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Abstract—Lack of knowledge prevents us from exactly calculating
the behavior of electromagnetic fields. We study two extremes in this
respect: scattering against randomly distributed particles (no idea
of the position or orientation of the scatterers), and random errors
in antenna technology (small deviations from what we think are the
proper parameters). Random variables are used to model our lack of
knowledge, and far field expressions are studied. Using the concept of
characteristic functions from probability theory, results for arbitrary
probability distributions are obtained. We explain an anomaly in the
forward scattering direction in single scattering theory, present simple
formulas for the directivity, side lobe level, and beam efficiency for a
general array antenna with random errors, and a simple formula for
the scattering coefficient from a general frequency selective structure
with random errors.
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1. INTRODUCTION

This paper has two themes, single scattering of electromagnetic waves
against a cluster of randomly distributed particles, and random errors
in antenna technology. These seemingly distant subjects are joined
by essentially the same analysis, and represent two extremes of our
degree of knowledge. In the scattering case, it is assumed we know
very little about the true positions of the scatterers, since they may be
part of an aerosol where the thermal movement is constantly changing
the particle distribution. In the antenna case, the uncertainty is small
and due to errors in the manufacturing. In this case, it is desirable to
estimate the resulting error in the antenna parameters.

The canonical problem is to study expressions of the form
|
∑N

n=1 e−ik·rnF n|2, which represents the far field power pattern from
a collection of sources with far field amplitude F n and placed in rn,
n = 1, . . . , N . If these quantities were exactly given, we could also
calculate the power pattern exactly. This is clearly not possible, and
we must instead investigate what can be said in spite of our incomplete
knowledge.

The problem posed is not a new one. Previous results in scattering
theory are presented in many textbooks, among which we mention two
primarily studying random scattering [1, 2]. In antenna theory, the
widely referenced papers [3, 4] discuss error estimates similar to this
paper, and related material is also found in [5, 6] and [7, Sec. 2–9].
Related ideas are also found in the vast literature treating scattering
from rough surfaces, see [8] for a review.

Most of the above references make the common assumption that
the randomness has a Gaussian probability distribution. Due to
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the central limit theorem, see for instance [9, pp. 177–181], this is
an excellent approximation in cases where the randomness can be
considered as a sum of many independent contributions. However,
random errors appearing in manufacturing processes are often not
Gaussian, which demonstrates the need of treating a more general
case. In this paper, we show that it is possible to derive quite general
results from an arbitrary probability distribution, by consistently using
the concept of a characteristic function from probability theory.

There is an anomaly in the forward direction in scattering theory.
An incident plane wave is always scattered in phase in the forward
direction, no matter how randomly placed the scatterers are, implying
the forward scattered field is proportional to the number of scatterers,
N . This means the scattered intensity in the forward direction is
proportional to N2. However, in all the other directions, the scattered
intensity is proportional only to N , since the contributions from each
particle are mutually uncorrelated. We show that it is possible to find a
continuous transition between these seemingly contradictory behaviors
in a very narrow angle in the forward direction.

As for the error analysis in antenna technology, the main
contribution of this paper is a general and explicit expression for the
radiation pattern from an array antenna and a frequency selective
structure, subject to errors in its constituents. It is seen that the
main effect of errors in position and phase of the antenna elements
is a decrease of the deterministic radiation pattern and uncorrelated
contributions from each element. The errors due to uncertainty in
the amplitude of the elements give an isotropic contribution to the
radiation pattern. We also give simplified expressions for the antenna
parameters directivity, side lobe level, and beam efficiency.

This paper is organized as follows. In Section 2 we give a brief
review of the probability theory needed for this paper, and in Section 3
we define the far field approximation of an electromagnetic field.
Sections 4 and 5 deal with the scattering and the antenna application,
respectively. In Section 6 we give some numerical examples of the
theory presented in the preceding sections, and the conclusions are
given in Section 7.

2. PROBABILISTIC BACKGROUND

A random variable is a common model of a quantity which we do
not know the true value of. A real valued random variable X is a
mapping from a sample space Γ to the real numbers, i.e., X : Γ → R.
Each element γ ∈ Γ corresponds to a given realization of the physical
problem, i.e., when fixing γ the number X(γ) gives the exact value of
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the quantity modeled by X in this particular realization.
The ensemble average of a function g of the random variable X,

is defined as

〈g(X)〉 ≡
∫

Γ
g(X(γ)) dP (γ) =

∫
R

g(x)fX(x) dx. (1)

The first equality is the definition of the ensemble average as the
mean value of the random variable over the sample space Γ, where
the probability measure dP satisfies

∫
Γ dP = 1. In the second equality

we introduced the probability density fX ≥ 0 for the random variable
X. Not all random variables have a density, but the conclusions in
this paper are still valid even if the density can only be defined as a
measure. The important difference between the two expressions in (1)
is that the first is an integral defined on the sample space (which often
has a very high dimension making the integral difficult to calculate),
and the second is an integral over the range of the random variable,
which is usually much easier to calculate.

When the function g above is the exponential function, we have a
particularly interesting interpretation of the ensemble average. This is〈

eikX
〉

=
∫

R

eikxfX(x) dx = f̂X(k), (2)

i.e., , the Fourier transform of the probability density of the random
variable. The function f̂X is known in probability theory as the
characteristic function of the random variable X [9, p. 100]. It is
straight-forward to show the important properties |f̂X(k)| ≤ 1, and
f̂X(0) = 1.

