where det means determinant. Thus, in contrast to a scalar function
which is invariant under rotation-reflections, a pseudoscalar function
preserves its sign under pure rotations but changes it under improper
rotations, reflections and inversion. As well as in the case of scalar
functions, a pseudoscalar function can be odd or even in Time.

Vector functions

Vectors are the simplest directional quantities. They may be
considered as tensors of the first rank. There exist two types of the
vectors: polar vectors (real ones) which will be denoted by a(r) and
axial vectors (pseudovectors) denoted further as A(r). The position
vector r, electric current Je(r), electric flux D(r), electric field E(r)
are polar vectors, but magnetic current Jm(r), magnetic flux B(r),
magnetic field H(r) are axial ones.

Spatial transformations a′(r) = Ra(r) of a polar vector a(r) are
defined according to

a′(r) = R̄ · a( R̄−1 · r), (C6)
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where R̄−1 is the inverse matrix of R̄. Thus, one should first transform
a by R with r fixed and then transform r to r′ = R−1r. In contrast to
the scalar functions, both the vector function a itself and its argument
(the position vector r) are changed in the transformation.

The transformation A′(r) = RA(r) for axial vectors under
rotation-reflections is written as follows:

A′(r) = det(R̄) R̄ · A( R̄−1 · r). (C7)

Comparing Eq. (C6) and Eq. (C7), we see that a distinction between
the polar and axial vectors lies in their behavior under improper
rotations, reflections and inversion where det(R̄) = −1.

For the combined Space-Time reversal operators T R correspond-
ing to antiaxes, antiplanes and anticenter of symmetry, the transfor-
mations a′(r) = T Ra(r) and A′(r) = T RA(r) are written as

a′(r) = ± R̄ · a( R̄−1 · r), (C8)

and
A′(r) = ±det(R̄) R̄ · A( R̄−1 · r), (C9)

respectively, where the sign + is used for the vectors even in Time (for
example, Jm, E, D), and the sign − for the vectors which are odd in
Time (for example, Je, H, B).

Tensors of the second rank

Tensors of the second rank are more complex directional quantities
than vectors. Here, we must distinguish between the polar tensors
(for example, ε̄, µ̄, Ḡee, Ḡmm) and the axial ones (for example,
ξ̄, ζ̄, Ḡem, Ḡme). The polar tensors ā define a linear relation between
two polar vectors or between two axial ones, but the axial tensors Ā
determine a relation between an axial vector and a polar one. As in
the case of vectors, the laws of spatial transformations are different for
the polar tensors and for the axial ones. For the polar tensors, it is

ā′(r) = R̄ · ā( R̄−1 · r) · R̄−1
, (C10)

and for axial ones

Ā′(r) = det( R̄) R̄ · Ā( R̄−1 · r) · R̄−1
. (C11)

Here, as well as in the case of vectors, under rotations, the axial and
polar tensors transform equally, but under reflections and inversion
they transform in different way.
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The combined Space-Time reversal operators T R provide the
following laws of the tensor transformations. For polar tensors:

ā′(r) = ± R̄ · āt( R̄−1 · r) · R̄−1
, (C12)

and for axial ones:

Ā′(r) = ±det( R̄) R̄ · Āt( R̄−1 · r) · R̄−1
, (C13)

where the signs + and − correspond, respectively, to the tensors even
in Time (for example, ε̄, µ̄, Ḡee, Ḡmm) and odd in Time (for example,
ξ̄, ζ̄, Ḡem, Ḡme).

Curl operator

Finally, we shall describe transformation properties of the
differential curl operator (∇ × Ī) of Eq. (21) under R. Using the
transformation properties of the operator ∂/∂r defined by Eq. (C1)
above, we can find:

R(∇× Ī ) = (∇′ × Ī ) = det( R̄) R̄ · (∇× Ī ) · R̄−1
. (C14)

The transformed operator (∇′ × Ī ) applied in the transformed
coordinates r′ has the same form as the original operator (∇ × Ī )
acting in the r coordinates [3]. The operator (∇ × Ī ) is invariant
under Time reversal.

APPENDIX D. TIME REVERSAL, FORMALLY
ADJOINT AND LORENTZ ADJOINT MAXWELL’S
EQUATIONS

We give below a brief description of different Maxwell’s systems which
are used in classical electrodynamics. A detailed discussion of these
systems and their applications can be found in [3].

Maxwell’s equations in the (r, ω) domain are

( D̄ + iωK̄ ) · F(r) = J(r), (D1)

where K̄ is medium six-tensor (18), F(r) and J(r) the six-vectors
of the electromagnetic field and the electric-magnetic currents (13),
respectively. The differential part of Maxwell’s operator D̄ is defined
by Eq. (17).

