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Abstract—This contribution concerns the interaction of an arbitrarily
orientated, time-harmonic, magnetic dipole with a perfectly conduct-
ing sphere embedded in a homogeneous conductive medium. A rig-
orous low-frequency expansion of the electromagnetic field in positive
integral powers (jk)n, k complex wavenumber of the exterior medium,
is constructed. The first n = 0 vector coefficient (static or Rayleigh)
of the magnetic field is already available, so emphasis is on the calcu-
lation of the next two nontrivial vector coefficients (at n = 2 and at
n = 3) of the magnetic field. Those are found in closed form from exact
solutions of coupled (at n = 2, to the one at n = 0) or uncoupled (at
n = 3) vector Laplace equations. They are given in compact fashion,
as infinite series expansions of vector spherical harmonics with scalar
coefficients (for n = 2). The good accuracy of both in-phase (the real
part) and quadrature (the imaginary part) vector components of the
diffusive magnetic field are illustrated by numerical computations in a
realistic case of mineral exploration of the Earth by inductive means.
This canonical representation, not available yet in the literature to
this time (beyond the static term), may apply to other practical cases
than this one in geoelectromagnetics, whilst it adds useful reference re-
sults to the already ample library of scattering by simple shapes using
analytical methods.
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1. CONTEXT OF THE INVESTIGATION

In present-day Earth’s subsurface electromagnetic probing, especially
in mineral exploration, one is often faced with the challenge to retrieve
an anomaly of some sort, such as metallic ores, from 3-component
magnetic fields measured along a borehole when a low-frequency time-
harmonic source is operated nearby, either fixed (usually) at the surface
of the Earth or moved (at best) in the same or another borehole.
That is, by deciphering such data, orientations, sizes, shapes, electric
parameters of the anomalies must be retrieved. However, this inversion
task cannot be led in robust fashion unless proper models of the
field interaction are available in order to bring good insight to the
field behavior and to make available elementary bricks of an inversion
algorithm.

Computationally involved 3-D modeling codes are evidently
available to that purpose, and one might refer to [1] as a good first
example whilst many complementary investigations are found in [2].
But simple methodologies remain useful, as is exemplified early on by
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the classical book of [3]. A recent and detailed contribution by [4] (see
also references therein) illustrates this type of approach.

The strong electromagnetic and geometric complexity of the
Earth, the variety of source-receiver configurations, the need to
separate primary fields (hypothetically observed in the absence of
the anomalies) and secondary fields due to these anomalies, and the
fact that only simplified shapes can effectively be retrieved at the
low frequencies employed in such an exploration † are some of the
reasons that explain the continuing interest in mathematically sound,
hopefully robust yet computationally simple modeling tools of the
electromagnetic interaction.

In order to put such tools together, the authors and colleagues
have advocated working within the framework of the well-known low-
frequency scattering theory [5], i.e., by expanding the electromagnetic
field in positive integral powers (jk)n, k complex wavenumber of the
embedding medium at the operation frequency ω, and by appropriately
calculating the vector field coefficients at each n.

Furthermore, they have been suggesting to focus onto the case
of a homogeneous conductive triaxial (general) ellipsoid —possibly
degenerated to prolate and oblate spheroids or to a sphere— in
an Earth-like conductive homogeneous medium, illuminated by an
arbitrarily orientated and arbitrarily located time-harmonic magnetic
dipole (as a good model of a small electric current loop).

Indeed, in mineral exploration, it is already quite an achievement
to show that an orebody behaves as such an ellipsoid, and to
accordingly retrieve its geometry and conductivity, by ensuring that
the magnetic fields effectively collected along a borehole for a source
operated at a few frequencies are close enough to the fields computed
for this equivalent ellipsoid; this is argued at length already in [6].

Then, low-contrast cases (say, a ratio between the conductivity,
σb, of the body and the one, σ, of the medium of less than about
100) can be approached by hybrid means from volumetric Green-based
integral formulations of the field conveniently approximated [7] and
from expansions of the Green function inside them and of the resulting
fields [6, 8].

High-contrast cases (say, with conductivity ratios σb/σ well
beyond 103, values of 105 and more being frequently observed
with metallic ores in a resistive Earth) are approximated via the
introduction of perfectly conducting (impenetrable) bodies, and the
scattering problem is transformed into a succession, one at each n,
† Up to a few kHz, distances between sources and receivers and anomalies and the
dimensions of the anomalies are a fraction of the plane-wave skin depth in a subsoil the
conductivity of which usually ranges between a few mS/m and a few tens mS/m.
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of possibly coupled boundary value problems formulated according
to second-order partial differential equations (Laplace) with proper
perfectly reflecting boundary conditions, and closed-form solutions
thereof, the latter being expanded accordingly by using available solid
or vector harmonics [9] in the ellipsoidal or degenerate system of
coordinates which is attached to the body [10].

However, to reach these representations of the field even in the
canonical configuration is not straightforward in view of the localized
vector sources (instead of plane waves), the near fields (instead of far
fields) and the conductive embedding media (instead of vacuum) that
are to be dealt with; for the most part closed-form results appear still
absent from the literature on scattering by simple shapes to the best
of our knowledge.