We close this section by mentioning that two random variables X
and Y are independent if and only if the relation

〈g(X)h(Y )〉 = 〈g(X)〉 〈h(Y )〉 (3)

holds for all measurable functions g and h [9, p. 62]. If it holds for a
certain choice g0 and h0, the random variables g0(X) and h0(Y ) are
said to be uncorrelated.

3. GENERATION OF ELECTROMAGNETIC WAVES

Electromagnetic waves are generated by time-varying currents. In this
paper, we restrict ourselves to time harmonic electric currents; the
results are easily extended to include magnetic currents. If the currents
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are contained within a bounded volume V , the electric field at large
distances is given by the far field approximation,

E(r)far field =
eik·r

kr
F (k), (4)

where we assumed the time convention E(r, t) = E(r)e−iωt. The far
field amplitude F (k) is a function of the wave vector (propagation
direction) k only, and is given by

F (k) =
−iη
4π

k ×
(

k ×
∫

V
J(r′)e−ik·r′

dV (r′)
)
, (5)

where η is the wave impedance of an isotropic medium surrounding
the sources. From this expression we see that the far field is essentially
the spatial Fourier transform of the current density J . This current
can be generated in many ways. In the scattering context, the current
is induced by an incident field, and in the antenna context, it is given
from a feeding network.

Often, the most easily measured quantity of an electromagnetic
wave is the average power or intensity, especially in optics. The average
intensity is

〈I〉 =

〈
|E|2

〉
2η

=
ηk2

2(4πr)2

∫∫
〈J⊥(r1) · J∗

⊥(r2)〉 e−ik(r1−r2) dV (r1) dV (r2),(6)

where J⊥ = −k−2k × (k × J) is the part of J orthogonal to k. From
this relation it is readily seen that (after a suitable change of variables)
the average intensity is proportional to the Fourier transform of the
function

∫
〈J⊥(x) · J∗

⊥(x + r)〉dV (x), which is the integral of the
autocorrelation function of the current density. The importance of the
correlation function in connection to dissipation in a medium has been
thoroughly discussed in statistical physics (the fluctuation-dissipation
theorem), see for instance [10, pp. 384–389] or [11, pp. 570–573]. In
those cases, the interest is on small fluctuations from equilibrium due
to thermal agitation. This paper is concerned with more large scale
phenomena, in particular the case where the current is generated in N
mutually disjoint volumes.

4. SINGLE SCATTERING APPROXIMATION

We study the common bistatic arrangement of a scattering experiment
as in Figure 1. In the single scattering approximation, we assume each
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k̂
s

θ

D

Figure 1. The bistatic scattering arrangement. The incident wave
propagates in the direction k̂

i
, and the scattering is studied in direction

k̂
s
. The angle between k̂

i
and k̂

s
is θ, given by k̂

i · k̂
s

= cos θ.
The N individual scatterers are contained in a scattering volume with
approximate linear size D.

scattering particle is subject to the incident field only, neglecting the
fields scattered from the other particles. In this paper, we assume
the scattering is weak enough not to cause a substantial decrease in
the amplitude of the incident wave. For a given particle placed in
the origin (r = 0), it is possible to calculate a scattering matrix
S(k̂

s
, k̂

i
), which relates the scattered far field to an incident plane wave

Ei(r) = E0eikk̂
i·r through the relation

Es(r) =
eikk̂

s·r

kr
F (k̂

s
) =

eikk̂
s·r

kr
S(k̂

s
, k̂

i
) · E0, (7)

where F is the far field amplitude of the scattered field, which depends
on the scattering direction k̂

s
, the propagation direction k̂

i
, and the

polarisation E0 of the incident wave. If the scatterer is not placed
in the origin but rather in r′, where r′ � r, this corresponds to an
additional phase k(k̂

i− k̂
s
) ·r′ = kq ·r′ in the scattered far field, where

q = 0 corresponds to forward scattering,

Es(r) =
eikk̂

s·r

kr
eikq·r′

S(k̂
s
, k̂

i
) · E0. (8)

We now study the intensity I = |E|2/2η of the scattered field. The
square of the electric field scattered from N individual scatterers in
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the single scattering approximation is

|Es(r)|2 =

∣∣∣∣∣
N∑

n=1

eikk̂
s·r

kr
eikq·rnSn(k̂

s
, k̂

i
) · E0

∣∣∣∣∣
2

=
1

(kr)2

∣∣∣∣∣
N∑

n=1

eikq·rnSn(k̂
s
, k̂

i
) · E0

∣∣∣∣∣
2

. (9)

In practice, we cannot exactly know all the parameters involved in
this calculation. For instance, when studying scattering of laser light
from a turbulent gas, it is impossible to know the positions rn of all
the individual scatterers. It is also possible that we do not know
the geometry or material parameters of the particles exactly, and
thus cannot determine the scattering matrices Sn. Apart from the
statistical nature of our knowledge, the very procedure of measuring
often introduces averaging in time and/or space.

