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Abstract—We present an efficient modal method to calculate the
two-dimensional Green’s function for electromagnetics in curvilinear
coordinates. For this purpose the coordinate transformation based
differential method, introduced for the numerical analysis of surface-
relief gratings, is directly used with perfectly matched layers (PMLs).
The covariant formalism Maxwell’s equations, very convenient for the
non-orthogonal coordinates formulation, also gives an unified analysis
of PMLs. Numerical results for a line source placed above a perfectly
conducting corrugated surface are presented.

1. INTRODUCTION

In 1994 Bérenger introduced the perfectly matched layers (PMLs) in
finite-difference time-domain (FDTD) [1]. Since then the PMLs have
been successfully combined with others methods in particular in the
frequency domain. Chew and Weedon have shown in [2] the PML
concept to be equivalent to a complex stretching on the coordinate
space of Maxwell’s equations. Then Teixeira et al. have interpretated
this stretching as being equivalent to an analytical continuation of the
coordinate space to a complex coordinate space [3]. More recently
Teixeira et Chew proposed a unified analysis using differential forms
[4]. In practice one main feature of the PMLs, which appears in
many applications, lies in the fact that the PMLs allow to use
modal expansion technics. For example consider a problem which
is translation invariant in one direction. The computing domain
is defined by placing in this direction two parallel perfectly electric
conducting plates backed by a PML. So the original configuration is
turned into a closed waveguide whereas the PMLs provide free space
radiation conditions [5].
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In optics the diffraction gratings have been widely studied since
the fifties. The differential methods are based on the Floquet’s
expansion which is a generalized Fourier expansion. So it was very
natural to apply the technics developed for studying gratings to non-
periodic configurations by introducing PMLs [6]. Note that in this
formalism the only pseudo-periodic condition must be verified whereas
Dirichlet boundary conditions are imposed by the electric walls in the
waveguide approach. In addition non-orthogonal co-ordinate systems
can be successfully used in some gratings problems and then the
covariant form of Maxwell’s equations is really suitable [7].

The aim of this paper consists in computing the 2D Green’s
function in the so-called translation coordinates by using PMLs. Our
purpose is to present a method which is very easy to implement. In the
first section we introduce the tensorial covariant Maxwell’s equations
in which a change of metric is recognized as being equivalent to a
change of medium. This interpretation is used in the second section
to introduce PMLs in non-orthogonal coordinates. The third section
is devoted to the 2D Green’s function computation which is reduced
to a numerical eigenvalue problem.

2. COVARIANT EM, METRIC, AND PML

The vector space R
3 is identified to an affine space. At a point x

defined by its coordinates (x1, x2, x3) in a basis (e1, e2, e3), the time-
harmonic Maxwell’s equations with electrical sources are represented
in the covariant formulation

ξijk∂jHk = iωDi + J i, ξijk∂jEk = −iωBi i, j, k = 1, 2, 3, (1)

where ∂i = ∂
∂xi and ξijk denotes the Levi-Civita tensor. These

equations are written with the time convention eiωt and the Einstein’s
convention which are used throughout this paper. We emphasize
that the covariant equations do not depend on a metric contrary to
the constitutive relations. For example the contravariant components
Bi and Di are linked to the covariant components Hi and Ei in an
homogeneous isotropic medium by

Di = ε
√
ggijEj , Bi = µ

√
ggijHj , (2)

where gij denote the contravariant components of metric tensor which
are obtained by inverting the matrix constituted by the covariant
components gij(x1, x2, x3). It is very important to remark that the
relations Eq. (2) are also verified with the metric gij(x1, x2, x3) = δij
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and a medium whose magnetic and electric properties are characterized
by the tensors

εij(x1, x2, x3) = εΛij(x1, x2, x3), µij(x1, x2, x3) = µΛij(x1, x2, x3),
(3)

where

Λij(x1, x2, x3) =
√
ggij(x1, x2, x3). (4)

This medium exhibits the same behavior for the electric and the
magnetic fields since the only tensor Λ is sufficient for expressing the
constitutive relations. So the electromagnetic field expressed with a
metric g (gij �= δij) in an homogeneous medium is the same as an
electromagnetic field expressed with a Cartesian metric (gij = δij) in a
medium defined by the original metric g. More generally a change of
the metric can be considered as a change of medium. For example let
us consider a coordinate system (x1′, x2′, x3′) deduced from Cartesian
coordinates (x1, x2, x3) = (x, y, z):

Φ : (x1, x2, x3) = (x, y, z) → (x1′, x2′, x3′), (5)

with

x1′(x) =
∫ x

0
s1(x′)dx′, x2′(y) =

∫ y

0
s2(y′)dy′, x3′(z) =

∫ z

0
s3(z′)dz′.

