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Abstract—The Electromagnetic (EM) fields of a concentric,
mismatched-material, elliptical system are studied when excited by
an interior or exterior electric surface current. The interior or exte-
rior surface current is assumed to be proportional to a single, angular
Mathieu mode. It is shown that despite the fact that the system is
concentric, that a single Mathieu mode surface current excites EM
Mathieu-mode fields of all orders. A derivation of the EM fields due
a single mode electric surface in an infinite, homogeneous media is
given, as well as the matrix formulation from which the EM fields of
the mismatched-material, elliptical system may be determined. Vali-
dation of numerical results and comparison with other research work
is given for both interior and exterior single-mode, current sources.
Detailed numerical examples of the EM fields that result for a single-
mode, exterior source excitation are given for the first time. Discussion
of the EM mode coupling that results by single-mode excitation on a
mismatched elliptical system is given.
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1. INTRODUCTION

An important problem in Electromagnetics (EM) is determining
the EM scattering that arises from both homogeneous elliptical
cylindrical objects and inhomogeneous ones whose permittivity and
permeability are functions of position inside the object. Many results
have been obtained for scattered EM field expansions in Mathieu
functions [1, 2] which are functions of the elliptical cylinder coordinates,
including closed form expressions for the expansion coefficients for the
homogeneous, perfectly conducting elliptical cylinder [3] and references
therein. An exact Mathieu series solution for plane wave scattering
from a homogeneous dielectric elliptical cylinder has been obtained by
[4, 5]. Scattering from a dielectric-coated elliptic cylinder has been
investigated [6] and scattering from a spatially uniform, dielectric-
coated impedance elliptical cylinder has recently been studied [7]. An
exact (formal) solution to transverse-magnetic excitation of multilayer
dielectric elliptical cylinders has been obtained using a recursive
procedure [8]. Plane wave scattering of multilayer, isorefractive,
elliptical cylinders was studied using a matrix based recursive solution
[9]. The exact solution to plane wave scattering of a single isorefractive
elliptic cylinder had earlier been obtained [10].

An interesting feature of EM scattering from elliptical, cylindrical
cylinders of mismatched dielectric permittivity and mismatched
magnetic permeability values is the fact that when an EM field which
is proportional to a single Mathieu mode is incident on the system,
that the scattering due to this mode causes the excitation of EM
fields proportional to Mathieu modes of different order than that of
the incident EM field. This has been as shown in [11, 12] when an
interior, single mode Mathieu electric current source excited EM fields
in a mismatched elliptical system. This situation is quite different from
that when a circular EM mode is incident on a concentric, mismatched,
multilayer system of circular cylinders (each layer of the system is
assumed homogeneous). In this system a circular EM mode incident
on the system will induce only circular modes of the same order. In
studies of scattering from both circularly shaped objects [13, 14] and
elliptically shaped objects [4, 8], the Radar Cross Section (RCS) of
the system is usually the quantity of most interest, and thus a plane
wave excitation is the one that is most often used. Since a plane wave
in circular and elliptical coordinates is a superposition of an infinite
number of modes, when calculating the RCS for circular or elliptically
shaped objects, it is difficult to gain a sense of how each mode of
the plane wave excitation is coupled to each mode of the scattered
EM field. This is particularly true for RCS calculations for elliptically
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shaped objects, since each elliptical mode in the plane wave excitation,
excites or couples to, all other elliptical modes in the scattered field.

The purpose of this paper is to study in mismatched-material,
elliptical systems, the EM fields which are excited by single, Mathieu-
mode elliptical source. The excitation source will be located either
interior to or exterior to the elliptical cylinders and will be, for
simplicity, assumed to be symmetric in the x and y directions. The
excited EM fields will be determined by expanding these fields in
series of products of angular and radial Mathieu functions of unknown
amplitude, and then by using the method of moments, solving for the
EM unknown field amplitudes.