Multiplying (9) with (kr)2 and taking the ensemble average
implies

〈
(kr)2|Es(r)|2

〉
=

〈∣∣∣∣∣
N∑

n=1

eikq·rnSn(k̂
s
, k̂

i
) · E0

∣∣∣∣∣
2〉

=

〈
N∑

n=1

N∑
n′=1

eikq·(rn−rn′ )E∗
0 ·S†

n′(k̂
s
, k̂

i
)·Sn(k̂

s
, k̂

i
)·E0

〉

= E∗
0 ·

[
N∑

n=1

〈
S†

n(k̂
s
, k̂

i
) · Sn(k̂

s
, k̂

i
)
〉

(10)

+
N∑

n=1

N∑
n′=1
n′ �=n

〈
eikq·rn

〉 〈
e−ikq·rn′

〉 〈
S†

n′(k̂
s
, k̂

i
)
〉

·
〈
Sn(k̂

s
, k̂

i
)
〉 ]

· E0,

where we assumed all the random variables rn and Sn, n = 1, . . . , N ,
are mutually independent and separated the double sum in diagonal
terms and cross terms. The notation S†

n stands for the conjugated
transposed matrix of Sn (the Hermitian conjugate).
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4.1. Identical Scatterers

Assuming all the scatterers are assigned the same probability densities
in position and scattering matrix, we can further simplify (10), since
the various expectation values are independent of n and n′. In the
following we adopt the convention to use the index 0 for a typical
representative X0 of a sequence of random variables Xn, n = 1, . . . , N ,
where all the Xn have the same probability distribution. We introduce
the notation 〈

S2
0(k̂

s
, k̂

i
)
〉

=
〈
S†

n(k̂
s
, k̂

i
) · Sn(k̂

s
, k̂

i
)
〉
,〈

S0(k̂
s
, k̂

i
)
〉2

=
〈
S†

n′(k̂
s
, k̂

i
)
〉
·
〈
Sn(k̂

s
, k̂

i
)
〉
, (11)

f̂r0(kq) =
〈
eikq·rn

〉
,

which is intuitive but slightly violates the use of an exponent for
matrices. This allows us to write (10) as〈

(kr)2|Es(r)|2
〉

= E∗
0 ·

[
N

〈
S2

0(k̂
s
, k̂

i
)
〉

+ N(N − 1)|f̂r0(kq)|2
〈
S0(k̂

s
, k̂

i
)
〉2

]
· E0. (12)

Observe that even if the particles are identical, their scattering matrices
may not be identical, due to different orientations of non-spherical
particles. In most cases, it is therefore expected that

〈
S2

0

〉

= 〈S0〉2.

Both matrices are hermitian and positive semi-definite by construction.
The second term, proportional to N(N − 1), is often neglected. It

is now clear that this is justified only when |f̂r0(kq)|2 � N . But since
f̂r0(kq) is a characteristic function of a random variable, this can only
be true away from the forward scattering direction, q = k̂

i − k̂
s

= 0,
since f̂r0(0) = 1. How fast the factor |f̂r0(kq)|2 tends to zero depends
on the statistics for the positions of the scatterers, but a rough estimate
is given by the “uncertainty relation” as follows.

For a given Fourier transform pair (f, f̂) we define the half-width
(or standard deviation) in space and reciprocal space Wr and Wk,
respectively, as

W 2
r =

∫
|r|2|f(r)|2 dV (r)∫
|f(r)|2 dV (r)

, W 2
k =

∫
|k|2|f̂(k)|2 dV (k)∫
|f̂(k)|2 dV (k)

, (13)

with the result that WrWk ≥ 1/2, see for instance [12, p. 314].
Equality is obtained for Gaussian distributions. It is clear that k|q|
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must be larger than at least Wk > 1/(2Wr) ≈ 1/D, where D is the
diameter of the scattering volume, before the term proportional to
N(N − 1) can be neglected. With |q| = |k̂i − k̂

s| =
√

2(1 − cos θ),

where θ is the angle between k̂
i
and k̂

s
, a small angle approximation

implies |q| ≈ θ. The term proportional to N(N − 1) gives a significant
contribution when

θ <
1
kD

=
λ

2πD
, (14)

which is a narrow angle if the scattering volume is several wavelengths.
A more careful estimate for a particular case is given in Section 6.1.

4.2. The Optical Theorem

We close this section on single scattering by discussing a possible
misinterpretation of the optical theorem. The optical theorem states
that the total (or extinction) cross section is given by the scattering
amplitude in the forward direction,

σt =
Pa + Ps

|Ei|2/2η
=

4π
k2

Im

{
E∗

0 · S(k̂
i
, k̂

i
) · E0

|E0|2

}
, (15)

where Pa is the total absorbed power, and Ps = r2
∫
|Es|2/2η dΩ(k̂

s
)

is the total scattered power. This is an exact relation, which holds
for every realization. This means it also holds when taking the mean
value on both sides. Using (12) to calculate 〈Ps〉 and the fact that the
absorbed power 〈Pa〉 ≥ 0, the optical theorem leads to an interesting
relationship for the scattering matrix,

1
4π

∫ [
N

〈
S2

0(k̂
s
, k̂

i
)
〉

+N(N − 1)|f̂r0(kq)|2
〈
S0(k̂

s
, k̂

i
)
〉2

]
dΩ(k̂

s
)

≤ N Im
〈
S0(k̂

i
, k̂

i
)
〉

(16)

with equality for lossless scatterers. The inequality is taken in the sense
that it applies for all (hermitian) quadratic forms over the matrices.
It seems this inequality can be broken simply by letting N → ∞,
which would make the second term in the integral arbitrarily large.
However, a dense packing of scatterers also implies multiple scattering,
which is neglected in the present formulation. In order to maintain the
conditions necessary for single scattering, the scattering volume must
be made large as N increases. This means the support of the function
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r1

r2 r3
r4

r5 r6 r7

Figure 2. An example of an array antenna, consisting of 7 identical
elements placed in rn, n = 1, . . . , 7.

f̂r0(kq), which is essentially the Fourier transform of the scattering
volume, shrinks to a small neighborhood of the forward direction
(q = 0), and the integral remains bounded. This demonstrates the
need for caution when applying the result (12).