Complex conjugation of the Maxwell’s equations and multiplica-
tion them from the left by the matrix (− R̄T ) where

R̄T =

(
Ī 0̄
0̄ − Ī

)
, (D2)
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R̄T = R̄−1
T , Ī is 3× 3 unit matrix and 0̄ is 3× 3 zero matrix, leads to

the Time reversed Maxwell’s system:

( D̄ + iωK̄T ) · FT (r) = JT (r), (D3)

where

K̄T = R̄T ·K̄∗· R̄T =(K̄◦)∗, FT (r)= R̄T ·F∗(r), JT (r)=− R̄T ·J∗(r).
(D4)

Comparing equations (D1) and (D3) we see that Maxwell’s equations
are invariant under Time reversal. Notice, that the matrix R̄T which
was called in [3] the temporal mapping operator (and this is noted here
by the subscript T ) is a particular case of matrix (23).

The formally adjoint to the Maxwell’s system (D1) is obtained
by transposing all the matrix operators and changing the sign of the
differential operator D̄ [3]:

(−D̄t + iωK̄t ) · F̃(r) = J̃(r), (D5)

where D̄t = D̄. The system (D5) with the source J̃(r) and the field F̃(r)
is nonphysical, nevertheless it is used in theoretical investigations (see,
for example, [1] and [3]).

The Lorentz adjoint of the Maxwell’s equations can be deduced
premultiplying Eq. (D4) by R̄T with the result:

( D̄ + iωK̄L ) · FL(r) = JL(r), (D6)

where

K̄L= R̄T ·K̄t · R̄T =(K̄◦)t, FL(r)= R̄T · F̃(r), JL(r)=− R̄T · J̃(r).
(D7)

Lorentz adjoint system (D6) is physical. It is employed in the
Lorentz reciprocity theorem. The Lorentz adjoint system can also
be obtained by applying the restricted Time reversal operator to
Maxwell’s system (D1), that is the Lorentz adjoint system and the
restricted Time reversed system are identical. This circumstance is
used in our paper for calculations of the Green’s tensors for media
possessing combined Space-Time reversal symmetries.

Below, we write down relations between the Green’s tensors
Ḡ(r − r0), the adjoint Green’s tensors G̃(r − r0) and the Lorentz-
adjoint Green’s tensors ḠL(r− r0) [3]:

G̃(r0−r)=Ḡt(r−r0), ḠL(r−r0)=G̃◦(r−r0), ḠL(r−r0)=(Ḡ◦)t(r0−r).
(D8)
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APPENDIX E. COMPARISON OF SYMMETRY
PROPERTIES OF THE CONSTITUTIVE TENSORS AND
GREEN’S TENSORS FOR RECIPROCAL
BIANISOTROPIC MEDIA

For comparison, we write down in Table E1 the restrictions imposed by
reciprocity of a medium on the constitutive tensors K̄ and on Green’s
tensors Ḡ(r−r0). Notice that for unbounded homogeneous media, the
tensor K̄ does not depend on r but the tensor Ḡ(r − r0) depends on
the vector S = (r− r0).

The superscript t in Table E1 denotes transposition. The
adjugation ◦ changes the sign of the constitutive tensors ξ̄ and ζ̄, and
of the Green’s tensors of the mixed type Ḡem(r−r0) and Ḡme(r−r0).

Table E1. Restrictions imposed by reciprocity on the constitutive and
Green’s tensors.

Constitutive tensors Green’s tensors

K̄ =
(
ε̄ ξ̄
ζ̄ µ̄

)
Ḡ(r− r0) =

Ḡee(r− r0) Ḡem(r− r0)

Ḡme(r− r0) Ḡmm(r− r0)

Reciprocity of medium

K̄ = (K̄◦)t Ḡ(r0 − r) = (Ḡ◦)t(r− r0)

ε̄ = ε̄ t, Ḡee(r0 − r) = (Ḡee)t(r− r0),

µ̄ = µ̄ t, Ḡmm(r0 − r) = (Ḡmm)t(r− r0),

ξ̄ =−ζ̄ t. Ḡem(r0 − r) = −(Ḡme)t(r− r0).

( (

We see from Table E1, that for a reciprocal medium, the
constitutive tensor K̄ is invariant with respect to transposition and
adjugation, i.e., the nonreciprocal part of the tensor K̄ is equal to zero.
Reciprocity of media imposes constraints on Green’s tensors which give
some relations between the elements of the tensors with opposite signs
of the argument S = (r− r0).
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