That is, the expectedly standard static, n = 0 coefficient
(Rayleigh) of the secondary magnetic field —which is the one that
would be observed for a dipolar excitation of an ellipsoid in vacuum
satisfying a Neumann boundary condition— appears to have been
proposed for the first time in [10] using expansions in solid ellipsoidal
harmonics up to degree 3 (the harmonics of higher degree are not
known in explicit fashion) of the scalar potential. Let us notice that
the spherical case is considered in this paper [10] as well, now using
expansions in solid spherical harmonics up to arbitrary degree; yet no
claim was made for their originality (being said we do not know of any
reference in the open literature where these expansions would be given
in full). ‡

As for the next coefficients (for the dipolar illumination they will
be nontrivial from n = 2 as shown in section 2), henceforth termed as
dynamic ones since they contribute to the imaginary part (quadrature)
of the magnetic field in addition to possibly contributing to its real part
(in-phase), and involve the perturbation of conduction currents in the
embedding medium induced by the given source (both galvanic and
vortex effects are modeled here), the ellipsoidal case is not treated
anywhere.

Even, the low-frequency expansions in the spherical case are not
available, again to the best of our knowledge. Results are available for
a penetrable sphere illuminated by a dipolar magnetic field within a
conductive host medium via a Mie series expansion [7], possible low-
frequency counterparts being not exploited however. In [3] a low-
frequency expansion is found by the clever manipulation of Debye
potentials, but the approach does not accommodate for a perfectly
‡ In [10], part of the investigation is devoted to identification of a spherical or ellipsoidal
orebody from synthetic data as well as from real data acquired in the field, which
identification problem is not considered in the present contribution.
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conducting sphere via an asymptotic analysis.
Here, one will limit ourselves to the sphere case, with most

emphasis on the n = 2 vector coefficient (the n = 3 is easier to
get again as the gradient of a scalar potential), as a preliminary yet
necessary example of the interest of the method. This, in addition
to the interest for practical applications, like mining exploration here,
or so-called UnExploded Ordinance (UXO) investigations [11] or like
the exploration of natural structures such as water-filled cavities and
other possibly conductive anomalies in subsoil at shallow depths, will
be adding what is believed to be useful reference results to the already
ample library of scattering by simple shapes using analytical methods
[12, 13].

Let us emphasize that a difficult and cumbersome work on the
dynamic terms in the general ellipsoidal case is still not fully completed
at the present time [14]. However, the lack of high degree ellipsoidal
harmonics implies that even a clever degeneracy of the ellipsoidal
formulas to the spherical ones fails to reproduce the full spherical
representation as is exemplified already in [10] for the Rayleigh term,
but should yield a few of the contributors to each n coefficient only.
So, the sphere analysis carried out herein is valuable per se.

Also, the proposed approach makes good use of the external
vector spherical harmonics for the Laplace equation. Indeed, they
enable us to express the unknown field coefficients as a sum of series
expansions involving vector harmonics with scalar coefficients, instead
of expressing them as a sum of series expansions involving solid
spherical harmonics with 3-component vector coefficients. This leads
to far less unknowns (three times less), provides for rather elegant
calculations, and results into compact formulas —notice that neither
the ellipsoidal case nor the spheroidal ones enjoy explicit knowledge of
all needed vector harmonics, which, for such geometries, would force
us to take the long way via calculation of many scalar factors.

The paper itself is organized as follows. After this rather long
yet believed to be necessary analysis of the context in this section,
one sketches in section 2 the low-frequency analysis as specialized to
the scattering by a 3-D bounded, impenetrable smooth body in an
conductive host medium illuminated by a magnetic dipole. Then,
in Section 3, one describes the main steps that enable us to handle
the sphere case, focusing onto the novel material (the n = 2 and
at a much lesser degree of complexity the n = 3 coefficients). In
Section 4 one illustrates these results by numerical examples in a
realistic mining exploration case. A short outline of forthcoming works
follows. In Appendix, key elements on the vector spherical harmonics
are reminded for completeness.
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Figure 1. A perfectly conductive a radius sphere, placed at the
center O of Cartesian co-ordinate system (x1, x2, x3), in a non-magnetic
(permeability µ0) conductive (σ) medium, is illuminated by a magnetic
dipole M orientated along the x3 axis and localized in r0. (r, θ, ϕ)
represents a spherical co-ordinate system, and (r̂, ζ̂, ϕ̂) —where ζ =
cos(θ)— are unit vectors of this system.

2. MAIN INGREDIENTS OF THE LOW-FREQUENCY
SCATTERING MODEL

The ingredients of the model put forth can be summarized as follows
(here, taking good part of the material from [10]) with reference to the
geometry in Figure 1 (here drawn for a spherical body, for simplicity
and in accord with the investigation pursued later on).

Let k = (jωσµ0)
1/2 (or correspondingly k = (1 + j)/δ, δ planar

skin depth) be the wavenumber at low circular frequency ω (with
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henceforth implied time-dependence exp(−jωt)) in the linear isotropic,
non-magnetic (permeability µ0) conductive host medium (conductivity
σ); polarization effects are assumed to be negligible at this stage, only
conduction currents flow inside the medium.

A magnetic dipole M with orientation taken along the x3 axis of
a set of Cartesian co-ordinates (this does not reduce the generality of
the analysis) and amplitude M = 4π is operated at location r0.

A single voluminous anomaly Ω with smooth boundary contour
(it will be specialized to a sphere of radius a in section 3) whose
conductivity σb is large enough with respect to the background one to
be assumed as of infinite value, is also contained inside the conductive
host medium. The primary electromagnetic field (EP ,HP ) radiated in
the medium interacts with the body, which gives birth to a secondary
electromagnetic field (ES ,HS) the magnetic field of which is collected
(via a 3-component probe) at some r (typically along a single line L
passing outside the body).

Now, one is interested in vector series expansions in positive
integral powers (jk)n of the electromagnetic field, e.g., expansions of
the form U =

∑
n Un(jk)n, Un real-valued and independent of k, the

integer n running from 0 to ∞ —which low-frequency series expansions
are known to converge for k small enough [5].