5. RANDOM ERRORS IN ANTENNA TECHNOLOGY

In this section we study random errors in a deterministic structure.
We assume all quantities associated with the deterministic case can be
computed, although this task may indeed be a challenge of its own.

5.1. Array Antennas

An array antenna is composed of N more or less identical antenna
elements, distributed in a given volume. Each element is driven by
a current which may have a different phase for different elements.
An illustration is given in Figure 2. The mean value of the far field
intensity in direction k is then

〈Ifar field〉 =

〈
|Efar field|2

〉
2η

=
1

2η(kr)2

〈∣∣∣∣∣
N∑

n=1

e−ik·rn−iφnF n(k)

∣∣∣∣∣
2〉
,

(17)

where F n(k) is the element far field amplitude for element n. The
difference between this expression and the scattered intensities studied
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in Section 4, is that the amplitudes F n are not generated by an incident
field, but are calculated from a set of given current densities Jn as

F n(k) =
−iη
4π

k ×
(

k ×
∫

Jn(r)e−ik·r dV (r)
)
, (18)

where the domains of Jn, n = 1, . . . , N , are mutually disjoint. In this
section we treat the random variables as partly known, that is

rn = 〈rn〉 +∆rn

φn = 〈φn〉 +∆φn (19)
F n = 〈F n〉 +∆F n,

where ∆rn, ∆φn and ∆F n have zero mean and small variances,
and are assumed to have probability densities independent of n.
Typical representatives of the random variables (∆rn, ∆φn, ∆F n),
n = 1, . . . , N , are denoted (∆r0, ∆φ0, ∆F 0). This arrangement
corresponds to us having some knowledge of the design of the antenna
(the mean values), and assumes the errors are equally probable in all
elements. Expanding the mean value in diagonal and cross terms as in
Section 4, we find

〈∣∣∣∣∣
N∑

n=1

e−ik·rn−iφnF n(k)

∣∣∣∣∣
2〉

=
N∑

n=1

〈
|F n(k)|2

〉

+
N∑

n=1

N∑
n′=1
n′ �=n

〈
e−ik·rn−iφn

〉 〈
eik·rn′+iφn′

〉
〈F n(k)〉 · 〈F ∗

n′(k)〉 . (20)

Making use of the decomposition (19) and
〈
eikX

〉
= f̂X(k) for a random

variable X, this becomes〈∣∣∣∣∣
N∑

n=1

e−ik·rn−iφnF n(k)

∣∣∣∣∣
2〉

= N
〈
|∆F 0(k)|2

〉
+

N∑
n=1

| 〈F n(k)〉 |2

+|f̂∆r0(k)|2|f̂∆φ0(1)|2
N∑

n=1

N∑
n′=1
n′ �=n

e−ik·(〈rn〉−〈rn′ 〉)−i(〈φn〉−〈φn′ 〉) 〈F n(k)〉 · 〈F ∗
n′(k)〉

= N
〈
|∆F 0(k)|2

〉
+ (1 − |f̂(k)|2)

N∑
n=1

| 〈F n(k)〉 |2
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+|f̂(k)|2
∣∣∣∣∣

N∑
n=1

e−ik·〈rn〉−i〈φn〉 〈F n(k)〉
∣∣∣∣∣
2

, (21)

where f̂(k) = f̂∆r0(k)f̂∆φ0(1). This expression has the interesting
feature that the last two terms only contain quantities which are known
from the antenna designer’s point of view, i.e., the deterministic far
field patterns, and locations and phases of the antenna elements. The
last term is exactly the deterministic far field pattern, multiplied by the
factor |f̂(k)|2. Since f̂ is a characteristic function it satisfies |f̂ | ≤ 1,
and we see that an uncertainty in position rn, phase φn, and amplitude
F n of the different elements results in a decreased deterministic
contribution (last term), and the first two terms correspond to
incoherent, or diffuse, contributions.

The random variable ∆F n is the Fourier transform of the
correlation function of the current fluctuations in element n, as
discussed at the end of Section 3. If the fluctuations are due to
thermal agitation only, the term N

〈
|∆F 0(k)|2

〉
represents the black-

body radiation and is proportional to the physical temperature of the
antenna, see for instance [2, p. 147].

In Appendix A, the antenna parameters directivity D, side
lobe level SLL, and beam efficiency BE, are derived as functions of
the probability variables. When the errors are small and normally
distributed, the following simplified formulas are obtained:

D ≤ Dd −
[
Nδ2F
k2Ud0

(Dd − 1) + (k2δ2r + δ2φ)
N∑

n=1

(Dd −D(n)
d )

U
(n)
d0

Ud0

]

(22)

SLL ≤ SLLd + (1 − SLLd)

[
Nδ2F

k2Udmax
+ (k2δ2r + δ2φ)

N∑
n=1

U
(n)
dmax

Udmax

]
(23)

BE ≤ BEd −
[
Nδ2F
k2Ud0

(
BEd − |Ω0|

4π

)

+ (k2δ2r + δ2φ)
N∑

n=1

(
BEd −D(n)

d

|Ω0|
4π

)
U

(n)
d0

Ud0

]
, (24)

where the index (d) indicates the deterministic values (or design
values), and δF , δr and δφ are the standard deviations of ∆F 0,
r0, and φ0, respectively. The radiation intensity U is defined as〈
r2|Efar field|2

〉
/2η, and the index 0 indicates the mean value over
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Incident wave Reflected wave

Transmitted wave

Figure 3. Example of a frequency selective structure (FSS). The
periodicity of the metal surface creates a spatial filter which only
transmits waves with certain wave numbers.

the unit sphere, i.e., U0 = (4π)−1
∫
U dΩ. The index (n) denotes a

quantity associated with element n, and |Ω0| is the solid angle within
which the main lobe is contained. Note the great resemblance between
the different formulas, which is due to the fact that they are all derived
from the same radiation pattern (21).