The EM fields due to a single-mode interior source in a
mismatched elliptical system were first calculated in [11, 12]. In
[11, 12] the focus of the work was not to develop a Mathieu mode-
matching algorithm, but was to develop a numerical procedure
entitled the Rigorous Coupled Wave Analysis (RCWA) algorithm for
inhomogeneous elliptical systems. This RCWA algorithm was used to
solve EM scattering problems for concentric elliptical cylinder systems
whose material parameters of dielectric permittivity and magnetic
permeability varied spatially. The elliptical mode-matching algorithm
to be described herein was used in [11, 12] only to check numerical
results of the RCWA algorithm when the elliptical shells of the system
were homogeneous materials. The focus of the present paper will be to
present in detail the Mathieu mode matching algorithm which was used
in [11, 12] and will be to present new results of how a single Mathieu-
mode exterior source excites EM fields in a mismatched elliptical
system. The work presented herein is based on the masters thesis
work [15] performed by one of the authors, Susan C. Hill. The Mathieu
function numerical calculations to be presented in the paper were made
by the algorithms of [16].

The present authors feel that the analysis of this paper will be very
useful to researchers who wish to investigate scattering from elongated,
possibly thin objects. By adjusting the eccentricity of the elliptical
scattering system, very elongated ellipses can be constructed which
then approximately represent an elongated thin or flattened scattering
object (for example; a radar absorbing covered aircraft wing; a plank
of wood or vegetation; (in the area of bioelectromagnetics) a finger
[17] or wrist; etc.) that might be illuminated. This study will also be
useful to validate EM field solutions found by other numerical methods
or mathematical techniques. These include approximate diffraction
methods, Finite Difference-Time Domain (FD-TD), or Finite Element
(FE) methods, rigorous coupled wave analysis, and other approaches
used where an exterior source is present that can be represented in
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a Mathieu function series expansion. For example, the single mode
elliptic source used in this paper could be used in iterative algorithm
and solution developed by [18] to study TM scattering by two infinitely
long lossy dielectric cylinders.

2. BASIC FORMULATION

2.1. Maxwell’s Equations in Elliptical Coordinates

The elliptical geometry of the mismatched dielectric elliptical cylinders
with interior and exterior sources is shown in Fig. 1. The elliptical
cylindrical coordinates [1] are the angular coordinate u, 0 < u < ∞
(in the radial direction), the angular coordinate v, 0 ≤ v ≤ 2π, and
the axial coordinate z, −∞ < z < ∞. Normalized coordinates [11, 12]
will be used for convenience by letting ρ = k0ρ̃, x = k0x̃, y = k0ỹ,
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Figure 1. This figure is drawn to scale to illustrate the system
geometry where ρ = 20, ua = 0.602, ub = 1.198, the interior source
current is located at us = 0.3, the exterior source current is located
at us = 2ub = 2.396, and λ0 is the free space wavelength. The three
regions of the system denoted R1, R2, and R3 are each homogeneous,
where; in R1, ε1 = 1 and µ1 = 1; in R2, ε2 = 2.9851786 and
µ2 = 1.4; and in R3, ε3 = 1.5 and µ3 = 1.2. The u = us = 2.396
outermost ellipse appears circular because ρ cosh(u) = x/ cos(v) and
ρ sinh(u) = y/ sin(v) are very nearly equal.
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x = ρ coshu cos v, y = ρ sinhu sin v where unnormalized coordinates
(ρ̃, x̃, ỹ) are in meters and k0 = 2π/λ0 is the free space wavenumber
(1/meters) and λ0 is the free space wavelength. The material of the
system has permittivity ε̃ = εε0, where ε is the relative permittivity,
and permeability µ̃ = µµ0, where µ is the relative permeability. The
impedance of free space is, η0 =

√
µ0/ε0 = 377Ω.