The primary fields at r due to the magnetic dipole at r0 enjoy
such expansions (implying r hereafter):

EP = EP
2 (jk)2 + O(jk)4, (1)

HP = HP
0 + HP

2 (jk)2 + HP
3 (jk)3 + O(jk)4. (2)

The electric and magnetic field coefficients at n = 4 are nonzero,
but they are not considered further on.§ Using dyadic notations via
underlining of the concerned quantity, letting I be the identity dyad,
and upon introduction of R = r − r0 and R = |r − r0|, magnetic and
electric vector coefficients readily follow:

HP
0 =

1
R3

[
3RR
R2

− I
]
· x3 = ∇

[
∇(

1
R

) · x3

]
(3)

HP
2 = − 1

2R

[
RR
R2

+ I
]
· x3 = −1

2

[
−(∇ 1

R
)R +

I
R

]
· x3 (4)

HP
3 = −2

3
x3, (5)

§ Let us notice that if the host medium is not modeled as purely conductive, say, if some
polarization effects are introduced in view of a possibly high operation frequency (nearing
1 MHz in the context of subsoil exploration) via a real-valued permittivity ε, this would
only affect elements at order n = 4 and beyond.
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EP
2 = − 1

σ
x3 ×

R
R3

=
1
σ
x3 ×∇ 1

R
. (6)

Let us notice that magnetic terms of order n vary like 1/R3−n and the
electric ones vary like 1/R4−n when range R increases to infinity.

By insertion of the series expansions of the secondary fields
within the Maxwell’s PDE which these fields satisfy, and by taking
into account the triviality of several primary field coefficients above,
one obtains first-order differential relationships for the nontrivial
coefficients up to order 3 as

∇× HS
0 = 0, (7)

∇× ES
2 = − 1

σ
HS

0 (8)

∇× HS
2 = σES

2 , (9)

∇× HS
3 = 0, (10)

all field coefficients being divergence free.
As for the perfectly reflecting boundary conditions at the body

surface, i.e., cancellation of the normal component of the magnetic
field and cancellation of the tangential component of the electric field,
they apply at each order n. One has[

HP
n + HS

n

]
· n = 0, (11)

[
EP

n + ES
n

]
× n = 0, (12)

where n is the unit exterior normal.
Equivalently to the above first-order differential equations and

boundary conditions, the static (n = 0) coefficient of the secondary
magnetic field (the one of the electric field is zero) is the solution
of a standard potential problem in vacuum with Neumann boundary
condition:

HS
0 = ∇ΦS

0 , ∆ΦS
0 = 0, ∂nΦS

0 = −∂nΦP
0 , (13)

letting ΦP
0 the primary potential, with normal derivative denoted as

∂n. A similar relationship holds true with the third, n = 3 coefficient
of the secondary magnetic field, once replaced the primary potential by
the proper one, ΦP

3 , here associated to a coefficient uniform throughout
space.

As for the n = 2 coefficient of the secondary magnetic field, from
the above, it is easily seen that it satisfies the inhomogeneous vector
Laplace equation

∆HS
2 = HS

0 (14)
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with vector Laplacian ∆, the boundary conditions being still to be
enforced.

For cases n = 0 and n = 3 it will suffice to calculate scalar
potentials, which is not expected to be a considerable task in a
system of coordinates attached to a canonical body (e.g., an ellipsoid
and degenerate shapes) for which solid harmonics as solutions of the
homogeneous scalar Laplace equation are available (at least to an
extent, e.g., the ellipsoidal geometry), which enables us to expand the
unknown coefficients onto them.

At n = 2, the mathematical formulation (14) looks at first hand
more complicated. But the vector biharmonic coefficient HS

2 writes
down as the sum of a particular solution, henceforth denoted as
HSpar

2 , of this inhomogeneous equation (14) and of a general vector
harmonic solution, henceforth denoted as HSgen

2 , of the corresponding
homogeneous equation. Since HS

0 = ∇ΦS
0 , standard vector algebra (in

particular ∆r = 0) enables us to exhibit as a particular solution the
purely radial function

HSpar
2 =

1
2
ΦS

0 r, (15)

the electric field coefficient being

ESpar
2 =

1
2σ

∇ΦS
0 × r. (16)

So, there mostly remains to tackle the homogeneous equation,
again profiting from the fact that the previous solid harmonics, or,
better, the vector harmonics as solutions of the homogeneous vector
Laplace equation, may be available in order to expand the unknown
field coefficients onto them.

3. SPECIALIZATION TO THE SPHERICAL CASE

Let us now specialize the analysis to a sphere of radius a centered at
the center of coordinates O. This requires first a reminder of material
on solid and vector spherical harmonics [15, 9]; this material is given in
Appendix A. One will heavily draw from it in the next two subsections,
referring to specific relationships of the Appendix A only in special
cases.

3.1. The Field (Potential) Problems at n = 0 and n = 3

As already said, at orders n = 0 (static) and n = 3, one simply has to
solve potential problems (results have already been given, in part, in
the first case [10]).
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As given in the above, the static primary potential associated to
the field coefficient in (3) enjoys a very simple expression, ΦP

0 (r) =
∇( 1

R)·x3. The expansion of the inverse distance on the solid harmonics
is well known. For r < r0,

1
R

=
∞∑

n=0

rn

rn+1
0

n∑
m=0

(n−m)!
(n + m)!

εmPm
n (ζ)Pm

n (ζ0) cos[m(ϕ− ϕ0)], (17)

where ζ = cos θ, ζ0 = cos θ0, ε0 = 1, and εm�=0 = 2, the Pm
n being the

associated Legendre polynomials.
Matching the magnetic boundary condition at the surface r = a

of the sphere (i.e., cancellation of the normal derivative of the total
potential) yields the secondary magnetic potential as a multipole
expansion:

ΦS
0 (r) =

∞∑
n=0

a2n+1

rn+1rn+2
0

n∑
m=0

(n−m + 1)!
(n + m)!