5.2. Frequency Selective Structures

The results obtained for array antennas can also be applied to
frequency selective structures (FSS), used in radome applications. A
frequency selective structure is a periodic pattern of scatterers, often
consisting of metal patches or apertures in a metallic sheet as in
Figure 3. Compared to the situation in Section 4, the scatterers are
close and we must take multiple scattering in consideration. In this
section, we study the effects of random displacements of the scatterers.

When the structure is illuminated by a plane incident wave
Ei = E0eikk̂

i·r, currents Jn are induced in each unit cell. With cell n
positioned at rn, each current will inherit the phase φn = kk̂

i ·rn as in
the single scattering case in Section 4. The scattered far field is then
written

Es(r) =
eikk̂

s·r

kr

N∑
n=1

eikq·rnF n(kk̂
s
), (25)
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where q = k̂
i − k̂

s
, and the far field amplitude F n is the far field

amplitude of cell n calculated as if the cell were in the origin. We
further make the approximation that a translation of the patch or
aperture in cell n by ∆rn only changes its origin rn, and not the
far field amplitude F n. The multiple scattering is included in the
deterministic far field amplitudes F n = 〈F n〉, which are calculated
from the unperturbed problem. The only changes necessary in (21)
to accommodate the FSS situation are then f̂(k) → f̂(kq) and
|∆F n|2 → 0:

〈∣∣∣∣∣
N∑

n=1

eikq·rnF n(kk̂
s
)

∣∣∣∣∣
2〉

=

(
1−|f̂(kq)|2

) N∑
n=1

∣∣∣〈F n(kk̂
s
)
〉∣∣∣2+|f̂(kq)|2

∣∣∣∣∣
N∑

n=1

eikq·〈rn〉
〈
F n(kk̂

s
)
〉∣∣∣∣∣

2

.

(26)

The last term is the deterministic scattering from the FSS, multiplied
by a factor |f̂(kq)|2 ≤ 1. The first term is the diffuse contribution,
originating from the non-periodicity of the FSS. This term is
responsible for the radiation in directions other than the grating lobes,
and consists of the non-interacting radiation from the different cells.

A real FSS is often curved to conform with a given radome surface,
but it is common to study the model problem of an infinite, plane,
periodic, structure. All the far field amplitudes 〈F n〉 are then equal,
denoted 〈F 0〉, and we sum over infinitely many amplitudes. This calls
for a normalization, and we normalize (26) with the power incident on
the structure. If the FSS consists of N unit cells with unit normal n̂

and cell area A, the incident power is Pi = |E0|2/2η ·NA|k̂
i · n̂|. The

scattered power per unit solid angle is Us =
〈
r2|Es|2

〉
/2η, and the

power scattering coefficient per unit solid angle is computed from (26)
as

Us

Pi
= lim

N→∞

〈
r2|Es|2

〉
|E0|2NA|k̂

i · n̂|
=


1−|f̂(kq⊥)|2+|f̂(kq⊥)|2 lim

N→∞
1
N

∣∣∣∣∣
N∑

n=1

eikq⊥·〈rn〉
∣∣∣∣∣
2



∣∣∣〈F 0(kk̂
s
)
〉∣∣∣2

|E0|2k2A|k̂i · n̂|
,

(27)

Observe that we have taken explicit consideration to the fact that the
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error in position ∆r only occurs in the plane of the FSS, using the
index ⊥ to indicate vectors in that plane (orthogonal to the surface
normal n̂).

Using the property limN→∞N−1 sin2(Nt/2)/ sin2(t/2) = 2πδ(t)
of Fejér kernels, see for instance [13, p. 88], it is straightforward to
show

lim
N→∞

1
N

∣∣∣∣∣
N∑

n=1

eikq⊥·〈rn〉
∣∣∣∣∣
2

=
(2π)2

A

∑
m,n

δ(2)(kq⊥ +mA + nB), (28)

where δ(2) is the two-dimensional Dirac delta distribution, and A
and B are basis vectors in the reciprocal lattice. With a and b
being basis vectors in physical space, the reciprocal basis is defined
as A = 2πb × n̂/A and B = 2πn̂ × a/A. The expression in (28) is
an angular distribution with support in the grating directions only,
i.e., the deterministic array factor for an infinite periodic structure.
The frequency selective surface is often designed so that only the delta
distribution associated with m = n = 0 comes into play, corresponding
to the specular directions given by q⊥ = 0, that is, k̂

s

⊥ = k̂
i

⊥.
We note that in the specular directions, the factor |f̂(kq⊥)|2

is exactly 1, corresponding to no attenuation of the deterministic
contribution to the intensity. But since there is a positive contribution
from the diffuse intensity, energy conservation is violated. This is
due to the fact that the current is calculated through a perturbation
analysis which does not take sufficient care of energy conservation.
The expressions given in this section should be used to estimate
the intensity in regions where the deterministic contribution is very
small. For instance, when the deterministic calculations imply total
transmission and zero reflection, the diffuse contribution shows there
is still a small reflected field.