(6)

The change of coordinates induces the metric

gi′j′(x1′, x2′, x3′) =
∂xi

∂xi′
∂xj

∂xj′ δij . (7)

Following the previous point of view we may associate the change of
metric and the material tensor deduced from Eq. (4) and Eq. (7):

Λ(x1, x2, x3) = Λ(x, y, z) =




s1(x)
s2(y)s3(z)

s2(y)
s1(x)s3(z)

s3(z)
s1(x)s2(y)



.

(8)

This tensor is the one which appears in the formalism proposed by
Sacks et al. [8]. The physical realizability of material characterized
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by Λ can be discussed but this is not necessary providing that
the computed fields inside the material are regarded as nonphysical.
The perfectly matched layer corresponds to complex valued functions
si. This case may be mathematically interpreted as the analytic
continuation of the metric to a complex metric.

Now assume the metric induced by the coordinate system
(x1′, x2′, x3′) to be given by g′ij(x

1′, x2′, x3′) = δij . Then the natural
vector basis (ei) of the system (x1, x2, x3) become:

ei =
∂xi′

∂xi
ei′ , (9)

with ||ei′ || = 1. The modified metric of the system (x1, x2, x3) is
defined as

g′ij(x
1, x2, x3) = g′ij(x, y, z) =


 s21(x)

s22(y)
s23(z)


 , (10)

and

√
g′g′ij(x1, x2, x3) =




s2(y)s3(z)
s1(x)

s1(x)s3(z)
s2(y)

s1(x)s2(y)
s3(z)



. (11)

Reporting Eq. (2) and Eq. (11) in Eq. (1) the covariant Maxwell’s
equations may be written as

ξijk∂jEk = −iωµsi+1si+2

si
Hi,

ξijk∂jHk = iωε
si+1si+2

si
Ei + J i, modulus 2, (12)

where i, j, k = x, y, z. The basis ei is no more normalized since
||ei||2 = s2i . The coordinate system is in fact the system (x, y, z) but
the metric has been modified.

3. PMLS IN A NON-ORTHOGONAL CURVILINEAR
COORDINATES SYSTEM

The previous scheme, introduced for a PML medium, can be briefly
recalled as follows:
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(i) a coordinate system (x1′, x2′, x3′) is deduced from the Cartesian
system (x1, x2, x3) = (x, y, z) by Φ (Eq. (6)):

Φ : gij(xi) = δij −→ gij(xi′), (13)

(ii) we consider the metric of this system to be equal the original one
i.e. g′ij(x

i′) = δij ,

(iii) by applying the inverse coordinate change we are led to a modified
metric for the system (x1, x2, x3)

Φ−1 : g′ij(x
i′) = δij −→ g′ij(x

i). (14)

The generalization of this scheme consists starting from any
coordinates system (x1, x2, x3) and proceeding with the same change
Φ as previously:

Φ : gij(xi) → gij(xi′),
Φ−1 : g′ij(x

i′) = gij(xi′) → g′ij(x
i).

(15)

Practically the g′ij(x
i′) can be directly deduced from the gij(xi) by

considering these as functions of xi′ instead of xi, then replacing ∂
∂xi

by ∂
∂xi′ and finally computing the g′ij(x

i) by means of Φ−1.

4. TRANSLATION COORDINATES

The so-called translation coordinate system [7] is defined from the
Cartesian system by

x1 = x,
x2 = y − a(x)
x3 = z,

(16)

where a(x) is a periodic function with period d. Eq. (16) yields the
natural metric

gij(x1, x2, x3) =




1 +
da

dx1

da

dx1

da

dx1
0

da

dx1
1 0

0 0 1


 . (17)



106 Plumey, Edee, and Granet

The metric g′ij(x
1′, x2′, x3′) is written by substituting x1′ for x1:

g′ij(x
1′, x2′, x3′) =




1 +
da

dx1′
da

dx1′
da

dx1′ 0

da

dx1′ 1 0

0 0 1


 . (18)

The modified metric of the system (x1, x2, x3) is obtained by means of
the coordinates change Φ−1:

g′ij(x
1, x2, x3) =

∂xk

∂xi

∂xl

∂xj
g′kl(x

1′, x2′, x3′). (19)

Eq. (6), Eq. (18) and Eq. (19) yield

g′ij(x
1, x2, x3) =



s1s1

(
1 +

da

dx1′
da

dx1′

)
s1s2

da

dx1′ 0

s1s2
da

dx1′ s2s2 0

0 0 s3s3


 , (20)

where da
dx1′ is considered as a function of x1.