The EM fields are independent of the axial coordinate z and are
functions only of the u and v coordinates. In this case, Maxwell’s
equations in elliptical coordinates for time harmonic EM fields in
a charge free, non-conducting, homogeneous medium [11, 12] are in
component form given by

µη0h(u, v)Hu(u, v) = j
∂Ez(u, v)

∂v
(1a)

µη0h(u, v)Hv(u, v) = −j
∂Ez(u, v)

∂u
(1b)

εEz(u, v) = − j

h2

(
∂(η0hHv)

∂u
− ∂(η0hHu)

∂v

)
(1c)

where the elliptical scale factor, h(u, v) is

h(u, v) =
ρ√
2

(cosh 2u− cos 2v)
1
2 . (2)

It is convenient to define the function Uv(u, v) given by [11, 12], as

Uv(u, v) = η0h(u, v)Hv(u, v) = −j
1
µ

∂Ez(u, v)
∂u

(3)

2.2. Elliptically Symmetric EM Source Fields in Uniform
Space

It will be assumed that a surface current �JS which is located at us,
excites EM fields in an infinite homogeneous medium. This surface
current satisfies the boundary matching equation [11, 12]

�JS = âuX
(
�H+(us, v, q) − �H−(us, v, q)

)
=

(
H+

v (us, v, q) −H−
v (us, v, q)

)
âz = JSZ(us, v, q)âz. (4)

The EM fields from this source will be treated later in the analysis
as EM source fields which themselves excite scattered fields in the
dielectric mismatched system in the same way that a plane wave
excited EM fields in the elliptical systems of [4, 5, 8]. Here, the plus and
minus signs indicate the exterior and interior of the source location.
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Specifically in this study, the exciting surface current will be taken to
be a sum of even angular Mathieu functions of even order [1, 11, 12]

Js(us, v, q) =
1

h(us, v)

∞∑
m=0,2,···

Jsmcem(v, q) (5)

This source is symmetric about the x and y axes.
The EM fields excited by Eq. (5) may be expanded in products

of even angular and radial Mathieu functions. The EM fields in the
interior of the source may be expanded in even radial Mathieu functions
of the first kind, Mc

(1)
m . The Mc

(1)
m functions are used in the interior

since they are well behaved at the origin. The EM fields inside the
current source may be represented as

E(IN)
z (u, v, q) =

∞∑
m=0

AI−
m Mc(1)m (u, q)cem(v, q), u < us (6a)

U (IN)
v (u, v, q) =

1
jµ

∞∑
m=0

AI−
m

dMc
(1)
m (u, q)
du

cem(v, q), u < us (6b)

The constant q = k2ρ2

4 , where k =
√
µε is the propagation constant,

will depend on the material parameters and the geometry of the source.
Outside the current source, the EM fields radiate outwardly and are
given by

E(EX)
z (u, v, q) =

∞∑
m=0

AI+
m Mc(4)m (u, q)cem(v, q), us < u (7a)

U (EX)
v (u, v, q) =

1
jµ

∞∑
m=0

AI+
m

dMc
(4)
m (u, q)
du

cem(v, q), us < u (7b)

The EM field expansion coefficients, AI−
m and AI+

m , are determined;
(1) by imposing the EM field boundary conditions that the tangential
z component of the total electric field must be continuous at us,
E

(IN)
z (us, v, q) = E

(EX)
z (us, v, q) and 2) by requiring the tangential v

component of the magnetic field at us to satisfy the jump discontinuity
boundary condition

U (EX)
v (us, v, q) − U (IN)

v (us, v, q) = η0h(us, v)Js(us, v, q). (8)

These two equations are next multiplied by an infinite set of test
functions, angular Mathieu functions with parameter q, and integrated
over the full range of the angular coordinate v, 0 ≤ v ≤ 2π. Next,
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the EM field series expansions from Eqs. (6)–(8) are evaluated at us,
substituted into the integrals, then after the order of integration and
summation is exchanged, it is found

∞∑
m=0

{
AI−

m Mc(1)m (us, q) −AI+
m Mc(4)

m (us, q)
} 2π∫

0

cem(v, q)cer(v, q)dv = 0,

r = 0, 2, · · · (9a)
∞∑

m=0

{
AI+

m

dMc
(4)
m (us, q)
du

−AI−
m

dMc
(1)
m (us, q)
du

− jµη0Jsm

}

×
2π∫
0

cem(v, q)cer(v, q)dv = 0, r = 0, 2, · · · (9b)

The sums in Eqs. (9a), (9b) are proportional to Kronecker deltas due
to the orthogonality of angular Mathieu functions that have the same
parameter q. Eqs. (9a), (9b) simplifies, and one finds infinite sets of
decoupled, invertible 2 × 2 linear systems