We conclude this section by giving the small error limit of the
power scattering coefficient per unit solid angle. Assuming the errors
∆rn are symmetrically distributed in the FSS plane with zero mean
and variance δr, we have f̂(kq⊥) = 1 − |kδrq⊥|2/2 + O((kδr)4),
independent of the distribution [14, p. 278]. This implies |f̂(kq⊥)|2 =
1 − |kδrq⊥|2 + O((kδr)4), and we have

Us

Pi
=

[
|kδrq⊥|2 + (1 − |kδrq⊥|2)

(2π)2

A

∑
m,n

δ(2)(kq⊥ +mA + nB)

]

·

∣∣∣〈F 0(kk̂
s
)
〉∣∣∣2

|E0|2k2A|k̂i · n̂|
. (29)
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Since δ(2)(kq⊥) = k−2δ(2)(q⊥), it is seen that upon integration
over all scattering directions, the quotient between diffuse power and
deterministic power grows as k4, unless the angular dependence of the
far field amplitude F 0(kk̂

s
) varies too much.

6. NUMERICAL EXAMPLES

In this section we give a few numerical examples of the calculations
presented in the previous sections.

6.1. Uniform Distribution of Identical Scatterers in a Cube

Take N identical, isotropic scatterers which are uniformly distributed
within a cube of side 2R, i.e., f(r) = 1/(2R)3 for max(|x|, |y|, |z|) < R
and zero elsewhere. The characteristic function is then

f̂r0(k) =
∫

R3

eik·rfr0(r) dV (r)

=
1

(2R)3

(∫ R

−R
eikxx dx

) (∫ R

−R
eikyy dx

) (∫ R

−R
eikzz dx

)

=
sin kxR

kxR

sin kyR

kyR

sin kzR

kzR
, (30)

and we have〈∣∣∣∣∣
N∑

n=1

eikq·rn

∣∣∣∣∣
2〉

= N +N(N − 1)
(

sin kqxR
kqxR

)2

·
(

sin kqyR
kqyR

)2 (
sin kqzR
kqzR

)2

. (31)

From (14) we expect the second term to give a substantial contribution
when θ < 1/(k2R). However, using the above expression we can make
a better estimate. Near the forward direction k̂

i
= x̂ we have q ≈ θŷ,

where |θ| � 1, which means only one of the sin kqR/kqR factors above
contribute to the damping of the second term, implyingN/(kθR)2 � 1.
In this case, we would expect a substantial contribution from the
second term when |θ| < N1/2/kR = θcrit.

In Figure 4 is found a simulation of a given realization of this
problem, along with a curve corresponding to the ensemble average.
With the parameters N = 1000 and kR = 100, the critical angle is
θcrit = 18◦, and it is seen that there are indeed some lobes close to the
forward direction, approximately within this angle.
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Figure 4. Plot of log10

∣∣∣∑N
n=1 eikq·rn

∣∣∣2 in the x-y plane, where

q = k̂
i − k̂

s
and k̂

i
= x̂. The scatterers are randomly distributed

with uniform probability within a cube of side 2R, and the parameters
are N = 1000 and kR = 100, implying θcrit = N1/2/kR = 0.056 = 18◦.
The smooth line is the ensemble average of all realizations, i.e.,
N +N(N − 1)|f̂r0(kq)|2.

6.2. Random Errors in a Linear Antenna Array

A simple example of an array antenna is a linear array of identical
dipole elements uniformly distributed along the z-axis, i.e.,

〈F n(k)〉 = F0 sin θθ̂
〈rn〉 = ndẑ (32)
〈φn〉 = nβ,

where θ is the angle between the z-axis and k. Assuming there is no
error in amplitude, i.e., ∆F n = 0, the expression (21) can then be
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explicitly calculated:

〈∣∣∣∣∣
N∑

n=1

e−ik·rn−iφnF n(k)

∣∣∣∣∣
2〉

= (1 − |f̂(k)|2)NF 2
0 sin2 θ

+ |f̂(k)|2F 2
0 sin2 θ

[
sin(N(kd cos θ + β)/2)
sin((kd cos θ + β)/2)

]2

, (33)

see for instance [15, p. 259]. We assume a spherically symmetric
Gaussian probability distribution of the positions and neglect the
variations in phase, to obtain |f̂(k)|2 = e−k2δ2

, where δ is the standard
deviation of position. A plot of the deterministic and averaged
radiation pattern for N = 10, d = λ/2, β = 0, and kδ = 2π · 0.05
is found in Figure 5. It is seen that the deep nulls in the deterministic
radiation pattern are lifted mainly due to shifts of the nulls in different
realizations.
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Radiation pattern, linear array

Figure 5. The radiation pattern from a linear array of 10 identical
dipoles, uniformly spaced by λ/2, and position error kδ = 2π · 0.05.
The dotted line is the deterministic radiation pattern, the dashed line
is the pattern of a given realization, and the solid line is the ensemble
averaged radiation pattern.
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We calculate the antenna parameters directivity, side lobe level,
and beam efficiency, given in Appendix A, for position error δr only,
and plot the results in Figure 6. In this figure is also found a
comparison on how good the simplified expressions (22), (23), and
(24) are. It is seen that up to kδr = 2π · 0.1 the formulas are accurate
within 1 dB.
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Figure 6. Left column: directivity, side lobe level, and beam efficiency
as functions of position error only (dB units). The solid lines are for the
exact calculation of the averaged parameters, the dotted are the design
values, and the dashed are computed for a single realization for each
position error. Right column: the ratio between simplified formulas
(22), (23), and (24) and the exact calculation of the parameters (dB
units). The position error is in fractions of a wavelength. Observe that
the averaged parameters of the array antenna are essentially those of
an isotropic antenna at position error δr = λ/2.
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Figure 7. Simulated reflection from a frequency selective surface
with random errors. The angle of incidence is given by θ = 30◦ and
φ = 0◦, and the geometry of the unit cell is indicated. The solid
and dashed lines correspond to TE and TM polarizations, respectively.
The lattice has side 12 mm, and the standard deviation of position is
δr = 1 mm. The upper diagram corresponds to the reflected power
from an unperturbed FSS, i.e., the second term inside the brackets in
(34). The lower diagram corresponds to the diffuse part of the reflected
power from a perturbed FSS, i.e., the first term inside the brackets in
(34).