5. 2D GREEN’S FUNCTION

For the purpose of this paper we assume s2 and s3 to be equal to one
and we simplify the notation by substituting s for s1. From Eq. (20)
we obtain

√
g′g′ij(x1, x2, x3) =




1
s

−ȧ 0

−ȧ s (1 + ȧȧ) 0
0 0 s


 . (21)

where

ȧ =
da

dx1′ (x
1)

We consider any problem which is invariant with the z = x3 direction
(∂3 = 0). In a domain without source (J i = 0) Eqs. (1) and (2) yield
the propagation equation written in the translation coordinate system[

1
s
∂1

1
s
∂1 −

(
1
s
∂1ȧ+ ȧ

1
s
∂1

)
∂2 + (1 + ȧȧ) ∂2

2 + ω2εµ

]
Ψ(x1, x2) = 0

(22)
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where Ψ holds for Ez or Hz. This equation can be obtained by
substituting the operator 1

s
1
∂1

for 1
∂1

in the equation obtained in
the original translation coordinate system Eq. (16). The second
order differential equation can be written as two first order coupled
equations:[

−i1
s
∂1ȧ− iȧ

1
s
∂1 1 + ȧȧ

1 0

]
i∂2

[
Ψ
Ψ̇

]
=

[ 1
s
∂1

1
s
∂1 + ω2εµ 0

0 1

] [
Ψ
Ψ̇

]
(23)

where Ψ̇ = i∂2Ψ. Since the functions ȧ and s depend on the only
x1 variable we may assume an exponential x2 dependence e−iβx2

and
replace the operator ∂2 by the −iβ coefficient. Assuming ȧ to be a
periodic function, the solutions may be approximated by expanding Ψ
into Fourier basis en(x1) = exp(−iαnx

1) where αn = n2πx1/d, n ∈ Z
and d is the period.

Ψ(x1, x2) = e−iβx2
∑

n

Ψn(β)en(x1). (24)

In Fourier space Eq. (23) yields the matrix equation[
−s−1αs−1α + ω2εµI 0

0 I

] [
Ψ
Ψ̇

]
=

β

[
−s−1αȧ − ȧs−1α I + ȧȧ

I 0

] [
Ψ
Ψ̇

]
(25)

where the bold symbols denote matrices. α is a diagonal matrix formed
by αn, s and ȧ are Toeplitz matrices whose the mn element is the
(m − n) Fourier coefficient of the corresponding function and s−1 is
the inverse matrix. Ψ and Ψ̇ are column vectors formed by the Fourier
coefficients of Ψ and Ψ̇ with respect to x1. So the Fourier expansion
results in a fully discrete spectrum of eigen modes

Ψq(x1, x2) = e−iβqx
2 ∑

n

Ψnqen(x1) (26)

where βq is an eigenvalue of Eq. (25) and Ψnq the Fourier coefficient of
the corresponding eigen function Ψq. In this way we can obtain a modal
expansion very suitable to calculate the radiated field of a periodic
electric source with the only condition that the period of the source
is the same as the period d of the function ȧ(x1). Numerically the
infinite matrices in Eq. (25) are necessary truncated. The eigenvalues
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can be divided into two sets. The first set, Σ−, contains the negative
real eigenvalues and the complex eigenvalues having positive imaginary
parts. The second set, Σ+, contains those with the opposite signs.