[
0

jη0µJsr

]
=


 Mc

(4)
r (us, q) −Mc

(1)
r (us, q)

dMc
(4)
r (us, q)
du

−dMc
(1)
r (us, q)
du




[
AI+

r

AI−
r

]
,

r = 0, 2, · · · (10)

from which the unknown incident EM field expansion coefficients are
determined. Once the current source expansion coefficients, Jsr, are
specified, each 2 × 2 linear system can readily be solved to find AI−

m

and AI+
m for each mode independently of all other modes [11, 12]. It is

interesting to note that if only a single coefficient Jsr is nonzero then
only the rth order Mathieu mode will be excited.

2.3. Dielectric Shell Matrix Equation for an Elliptically
Symmetric Source Excitation

In this section the EM fields will be solved for in three mismatched
material regions when the system is excited by the elliptically
symmetric surface current described in the previous section and when
the current source is either in the most interior or exterior region
as shown in Fig. 1. In this section the matrix formulation for the
interior source will be presented in detail. The formulation for the
exterior source is identical to interior except that a different excitation
source matrix needs to be used. The three regions of the system are
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assumed each homogeneous, with the material relative permittivities
ε and relative permeabilities µ in Regions 1, 2, and 3 given in the
caption of Fig. 1. The EM fields due to the surface current radiating
in homogeneous space calculated in the previous section are considered
to be the incident excitation fields in the more general dielectric
mismatched case considered here.

We will now present the interior matrix formulation. For the
interior source matrix formulation the source current is located at us,
0 < us < ua. In Reg. 1 outside the source current location, the EM
fields are superpositions of the outwardly radiating incident EM fields
and the unknown scattered EM fields. The interior fields are given by

E(1)
z (u, v, q1) =

∞∑
m=0

(
AI+

m Mc(4)m (u, q1) + A(1)
m Mc(1)m (u, q1)

)
×cem(v, q1), us < u < ua (11a)

U (1)
v (u, v, q1) =

1
jµ1

∞∑
m=0

(
AI+

m

dMc
(4)
m

du
(u, q1) + A(1)

m

dMc
(1)
m

du
(u, q1)

)

×cem(v, q1), us < u < ua (11b)

where AI+
m is given by the solution of Eq. (10) with q = q1 [11, 12]. In

Region 2, the unknown, scattered EM fields are inwardly and outwardly
radiating, and are given by

E(2)
z (u, v, q2) =

∞∑
m=0

(
A(2)

m Mc(3)m (u, q2) + A(3)
m Mc(4)m (u, q2)

)
×cem(v, q2), ua < u < ub (12a)

U (2)
v (u, v, q2) =

1
jµ2

∞∑
m=0

(
A

(2)
2

dMc
(3)
m (u, q2)
du

+ A(3)
m

dMc
(4)
m (u, q2)
du

)

×cem(v, q2), ua < u < ub (12b)

In Region 3, the EM fields are unknown, outwardly radiating EM fields,
and are given by

E(3)
z (u, v, q3) =

∞∑
m=0

A(4)
m Mc(4)m (u, q3)cem(v, q3), ub < u < ∞ (13a)

U (3)
v (u, v, q2) =

1
jµ3

∞∑
m=0

A(4)
m

dMc
(4)
m (v, q3)
du

cem(u, q3), ub < u < ∞

(13b)
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The unknown EM field expansion coefficients are found by
matching the tangential components of the EM fields at each interface
in the system as required by the EM boundary conditions. The
resulting four equations are multiplied by a limited set of 2N + 1 test
functions, angular Mathieu functions that have material parameters
of Region 2, and then integrated over the angular coordinate v,
resulting in four equations for each mode r, r = 0, 2, · · · , 2N . After
evaluating the EM field series expansions on the appropriate interfaces
and exchanging the order of integration and summation, a system of
equations is obtained for the unknown EM field expansion coefficients.
For example, the u = ua electric field equation is given by the following
set of 2N + 1 equations:

∞∑
m=0

(
AI+

m Mc(4)m (ua, q1) + A(1)
m Mc(1)m (ua, q1)

) 2π∫
0

cem(v, q1)cer(v, q2)dv =

∞∑
m=0

(
A(2)

m Mc(3)m (ua, q2) + A(3)
m Mc(4)m (ua, q2)

) 2π∫
0

cem(v, q2)cer(v, q2)dv,

r = 0, 2, · · · , 2N (14)

Similar interface matching equations exist for the other EM field
components.