6.3. Frequency Selective Surface

A frequency selective surface can be made using a pattern of hexagonal
rings as indicated in Figure 7. Poulsen presents the full geometry
in [16], and has kindly supplied the data necessary to compute the
deterministic far field amplitudes for this example. In the absence of
grating lobes, equation (29) for the power scattering coefficient per



Coherent effects and random errors 33

unit solid angle becomes

Us

Pi
=

[
|kδrq⊥|2 +

(2π)2

A
δ(2)(kq⊥)

] ∣∣∣〈F 0(kk̂
s
)
〉∣∣∣2

|E0|2k2A|k̂i · n̂|
. (34)

Integrating this expression over the top half sphere Ω+, we obtain
the fraction of power which is reflected, Pr/Pi =

∫
Ω+
Us(k̂

s
) dΩ(k̂

s
)/Pi.

This is plotted in Figure 7, where we also show the part of the reflected
power corresponding to the diffuse intensity.

From Figure 7 it is seen that the diffuse part of the reflected power
is very small up to the resonance frequency at 10 GHz, even though
the average error in position is about 10 % of the cell size. At higher
frequencies the diffuse power is more or less constant at −20 dB. The
anomalies seen for frequencies higher than 17 GHz are due to the need
of a more accurate calculation of the far field amplitudes F 0 at these
frequencies, only a few basis functions are used here.

7. DISCUSSION AND CONCLUSIONS

This paper treats essentially two applications: single scattering
against randomly distributed particles, and random errors in antenna
technology. The common element is the calculation of expressions
of the kind

〈
|
∑N

n=1 eik·rnF n|2
〉
, where rn and F n are random

variables. We have shown that it is possible to explicitly calculate these
expressions, in terms of the characteristic function of the probability
density and the deterministic part of the random variables.

The closed form of our results allows an explicit estimate of when
the “N(N − 1)”-term in single scattering theory cannot be neglected.
The extra information which can be extracted if this contribution can
be measured, is mainly concerned with the shape of the scattering
volume, since the lobes in the scattered power pattern centered
round the forward direction is essentially the Fourier transform of
the scattering volume. However, since the interesting contribution is
near the forward direction, it is technically difficult to distinguish the
scattered field from the incident field.

Random errors in antenna technology are treated in great
generality in this paper, giving explicit estimates on the expected
radiation pattern as well as several important antenna parameters
when the antenna is subject to perturbations. The estimates are given
in terms of the deterministic design values, and the errors in phase,
amplitude and position of the antenna elements. We also give explicit
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error estimates on the behavior of a quite general frequency selective
structure.

From the results in Section 6, we see that the simplified, and
computationally effective, formulas (22), (23), and (24) give good result
for errors up to roughly a tenth of a wavelength. It should be noted that
even though the expressions were derived using a Gaussian probability
distribution, they are actually still valid for a general probability
distribution which allows a truncation of the Taylor expansion of
its characteristic function. We have chosen to exclude this technical
derivation from this paper.

The results given in this paper should be of interest to a wide
variety of scientists and engineers. In particular the error estimates
for antenna technology are important when considering the amount of
overdesign necessary to obtain specific design goals.
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on this paper. He also thanks Sören Poulsen at the same department
for providing the data used in the numerical example in Section 6.3.
The work reported in this paper is partially supported by a grant
from the Swedish Foundation for Strategic Research (SSF), and their
support is gratefully acknowledged.

APPENDIX A. CALCULATION OF ANTENNA
PARAMETERS

This appendix presents the somewhat technical derivations of three
antenna parameters, when the array antenna is subject to errors
in position, phase and amplitude of its elements. The aim is to
find expressions for the perturbed antenna parameters as functions
of the unperturbed parameters, i.e., the deterministically calculated
parameters. We give expressions which have a minimum of
approximations, as well as simplified expressions which are easier to
handle.
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A.1. Directivity

The (maximum) directivity of an antenna is defined as [15, p. 39]

D = Dmax =
Umax

U0
=

max
k
U

(4π)−1
∫
U dΩ(k)

, (A1)

where U =
〈
r2|E|2

〉
/2η is the radiation intensity (radiated power per

unit solid angle), and U0 is the radiation intensity which would have
been produced if the source had been isotropic. Recall that

〈
|E|2

〉
and

thereby U are proportional to the previously derived factor

〈∣∣∣∣∣
N∑

n=1

e−ik·rn−iφnF n(k)

∣∣∣∣∣
2〉

= N
〈
|∆F 0(k)|2

〉
+ (1 − |f̂(k)|2)

N∑
n=1

| 〈F n(k)〉 |2 + |f̂(k)|2
∣∣∣∣∣

N∑
n=1

e−ik·〈rn〉−i〈φn〉 〈F n(k)〉
∣∣∣∣∣
2

. (A2)