·εm
n

(n + 1)
Pm

n+1(ζ0)P
m
n (ζ) cos[m(ϕ− ϕ0)]. (18)

The magnetic field coefficient immediately results from a gradient
operation:

HS
0 (r) = −

∞∑
n=1

a2n+1

rn+2rn+2
0

n∑
m=0

(n−m + 1)!
(n + m)!

εm
n

(n + 1)
Pm

n+1(ζ0)f
m
n .

(19)
In the attached spherical coordinate system (centered at the sphere
center, with unit vectors r̂, ζ̂, ϕ̂), the three components of the range-
independent vector coefficients fm

n are

fm
n |r = (n + 1)Pm

n (ζ) cos[m(ϕ− ϕ0)],
fm

n |ζ =
√

1 − ζ2Pm′
n (ζ) cos[m(ϕ− ϕ0)],

fm
n |ϕ =

1√
1 − ζ2

mPm
n (ζ) sin[m(ϕ− ϕ0)].

(20)

where the prime indicates derivation with respect to the argument.
At n = 3, one can in effect bypass the calculation of the primary

potential, the value of the secondary field being derived almost per
inspection. Indeed the primary field is a constant vector, as HP

3 (r) =
−2

3x3. So, its projection onto the normal at the sphere surface r = a
has the only angular dependance ζ = cos θ, which is none other than
the even scalar surface harmonic of order 0 and degree 1, Y 0e

1 . Since
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the secondary field (the gradient of a potential) should have the general

form HS
3 (r) =

∞∑
n=0

n∑
m=0

∑
s=e,o

Sms
n

(
∇ 1

rn+1Y
m
n (r̂)

)
, cancellation of the

sum of the primary and secondary field components normal to the
surface involves that all sought coefficients Sms

n are trivial, save S0e
1

which is the only one to bring out the proper cosine dependance (this
coefficient calculates as −a3

3 ). Finally, one arrives at the very simple
result

HS
3 (r) =

1
3

(
a

r

)3 [
2ζ r̂ +

√
1 − ζ2ζ̂

]
. (21)

3.2. The Field Problem at n = 2

As shown in the previous section, the magnetic field coefficient at order
n = 2 is made of a particular radial solution, HSpar

2 , as given in (15)
and of a general vector harmonic solution, HSgen

2 .
The particular solution is considered from (18). After some

standard manipulations that enable us to introduce a summation of
even and odd surface harmonics Y ms

n (r̂), one finds

HSpar
2 (r) =

∞∑
n=0

n∑
m=0

∑
s=e,o

Ams
n r−nY ms

n (r̂)r̂, (22)

where one has let

Ams
n =

1
2

(n−m)!
(n + m)!

εm
a2n+1

rn+2
0

n(n−m + 1)
(n + 1)

Pm
n+1(ζ0)

{
cosmϕ0, s = e
sinmϕ0, s = o

}
.

(23)
The transverse electric field coefficient ESpar

2 follows as

ESpar
2 (r) =

1
σ

∞∑
n=1

n∑
m=0

∑
s=e,o

Ams
n Mms

n (r) (24)

by readily using the definition of the Mms
n vector harmonic in (A11).

The general solution, according to the expansion (A15), is
expressed as

HSgen
2 (r) =

∞∑
n=1

n−1∑
m=0

∑
s=e,o

ams
n Nms

n (r) +
∞∑

n=1

n∑
m=0

∑
s=e,o

bms
n Mms

n (r)

+
∞∑

n=0

n+1∑
m=0

∑
s=e,o

cms
n Gms

n (r). (25)
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Consequently, in view of the curl relationships satisfied by the vector
harmonics and after a shift of the n index in the second summation,
one has

ESgen
2 (r) =

1
σ

[
−

∞∑
n=1

n∑
m=0

∑
s=e,o

nbms
n Nms

n+1(r)

+
∞∑

n=1

n∑
m=0

∑
s=e,o

(2n− 1)cms
n−1M

ms
n (r)

]
. (26)

The three sets {ams
n }, {bms

n }, {cms
n }, of scalar coefficients introduced

above have to be constructed in accord with the primary field data,
with the value of the particular solution, and with the boundary
conditions. The procedure is considered below, only the main steps
being emphasized in view of the large amount of calculations to be
performed.

3.2.1. Enforcing the Divergence Free Property of the Total Magnetic
Field

The first obvious step is to enforce that the total magnetic field
component is divergence free. Doing so provides us with the {cms

n } set
of coefficients since the two other sets, {ams

n } and {bms
n }, are coefficients

of vector harmonics that are divergence free.
The divergence of the general solution immediately follows from

the material in Appendix as

∇ · HSgen
2 (r) =

∞∑
n=0

n+1∑
m=0

∑
s=e,o

[−(n + 1)(2n + 1)]r−(n+2)cms
n Y ms

n+1(r̂).

(27)
As for the divergence of the particular solution, it is valued at
1
2(3ΦS

0 + HS
0 · r) from (15). After proper introduction of even and

odd surface harmonics so as the general and particular solutions look
alike, it reads as

∇ · HSpar
2 (r) =

∞∑
n=0

n+1∑
m=0

∑
s=e,o

[
−(n− 1)Ams

n+1

]
r−(n+2)Y ms

n+1(r̂). (28)

The sum of the two divergences should be null everywhere, which
implies that all resulting coefficients of the harmonics Y ms

n+1(r̂) cancel
out, i.e., one finds

cms
n = − (n− 1)

(n + 1)(2n + 1)
Ams

n+1, n = 0, 1, . . . ;m = 0, 1, . . . , n+1; s = e, o.