It is interesting to note that in the right hand side of Equation
(14) in the angular Mathieu function overlap integral the cem(v, q2)
functions satisfy an orthogonality relation, but in the left hand side of
Eq. (14), the cem(v, q1) and the cer(v, q2) functions are not orthogonal.
This occurs because q1 = q2 in the right hand side overlap integral and
q1 �= q2 on the left hand side of the equations. Thus we see in a clear
and unambiguous way, that if only a single Jsm coefficient of Eq. (10)
is excited (Jsm excites the AI+

m incident EM field coefficient), that since
the overlap integral for q1 �= q2 is non-zero, modes other than the mth

mode in a dielectric mismatched system will be excited. Thus mode
coupling between the source and scattered EM fields will occur in the
system.

After implementing boundary conditions, a system of equations
results for the unknown EM field expansion coefficients is found. The
system of equations has the form


−S21M1

11 S22M3
21 S22M4

21 0
−S21U1

11 S22U3
21 S22U4

21 0
0 −S22M3

22 −S22M4
22 S23M4

32

0 −S22U3
22 −S22U4

22 S23U4
32







A1

A2

A3

A4



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=




S21M4
11A

I+

S21U4
11A

I+

0
0


 (15)

where S22 is the diagonal, square block (N + 1) × (N + 1) angular
Mathieu function overlap integral, and the matrix elements of S21, for
example, are given by

[
S21

]
ij

=
2π∫
0

cei(v, q2)cej(v, q1)dv, i, j = 0, 2, · · · , 2N (16)

The Mathieu functions and their derivatives evaluated on the
boundaries are diagonal square block (N + 1) × (N + 1) dimensional
matrices with matrix elements given by, for example,[

M3
21

]
ii

= Mc
(3)
i (ua, q2), i = 0, 2, · · · , 2N (17a)

and

[
U3

21

]
ii

=
1
jµ2

dMc
(3)
i (ua, q2)
du

, i = 0, 2, · · · , 2N (17b)

The unknown EM field expansion coefficient vectors, A1, A2, A3, and
A4 are (N +1)× (N +1) dimensional column sub-vectors representing
overall the 4(N + 1) unknowns in the system. The right hand side
column vector represents the excitation of the surface current source
in Reg. 1 with AI+ given as the solution of Eq. (10) with material
parameters of Reg. 1.

As can be seen in Eq. (15), the system takes a particularly simple
form because the angular Mathieu functions of Reg. 2 were chosen
as the test functions. However, the system matrix is in general non-
diagonal and non-symmetrical because the angular Mathieu functions
are non-orthogonal when they depend on different parameters q�,
& = 1, 2, 3. As a consequence, mode coupling can occur where a given
mode of the incident EM fields can excite distinctly different modes in
the scattered EM fields.

The EM field expansion coefficients for an exterior elliptically
symmetric source (See Fig. 1) are found in the same way as for an
interior elliptically symmetric source except that the right hand side
vector of Eq. (15) is replaced by[

0 0 − S23M1
32A

I− − S23U1
32A

I−
]T

(18)
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with AI−
m given as the solution of Eq. (10) with material parameters of

Region 3. The AI−
m are used because the excitation current source is

exterior to the dielectric shell. Mode coupling can occur in the presence
of an exterior source just as in the case of an interior source since the
same left hand matrix is used to determine EM field coefficients of the
system.

3. NUMERICAL RESULTS FOR THE INTERIOR AND
EXTERIOR ELLIPTICALLY SYMMETRIC SOURCE

This section will be concerned with presenting some numerical results
of boundary matching algorithm developed in the previous sections.
Two numerical cases are presented, the first case presents numerical
results when the exciting surface current is interior to the dielectric
shell and the second when the surface current source is exterior. Fig. 1
shows the geometry of the scattering system when the exciting elliptical
surface current is placed on the interior or exterior of the mismatched
elliptical dielectric shells. The elliptical geometry parameters and the
material parameters (permittivity and permeability) are listed in the
Fig. 1 caption. We note that Fig. 1 is drawn to the exact scale of the
scattering system under investigation. As can be seen, because of the
large u value of elliptical current source, the exterior elliptical current
source is nearly circular in shape.