The 2D Green’s function G(x1, x2), periodic with respect to x1,
obeys the equation:[

1
s
∂1

1
s
∂1 −

(
1
s
∂1ȧ+ ȧ

1
s
∂1

)
∂2 + (1 + ȧȧ) ∂2

2 + ω2εµ

]
G(x1, x2)

= δ(x2 −X2)
∑

n

δ(x1 −X1 − nd) (27)

Since ∑
n

δ(x1 −X1 − nd) =
∑

n

1
d
e∗n(X1)en(x1), (28)

where the asterisk refers to the complex conjugate, the Green’s function
may be expanded in Fourier series

G(x1, x2) =
∑

n

Gn(x2)en(x1), (29)

and Eq. (27) can be converted into a matrix equation in Fourier space:

L[Gn(x2)] + M[∂2Gn(x2)] + N[∂2
2Gn(x2)] + ω2εµ[Gn(x2)]

= δ(x2 −X2)
1
d
[e∗n(X1)], (30)

with

L = −s−1αs−1α,

M = is−1αȧ + iȧs−1α,

N = I + ȧȧ.

From Eq. (26) the functions Gn(x2) may be written as a modal
expansion:

Gn(x2) =
∑

q

AqΨnqe
−iβqx

2
. (31)

In free space the radiation conditions in the x2 direction are enforced
by holding the set of eigenvalues Σ+ in the domain x2 > X2 and the
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set Σ− in the domain x2 < X2 Considering the derivative ∂2 within
the sense of distributions Eq. (30) yields the system of equations

M[G+
n (X2) −G−

n (X2)] + N[∂2G
+
n (X2) − ∂2G

−
n (X2)] =

1
d
[e∗n(X1)],

N[G+
n (X2) −G−

n (X2)] = 0, (32)

and

N[∂2G
+
n (X2) − ∂2G

−
n (X2)] =

1
d
[e∗n(X1)],[

G+
n (X2) −G−

n (X2)
]

= 0, (33)

which provides the numerical values of the coefficients Aq.

6. RESULTS

In this section, we provide numerical examples to illustrate the
effectiveness of our formulation. The first one deals with the radiation
of an electric current line source in free space. In that case it can be
shown that the exact solution for the electric field is given by:

Ez(x, y) = H2
0

(
k

(
(x−X1)2 + (y −X2)2

)1/2
)

(34)

where H2
0 is the zeroth order Hankel function of the second kind

and k the wave number. Fig. 1 illustrates the geometry of our
numerical experiment. In Eq. (16), we have used the function a(x) =

.5 ∗ h(1 + cos
2πx
d

) with h = λ , d = 10λ. The source is located at(
X1, X2

)
= (d/2,−λ/10). The PML function has been chosen to be

Figure 1. A line source below a sinusoidal coordinate line.



110 Plumey, Edee, and Granet

the most simple one :

s(x1) =




1 − iη if 0 < x1 < xm

1 if xm < x
1 < d− xm

1 − iη if d− xm < x
1 < d

(35)

with η = 1, 5 and xm = λ/10. Fig. 2 shows a comparison of the
imaginary part of the electric field at x2 = 0 obtained from the closed
form solution and from the modal solution. It is seen that agreement
is excellent even close to the source. The second example is for a line
source located at the focus of a parabola. The width of the parabola
is d = 15λ, and the focus is f = d/4. (see Fig. 3). Fig. 4 represents a
map of the total electric field.

Figure 2. Radiation of a line source on a sinusoidal line. The curve
represents the imaginary part of the zeroth order Hankel function of
the second kind as a function of x1 calculated at x2 = y − a(x). The
full line is for the closed-form solution and crosses inside circles are for
the modal solution. The geometry is that of Fig. 1 with X1 = .5d,
X2 = .1λ, d = 10λ, λ = 1.

Figure 3. A line source at the focus of perfectly conducting parabola.
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Figure 4. Modulus of the electric field radiated by a line source at the
focus of a parabola. The geometry is that of Fig. 3. The parameters
are: λ = .1, d = 15λ, f = d

4 .

7. CONCLUSION

In this paper we have introduced complex coordinate stretching in
the so-called translation coordinate system. We have computed the
2D free-space Green function using a numerical modal technic in
conjunction with Fourier expansions. Hence, as expected, we have
verified that complex coordinate stretching behaves as a radiation
condition in a general non orthogonal coordinate system. However, in
our opinion, the most interesting part of this preliminary work is the
fact that we have obtained a series expansion linked to any coordinate
system. Thus, when solving a given problem where radiation occurs,
we may choose the most convenient coordinate system. Moreover
the above approach can be extended to non homogeneous media in
a straightforward manner.
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