(29)
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Detailed expressions of the corresponding set of coefficients, {cm
n },

where the sine or cosine parts are taken off, are regrouped at the end
of the subsection with all others involved.

Now, let us consider the satisfaction of the boundary conditions.
First one has to obtain proper expansions of the primary magnetic and
electric field coefficients at the sphere surface r = a, as well as of the
particular solution. Here, let us emphasize that one will only need (for
example) the normal (radial) components of r̂ · HP

2 and r̂ · HSpar
2 , of

the magnetic one, and only one of the two tangential components of
r̂×EP

2 and r̂×ESpar
2 of the electric one, since only two sets of coefficients

remain to be calculated, and two sets of equations are sufficient to do
so.

3.2.2. Enforcing the Magnetic Field Boundary Condition on the
Sphere Surface

From the second expression of the primary magnetic field coefficient
HP

2 in the right-hand side of (4), its radial component reads in detailed
form as

r̂ · HP
2 (r) =

1
2

[
(aζ − r0ζ0)

∂

∂ r

1
|r − r0|

∣∣∣∣
r=a

− ζ
1

|r − r0|

∣∣∣∣
r=a

]
. (30)

From the expansion (17) of the inverse distance 1
|r−r0| and accounting

for the recurrence relationships satisfied by the associated Legendre
polynomials Pm

n and their derivatives, after suitably regrouping the
several terms obtained in this way, one gets

r̂ · HP
2 (r)

∣∣∣
r=a

=
1
2

∞∑
n=0

n∑
m=0

(n−m)!
(n + m)!

εm
an

r0
n+1

αm
n Pm

n (ζ) cos(m(ϕ− ϕ0))

(31)
letting the intermediary coefficient αm

n , from n = 0 for m = 0, 1, . . . , n,
be

αm
n = −r0

a

2(n + 1)(n + m)
(2n− 1)(2n + 1)

Pm
n−1(ζ0)

+n(n−m + 1)
[
a

r0

1
2n + 3

− r0

a

1
2n + 1

]
Pm

n+1(ζ0), (32)

noticing that α0
0 = 0. After some further manipulation the sought

surface harmonic expansion of the radial component of the primary
magnetic field coefficient becomes

r̂ · HP
2 (r)

∣∣∣
r=a

=
∞∑

n=0

n∑
m=0

∑
s=e,o

Ωms
n Y ms

n (r̂), (33)
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where one has introduced for brevity

Ωms
n = Ωm

n

{
cosmϕ0, s = e
sinmϕ0, s = o

}
, (34)

the value of Ωm
n being easily derived from the preceding relationships

as
Ωm

n =
1
2

(n−m)!
(n + m)!

εm
an

r0
n+1

αm
n . (35)

At the same time working on the particular solution brings out

r̂ · HSpar
2 (r)

∣∣∣
r=a

=
∞∑

n=0

n∑
m=0

∑
s=e,o

Ams
n a−nY ms

n (r̂). (36)

Now, cancellation of the normal magnetic field coefficient at
r = a directly provides us with the ams

n coefficients. Indeed, the
bms
n coefficients in (25) are factors of purely transverse harmonics

Mms
n , whilst the cms

n coefficients —which are associated to some radial
contribution as well— are already available. Since one knows from
(A13) and (A14) the radial components of the Nms

n and Gms
n versus

the Y ms
n surface harmonics, cancelling out the sum of the several

coefficients of Y ms
n at each involved n within the expression of the

total normal component yields coefficients ams
n which satisfy

na−(n+1)a
ms

n = Ωms
n−1 + a−(n−1)Ams

n−1 + (n− 1)a−(n−1)cms
n−2,

n = 1, 2, . . . ;m = 0, 1, . . . , n− 1; s = e, o. (37)

Let us notice that a0s
1 is null (the subscript of c in the above may

reach −1, but its factor is identically zero, so it does not matter).
Final expressions of the corresponding coefficients am

n , where the sine
or cosine parts are taken off, follow (they are again given at the end of
the subsection).

3.2.3. Enforcing the Electric Field Boundary Condition on the Sphere
Surface

Since there remains only the set {bm
n } to be found at this stage, it

suffices to cancel out one transverse component of the total electric
field coefficient at the sphere surface r = a —if this is done in proper
fashion the other transverse component should consequently be zero as
well, which is indeed a result one has checked afterwards. Next one has
worked with the ζ component. Similarly to the above analysis, from
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the second expression of EP
2 in the right-hand side of (6), after simple

yet quite lengthy calculations, one gets

r̂ × EP
2 (r)

∣∣∣
r=a

=
1

σ
√

1 − ζ2

∞∑
n=0

n∑
m=0

(n−m)!
(n + m)!

εm

[
an−1

r0
n+1

βm
n sin(m(ϕ− ϕ0))ϕ̂ +

an

r0
n+2

γm
n cos(m(ϕ− ϕ0))ζ̂

]
Pm

n (ζ), (38)

letting intermediary coefficients βm
n and γm

n be

βm
n = m

[
r0

a

(n + m)
(2n− 1)

Pm
n−1(ζ0) +

a

r0

(n−m + 1)
(2n + 3)

Pm
n+1(ζ0)

]
, (39)

and

γm
n = −r0

a

[
(n + m)(n + m− 1)

(2n− 1)
−m

]
Pm

n (ζ0)

− a

r0

(n−m + 1)(n−m + 2)
(2n + 3)

Pm
n+2(ζ0). (40)

After some manipulation of the primary contribution in (38), (39),
(40), one gets the general form

r̂ × EP
2 (r) · ζ̂

∣∣∣
r=a

=
1

σ
√

1 − ζ2

∞∑
n=0

n∑
m=0

∑
s=e,o

Γms
n Y ms

n (r̂), (41)

where one has set

Γms
n = Γm

n

{
cosmϕ0, s = e
sinmϕ0, s = o

}
, (42)

the value of Γm
n being easily derived from the preceding relationships

as
Γm

n =
(n−m)!
(n + m)!