We begin by presenting numerical results of the first case when the
elliptical source is located in the interior of the dielectric shell (Reg. R1)
and is assumed to be excited by a single cem(v, q1) mode with m = 0
and with the surface current set to a value of JSZ = 1.0(A/m). In
Fig. 1 the exterior source is set to zero. This numerical case has been
previously analyzed in [11, 12] and is presented here as validation of
the numerical methods which are used in this paper. In [11, 12] this
case was studied by both by the mode matching used in this paper
and was studied by using a state variable electromagnetic analysis
technique, RCWA, to find the EM fields and power of the system.
Table 1 shows the normalized power that results from [11] using five
expansion and testing modes and the present work using seven modes.
The normalized power in Table 1 is calculated at four locations namely
just inside and outside the u = u±a (R1:R2 boundary) and the u = u±b
(R2:R3 boundary). As can be seen from Table 1 extremely good
power conservation holds from layer to layer as physically required
since the system is lossless. We also note that the agreement from
matrix methods of this paper agree very closely with that of [11], thus
giving good validation of the numerical results. Fig. 2 shows a db plot
of the power which is radiated individually from the different modes at
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Table 1. Computed values of the normalized power that is radiated
through the interfaces u = u−a , u = u+

a , u = u−b , and u = u+
b .

The number of modes in the electromagnetic field Mathieu function
expansions is different for the two calculations, but both adequately
converged.

PTOT / PJSData Source No.
Modes u = ua

-

Region 1
u = ua

+

Region 2
u = ub

-

Region 2
u = ub

+

Region 3
This Work 7 0.727005 0.727005 0.727005 0.727005

Ref. [Jarem 2002] 5 0.7270355 0.7270554 0.7270554 0.7271340
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0

Normalized Power Interior Excitation db- ( )

m order( )

P P

db
JM JS/

( )

Figure 2. Shown is the normalized power Pm/PJS in each Mathieu
mode in Reg. 3 at u = u+

b obtained here for a seven mode EM field
expansion when exited by the interior source of Fig. 1.

the u = u+
b boundary using 35 modes to calculate the EM fields of the

system. As can be seen from Fig. 2, the majority of power is radiated in
the lower order modes. The numerical case presented in Fig. 2 was also
calculated in [11] and the results presented here agree almost exactly
with those presented in [11]. This provides further validation of the
algorithm presented herein.

We will now present numerical results of the second case namely
when the elliptical source is located in the exterior of the dielectric
shell (Reg. R3) and is assumed to be excited by single cem(v, q3) mode
for m = 0 and m = 2. Plots of the source functions are shown in
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Figure 3. Shown is the exterior surface current (proportional to the
angular Mathieu functions with material parameters of Reg. 3) for the
m = 0 and m = 2 modes.

Fig. 3. As can be seen from Fig. 3, the m = 0 mode excites radiation
which is fairly broadside at v = 90◦ whereas the m = 2 mode excites
radiation at the v = 70◦, 90◦, and 110◦ degree locations.

Figs. 4a, b shows the real and imaginary parts of the Ez electric
field (in units of (V/m)) as calculated at u = u−b (R2:R3 interface,
solid line plot) and u = u+