Denote the directivity and radiation intensity from element n by D(n)
d

and U (n)
d , respectively, where the index (d) stands for deterministic

or design value. The directivity and radiation intensity of the entire
array antenna when there are no perturbations (deterministic case) is
denoted by Dd and Ud, respectively. Assume the errors are spherically
symmetric, i.e., ∆F 0 and f̂ depend only on |k| = k. The maximum
radiation intensity Umax = DU0 is then

Umax ≤ k−2N
〈
|∆F 0(k)|2

〉
+(1−|f̂(k)|2)

N∑
n=1

D
(n)
d U

(n)
d0 +|f̂(k)|2DdUd0

(A3)

with equality for identical elements. The integration over solid angle
gives

U0 =
1
4π

∫
U dΩ

= k−2N
〈
|∆F 0(k)|2

〉
+(1 − |f̂(k)|2)

N∑
n=1

U
(n)
d0 +|f̂(k)|2Ud0, (A4)
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and the directivity is

D ≤
k−2N

〈
|∆F 0(k)|2

〉
+ (1 − |f̂(k)|2)

N∑
n=1

D
(n)
d U

(n)
d0 + |f̂(k)|2DdUd0

k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)
N∑

n=1

U
(n)
d0 + |f̂(k)|2Ud0

= Dd −
k−2N(Dd−1)

〈
|∆F 0(k)|2

〉
+(1−|f̂(k)|2)

N∑
n=1

(Dd−D(n)
d )U (n)

d0

k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)
N∑

n=1

U
(n)
d0 + |f̂(k)|2Ud0

.

(A5)

Since the directivity Dd ≥ 1 and we can assume Dd ≥ D(n)
d (usually an

array antenna is constructed with the specific purpose to increase the
directivity), the fraction is positive and it is seen that the directivity
in general decreases when the antenna has random errors.

A simplified expression for the directivity can be found when the
errors are small. This corresponds to |f̂(k)|2 → 1, and the denominator
in (A5) is approximated by Ud0. We assume the location and phase
errors are normally distributed, implying |f̂(k)|2 = e−k2δ2

r−δ2
φ , where δr

and δφ are the standard deviations of location and phase, respectively.
For small deviations, this means 1− |f̂(k)|2 ≈ k2δ2r + δ2φ. The variance
of the amplitude error is denoted

〈
|∆F 0|2

〉
= δ2F , and we have

D ≤ Dd −
[
Nδ2F
k2Ud0

(Dd − 1) + (k2δ2r + δ2φ)
N∑

n=1

(Dd −D(n)
d )

U
(n)
d0

Ud0

]
.

(A6)

A.2. Side Lobe Level

The side lobe level is calculated as the ratio of the maximum radiation
intensity outside the main lobe to the maximum radiation intensity. In
this and the following section, we assume the main lobe is contained
in the solid angle Ω0, and that this angle does not change appreciably
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with errors present. The side lobe level is then given by

SLL =
max
k�∈Ω0

U

Umax

=

k−2N
〈
|∆F 0(k)|2

〉
+(1−|f̂(k)|2) max

k�∈Ω0

N∑
n=1

U
(n)
d +|f̂(k)|2SLLdUdmax

k−2N 〈|∆F 0(k)|2〉+(1 − |f̂(k)|2) max
k

N∑
n=1

U
(n)
d +|f̂(k)|2Udmax

.

(A7)

The same approximations leading to (A6), i.e., approximating
the denominator with Udmax and 1 − |f̂(k)|2 ≈ k2δ2r + δ2φ and

max
k�∈Ω0

∑N
n=1 U

(n)
d ≤

∑N
n=1 U

(n)
dmax, now give

SLL ≤ SLLd + (1 − SLLd)

[
Nδ2F

k2Udmax
+ (k2δ2r + δ2φ)

N∑
n=1

U
(n)
dmax

Udmax

]
,

(A8)

where Udmax = DdUd0 as in the previous section.

A.3. Beam Efficiency

The beam efficiency of an antenna with a main lobe is the ratio of the
power within the lobe to the total power emitted [15, p. 63], i.e., if the
main lobe is contained in the solid angle Ω0 we have

BE =

∫
Ω0
U dΩ

4πU0
, (A9)

where U0 = (4π)−1
∫
4π U dΩ is defined in Section A.1. Using the

approximation
∫
Ω0
U

(n)
d dΩ ≤ |Ω0|U (n)

dmax = |Ω0|D(n)
d U

(n)
d0 , the same
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procedure as in Section A.1 implies

BE ≤ 1
4π


 k−2N

〈
|∆F 0(k)|2

〉
|Ω0|+(1−|f̂(k)|2)

N∑
n=1

|Ω0|D(n)
d U

(n)
d0

+|f̂(k)|2BEd4πUd0




k−2N 〈|∆F 0(k)|2〉+(1 − |f̂(k)|2)
N∑

n=1

U
(n)
d0 + |f̂(k)|2Ud0

= BEd −



k−2N(BEd − |Ω0|/4π)

〈
|∆F 0(k)|2

〉
+(1 − |f̂(k)|2)

N∑
n=1

(BEd −D(n)
d |Ω0|/4π)U (n)

d0




k−2N 〈|∆F 0(k)|2〉 + (1 − |f̂(k)|2)
N∑

n=1

U
(n)
d0 + |f̂(k)|2Ud0

.

(A10)

Once again applying the approximation of small, normally distributed
errors as in the derivation of (A6), we find

BE ≤ BEd −
[
Nδ2F
k2Ud0

(
BEd − |Ω0|

4π

)

+ (k2δ2r + δ2φ)
N∑

n=1

(
BEd −D(n)

d

|Ω0|
4π

)
U

(n)
d0

Ud0

]
. (A11)
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