εm
an

r0
n+2

γm
n . (43)

As for the transverse electric part r×ESpar
2 of the particular solution,

one easily shows that

r̂ × ESpar
2 (r)

∣∣∣
r=a

=
1
σ

∞∑
n=1

n∑
m=0

∑
s=e,o

Ams
n

√
n(n + 1)a−(n+1)Bms

n (r̂).

(44)
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Finally, starting from (26), one arrives at the corresponding transverse
part of the general solution as

r × ESgen
2 (r)

∣∣∣
r=a

=
1
σ

∞∑
n=1

n∑
m=0

∑
s=e,o

√
n(n + 1)a−(n+2)

[
nbms

n Cms
n (r̂) + (2n− 1)acms

n−1B
ms
n (r̂)

]
. (45)

Since one is able to calculate from (A7), (A8) the transverse
components of the Bms

n and Cms
n vector surface harmonics as a function

of the Y ms
n (r̂) scalar surface harmonics, the problem left here boils

down to cancelling out the sum of the several factors of Y ms
n (r̂) within

the total ζ-component at r = a derived from the above. Careful book-
keeping is especially required in view of the number of terms involved,
whilst the even and odd order terms are treated in separate fashion for
simplicity and regrouped thereafter. In so doing, one is able to show
the following relationship:

−2a−(n+2) (n + 2)(n + m + 1)
(2n + 3)(n + 1)

Ams
n+1 +

2(n−m)
(2n− 1)

a−nAms
n−1

+δsmna−(n+2)bms
n + Γms

n = 0
n = 1, 2, . . . ;m = 0, 1, . . . , n; δs=e = 1; δs=o = −1; (46)

s here means a superscript o if s = e and vice-versa. Detailed
expressions of the corresponding coefficients bm

n , where the sine or
cosine parts are taken off, follow (they are given below).

3.3. The Full Expressions of the Magnetic and Electric Field
Coefficients

Collecting all previous results as indicated before, with separation of
the mϕ0 sine and cosine contributions for clarity, one has

HS
2 (r) =

∞∑
n=1

n∑
m=0

dm
n r−n [cos (mϕ0)Pme

n (r̂) + sin (mϕ0)Pmo
n (r̂)]

+
∞∑

n=1

n−1∑
m=0

am
n [cos (mϕ0)Nme

n (r) + sin (mϕ0)Nmo
n (r)]

+
∞∑

n=1

n∑
m=0

bm
n [− sin (mϕ0)Mme

n (r) + cos (mϕ0)Mmo
n (r)]

+
∞∑

n=0

n+1∑
m=0

cm
n [cos (mϕ0)Gme

n (r) + sin (mϕ0)Gmo
n (r)] ,

(47)
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and, in accord with divergence and curl relationships satisfied by the
harmonics,

σES
2 (r) =

∞∑
n=1

n∑
m=0

2
n
dm

n [cos (mϕ0)Mme
n (r) + sin (mϕ0)Mmo

n (r)]

−nbm
n

[
− sin (mϕ0)Nme

n+1(r) + cos (mϕ0)Nmo
n+1(r)

]
. (48)

The four sets of scalar coefficients involved in the above are given by

dm
n =

1
2

(n−m)!
(n + m)!

εm
n(n−m + 1)

(n + 1)
a2n+1

rn+2
0

Pm
n+1(ζ0)

am
n =

(n−m)!
(n + m)!

εm
(n + m)
n(n−m)

[
−a2n−1

r0
n−1

n(n + m− 1)
(2n− 3)(2n− 1)

Pm
n−2 (ζ0)

+
a2n−1

r0
n+1

(n− 1)(n−m)

(
a2(2n− 1)

(2n− 3)(2n + 1)
− r2

0

2(2n− 1)

)
Pm

n (ζ0)

]

bm
n =

(n−m)!
(n + m)!

εm
a2n+1

r0
n+1

m

n2
Pm

n (ζ0)

cm
n = −1

2
(n−m)!
(n + m)!

εm
a2n+3

r0
n+3

(n− 1)(n−m + 1)(n−m + 2)
(2n + 1)(n + m + 1)(n + 2)

Pm
n+2(ζ0)

(49)

For the purpose of the numerical calculations, the above formula-
tion can be transformed from relationships in Appendix: one develops

the three components of HS
2 (r) as

∞∑
n=1

n∑
m=0

[
hm

n |rr̂ + hm
n |ζ ζ̂ + hm

n |ϕϕ̂
]

the scalar coefficients of which are

hm
n |r = r−(n+2)

[
(dm

n + ncm
n−1)r

2−(n+1)am
n+1

]
Pm

n (ζ) cos[m(ϕ−ϕ0)],

hm
n |ζ = r−(n+2)

[
m√
1−ζ2

bm
n rPm

n (ζ)−(cm
n−1r

2+am
n+1)

√
1−ζ2Pm′

n (ζ)

]

· cos[m(ϕ− ϕ0)],

hm
n |ϕ = r−(n+2)

[√
1−ζ2bm

n rPm′
n (ζ)− m√

1−ζ2
(cm

n−1r
2+am

n+1)P
m
n (ζ)