b (R2:R3 interface, dotted line plot) when
excited by the m = 0 source and Figs. 4c, d show similar plots for the
η0Hv (in units of (V/m)) magnetic field variable. As can be seen from
the Figs. 4a–d, extremely close matching of the EM fields occurred
which shows that the EM boundary conditions of the system are being
satisfied to a high degree of accuracy, further validating the numerical
algorithm used in the paper. In observing the plots of Fig. 4, one
notices for the excitation used, that the Imag(η0Hv) in Fig. 4d was
approximately four times larger in peak to peak magnitude than the
EM fields of Figs. 4a, b, c. An interesting feature of the plots which
can be clearly seen in Figs. 4a, b, c is the fact that the Real(Ez),
Imag(Ez), and Real(η0Hv) EM fields of the system are showing a high
degree of constructive and destructive interference (or modal variation)
in the v angular direction, despite the fact that the current source
excitation consisted of a single lobe cem(v, q3), m = 0 source function
(shown in Fig. 3). The fact that a high degree of constructive and
destructive interference has occurred is physically reasonable since
the m = 0 broadside wave launches a disturbance in the dielectric
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Figure 4. Shown are real and imaginary parts of the electric field Ez

(Figs. a, b) and magnetic field η0Hv (Figs. c, d) when evaluated on the
interface at u = u±b over the range 0 ≤ v ≤ 180. Only the m = 0 mode
of the source current is present.

shell (Reg. R2) which thus propagates radiation in the forward and
backward directions causing the interference which is observed. In
Fig. 4d, recalling that the peak to peak magnitude is about four times
larger than in Figs. 4a, b, c, one also observes about the same level of
interference in the v range (0 < v < 60◦, 120 < v < 180◦) of Fig. 4d as
seen in Figs. 4a, b, c. The interference observed in Figs. 4a–d is thus
strong evidence that there has been significant excitation of the higher
order Mathieu modes in the system from the exterior source.

Figs. 5a, b, c, d shows the same type of electric and magnetic field
plots as were described in Figs. 4a, b, c, d except that the current source
was proportional to a cem(v, q3), m = 2, mode (plotted in Fig. 3) rather
than a cem(v, q3), m = 0 mode. For this excitation, strong illumination
of the elliptical cylinder occurs at v = 70◦, v = 90◦ and v = 110◦. As
can be seen from Figs. 5a, b, c, d (as in Figs. 4a, b, c, d), extremely
close matching of the EM fields has occurred, which again shows that
the EM boundary conditions of the system are being satisfied to a
high degree of accuracy. Again, one observes a much higher degree of
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Figure 5. The same plot as Fig. 4 is shown except that m = 2.

constructive and destructive interference (or modal variation) in the
v angular direction than was shown by the cem(v, q3), m = 2 source
(Fig. 3). The interference observed in Figs. 5a, b, c, d is again strong
evidence that there has been significant excitation of the higher order
Mathieu modes in the system by the cem(v, q3), m = 2 mode exterior
source.

4. CONCLUSION

In conclusion the paper has presented a electromagnetic Mathieu
modal matching solution for the EM fields of an elliptical cylinder
when illuminated by surface currents which are proportional to m = 0
and m = 2 interior angular Mathieu functions cem(v, q1) and exterior
cem(v, q3) ones. The EM fields of the interior surface current, as
determined by the present modal matching algorithm, were compared
to the numerical solution by an independent numerical algorithm,
namely the RCWA method [11, 12] and close matching of the solutions
was observed validating the numerical calculation of the present
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algorithm. Validation of the algorithm was also provided by the close
agreement shown in Figs. 4 and 5 of the EM field solutions as calculated
at the u = ub elliptical shell interface.

An interesting feature of the EM field solution when the excitation
was an exterior source, was the fact that although the electric current
sheet excitations possessed a low modal variation (proportional to
cem(v, q3), m = 0, m = 2, see Fig. 3), the EM fields excited by these
sources shown in Figs. 4 and 5 showed a high degree of constructive
and destructive interference in the v angular direction. This indicated
that these sources induced excitation of modes of higher order than
m = 0 and m = 2. This feature is an interesting one, when compared
to the scattering case of a single mode exciting a concentric circular
cylindrical mismatched dielectric system. In the circular mismatched
dielectric system, as mentioned in the Introduction, the mth mode
excites EM fields only of order m. In an elliptical mismatched system
a single mth order will in general excite all orders of m.

As mentioned in the Introduction, the authors feel the work
presented here will also be useful to other researchers wishing to
validate other numerical EM algorithms such as the finite element
(FE) method, and the finite difference-time domain (FD-TD) method
for example. The modal method used here is extremely accurate and
converges with expansions of 35 modes.
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