]

· sin[m(ϕ− ϕ0)],
(50)

with possibly further rearrangements for programming convenience.
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4. NUMERICAL ILLUSTRATIONS

Numerical results displayed for illustration are obtained in the case of a
perfectly conducting sphere of radius a = 50 m, centered at the origin O
of the co-ordinates system (x1, x2, x3), and placed in an homogeneous
infinite space of 2 10−4 S/m conductivity, when it is illuminated at
500Hz frequency by a vertical magnetic dipole (M = M x̂3, M = 4π103

Am2), localized at x1 = 200m, x2 = 0, x3 = 200 m in the (x1, x3)-
plane. The field is evaluated along a probing line parallel to the x3-
axis (depth) with co-ordinates x1 = x2 = 141.4 m; only the real (in-
phase) part and imaginary (quadrature) parts of the x2-component are
displayed in Figures 2 and 3, conclusions that can be drawn from the
observation of the other components being similar.

0.0 100

0 50 100 150 200

(H
x

2
)

m/
A

m
ni(

)

depth (in m)

−200 −150 −100 −50
−9.0 10−7
−8.0 10−7
−7.0 10−7
−6.0 10−7
−5.0 10−7
−4.0 10−7
−3.0 10−7
−2.0 10−7
−1.0 10−7

�

Figure 2. Real part of the secondary magnetic field. It is
approximated with the low-frequency series expansion up to order
2 (black dots) and 3 (circles) or calculated via the exact Mie series
expansion (solid line).

The approximated field values are calculated from the low-
frequency expansion above, up to order 2, i.e., letting HS = HS

0 +
(jk)2HS

2 , or up to order 3, i.e., letting HS = HS
0 +(jk)2HS

2 +(jk)3HS
3 ;

they are compared to exact field values calculated by means of a Mie
series code.‖ Since all such fields are known in closed form as infinite
harmonic expansions, we display the field values reached after carrying
out the full summations (in practice, until numerical convergence is
observed).
‖ Mie series expansions of the electromagnetic field scattered by a perfectly conducting
sphere involve the well-known regular vector spherical waves (using standard notions) as
proper solutions of the Helmholtz vector equation (here to be taken with complex wave
number). A good example is found in Tortel’s contribution [16] for an electric dipole, and
in effect one uses similar (dual) expansions for our magnetic dipole illumination.
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Figure 3. Imaginary part of the scattered magnetic field. It is
approximated with the low-frequency series expansion up to order 2
(dashed line) and 3 (black dots) or calculated via the exact Mie series
expansion (solid line).

As is evidenced from Figure 2, the in-phase part of the field is
perfectly reproduced by means of the low-frequency approach stopped
at order 2, and pursuing the expansion up to order 3 does not change
anything. This was clearly expected from previous results in [10] since
the zero-order term (the static one) yielded the same real-valued field
as the Mie series expansion; in short, the third order term of the low-
frequency expansion is so small a contributor that it does not add
anything useful (as for the second-order term, it is purely imaginary).

For the quadrature part of the field, the potential contributors
result from terms at order 2, (jk)2HS

2 , and order 3, (jk)3HS
3 . In

effect, both contributions matter, in contrast with the above where
the third-order term is negligible. This is illustrated in figure 3, where
the quadrature field values provided by the low-frequency expansion
up to order 3 and the exact Mie series ones are shown to fully agree,
whereas the order 2 term does not accurately reproduce the exact field.

Similar results have been obtained at other frequencies in the same
range, which means that the order 3 of the low-frequency expansion is
required for a proper evaluation of the field.

To summarize, the imaginary part of the field is fairly reproduced
by the second-order term (jk)2HS

2 but the third one (jk)3HS
3 is

necessary to achieve a good accuracy. On the other hand, the static
field HS

0 always suffices to provide the real part of the field, and adding
higher-order terms has no interest.

Let us however emphasize that one would need terms of order 4
at higher frequencies: at 5000 Hz in the spherical case considered, for
example, exact results are very poorly reproduced by the approximated
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ones up to order 3. As for dielectric effects that are at least in theory
involved in the terms of order 4 and higher, they can be from practical
experience, and as already said, safely discarded as far as one does not
reach the MHz range (shallow subsoil probing).

5. CONCLUSION

The numerical results above confirm the adequacy of the low-frequency,
closed-form analytic modeling of the perfectly conducting sphere in a
conductive medium for a dipolar source which one has reached herein.
Generalizations are presently under study.

The case of a non-perfectly-conducting sphere —to tackle low-
contrast configurations as for example of interest for probing natural
cavities in a subsoil— appears cumbersome but is doable from the
available material; one simply has to extend the field coefficients
inside the sphere volume via summations of internal vector harmonics
(consequently introducing three new sets of vector coefficients),
and suitably fit the internal and external expansions of these field
coefficients at the sphere surface.

More complicated, and in clear need so as to more effectively
deal with metallic ores as well as with artificial metal objects, is the
full ellipsoidal case. As already indicated work is in progress [14]
toward closed-form analytic expansions of the second-order magnetic
field coefficient, the main limitation being that these expansions are
incomplete due to the lack of ellipsoidal harmonics of degree higher
than 3.

To alleviate these limitations, a way forward may be to tackle
single bodies modeled as prolate spheroids (subsequently oblate
ones via a simple geometric transformation) by means of spheroidal
potential functions since those are reduced to well known associated
Legendre functions in the prolate spheroidal system. One is presently
considering the first steps into that direction, being reminded that the
lack of explicit knowledge of vector spheroidal harmonics forces us to
consider vector unknowns instead of the much easier scalar ones as
demonstrated here in the spherical case.

APPENDIX A. THE VECTOR SPHERICAL
HARMONICS AND ASSOCIATED MATERIAL

Most of the material here is borrowed from [17], and it stays in close
accord with contents of well-known reference books [15] and [9]. Let
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us consider the spherical coordinate system

x1 = r
√

1 − ζ2 cosϕ, x2 = r
√

1 − ζ2 sinϕ, x3 = rζ, (A1)

where ζ = cos θ, −1 ≤ ζ ≤ 1, 0 ≤ r < +∞, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π.
The outward unit normal vector to the surface of the sphere r = a, is

n̂(a, ζ, ϕ) =
(√

1 − ζ2 cosϕ,
√

1 − ζ2 sinϕ, ζ

)
=

r(a, ζ, ϕ)
a

. (A2)

Differential operators ∇ and ∆, read as

∇ = r̂
∂

∂r
−

√
1 − ζ2

r
ζ̂
∂

∂ζ
+

1
r
√

1 − ζ2
ϕ̂

∂

∂ϕ
, (A3)

∆ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

∂

∂ζ

[
(1 − ζ2)

∂

∂ζ

]
+

1
r2(1 − ζ2)

∂2

∂ϕ2
, (A4)

where r̂, ζ̂, ϕ̂ are the coordinate unit vectors.
For every nonnegative integer n, there exist (2n + 1) linearly

independent spherical surface harmonics Y ms
n , either even (with s = e

superscript) or odd (with s = o superscript) with respect to ϕ,
Y me

n (r̂) = Pm
n (ζ) cosmϕ and Y mo

n (r̂) = Pm
n (ζ) sinmϕ, for m =

0, 1, . . . , n, |ζ| ≤ 1, ϕ ∈ [0, 2π), which are expressed via first-kind
Legendre functions of order m and degree n that are given by

Pm
n (ζ) =

(1 − ζ2)m/2

2nn!
dn+m

dζn+m
(ζ2 − 1)n, |ζ| < 1. (A5)

External solid harmonics accordingly are scalar functions r−(n+1)Y ms
n (r̂)

defined from n = 0, for m = 0 to n, and for s = e, o. (One will not
need those internal, rnY ms

n (r̂).)
Similarly, for every nonnegative integer n, there exist (2n + 1)

three-member sets of even and odd vector spherical surface harmonics,
(Pms

n ,Bms
n ,Cms

n ), such that

Pms
n (r̂) = r̂Y ms

n (r̂), (A6)

Bms
n (r̂) =

1√
n(n + 1)

[
−

√
1 − ζ2ζ̂

∂

∂ζ
+

1√
1 − ζ2

ϕ̂
∂

∂ϕ

]
Y ms

n (r̂),

(A7)

Cms
n (r̂) = − 1√

n(n + 1)
r̂ ×

[
−

√
1 − ζ2ζ̂

∂

∂ζ
+

1√
1 − ζ2

ϕ̂
∂

∂ϕ

]
Y ms

n (r̂),

(A8)
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pointwise perpendicular to one another:

Pms
n · Cms

n = Cms
n · Bms

n = Bms
n · Pms

n = 0. (A9)

Implying their external dependance for brevity (again internal
harmonics are not used in the present investigation), the external
vector spherical harmonics, from n = 0, for m = 0 to possibly n + 1,
and for s = e, o, follow as

Nms
n (r) = ∇

(
r−nY ms

n−1(r̂)
)

=
√
n(n + 1)r−(n+1)Bms

n−1(r̂) − nr−(n+1)Pms
n−1(r̂), (A10)

here defined for n ≥ 1, m ≤ n− 1, which comprise both radial parts
(the P surface harmonics) and transverse parts (the B ones), and are
both divergence and curl free;

Mms
n (r) = ∇×

(
r−(n+1)Y ms

n (r̂)r
)

=
√
n(n + 1)r−(n+1)Cms

n (r̂), (A11)

here defined for n ≥ 1, m ≤ n, which are purely transverse and are
divergence free, their curls being given by −nNms

n+1(r); and

Gms
n (r) = r−(2n+1)∇

(
rn+1Y ms

n+1(r̂)
)

=
√

(n + 1)(n + 2)r−(n+1)Bms
n+1(r̂) + (n + 1)r−(n+1)Pms

n+1(r̂),

(A12)

here defined for n ≥ 0, m ≤ n + 1, which again comprise radial and
transverse parts, the divergences of which are equal to −(n + 1)(2n +
1)r−(n+2)Y ms

n+1(r̂) and the curls of which are equal to (2n+1)Mms
n+1(r).

Notice at this stage the relationships, to be used in the analysis
also, concerning the radial contributions of Nms

n and Gms
n :

r̂ · Nms
n (r) = −nr−(n+1)Y ms

n−1(r̂), (A13)

r̂ · Gms
n (r) = (n + 1)r−(n+1)Y ms

n+1(r̂), (A14)

the Mms
n being purely transverse.

Consequently, scattered vector field coefficients U(r) that should
be satisfying outside the sphere the homogeneous vector Laplace
equation (i.e., that are belonging to the kernel space of the vector
Laplacian) enjoy complete representations of the form

U(r) =
∞∑

n=1

n−1∑
m=0

∑
s=e,o

ams
n Nms

n (r) +
∞∑

n=1

n∑
m=0

∑
s=e,o

bms
n Mms

n (r)

+
∞∑

n=0

n+1∑
m=0

∑
s=e,o

cms
n Gms

n (r) (A15)



Perfectly conducting sphere in a conductive medium 109

with properly chosen scalar coefficients according to further relation-
ships to be enforced onto them.
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