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SCATTERING OF INHOMOGENEOUS
TWO-DIMENSIONAL PERIODIC DIELECTRIC
GRATINGS

M. Khalaj-Amirhosseini
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Iran University of Science and Technology
Tehran, Iran

Abstract—A general method is proposed to frequency domain
analysis of inhomogeneous two-dimensional periodic gratings. Each
component of electromagnetic fields is expressed by several spatial
harmonic plane waves. Then, two differential equations are obtained
for the reflection and transmission matrices, using wave-splitting
approach. Solving these equations gives us the co- and cross-polarized
reflection and transmission coefficients. The method is studied using
some examples.

1. INTRODUCTION

Laterally periodic planar layers (gratings) are used in many areas such
as electromagnetics [1–3], integrated optics [4], electron beams [5],
holography and so on. On the other hand, inhomogeneous planar layers
are widely used in electromagnetics as optimum shields and filters and
so on [6, 7]. Therefore, many efforts have been done to analyze gratings
[1–3] and [8–10] or inhomogeneous planar layers [11, 12]. However, only
some efforts have been done to analyze simultaneously inhomogeneous
and periodic gratings, e.g., [13] for one-dimensional periodicity. The
subject of this paper is finding the scattering from an inhomogeneous
two-dimensional periodic grating, illuminated by a TM or TE polarized
electromagnetic plane wave. Each component of electromagnetic fields
is expressed by several spatial harmonic plane waves. Then, two
differential equations are obtained for the reflection and transmission
matrices, using wave-splitting approach. To solve these differential
equations, the inhomogeneous gratings are subdivided to several thin
homogeneous gratings (layers), at first. Then, total co- and cross-
polarized reflection and transmission coefficients are obtained using
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Figure 1. A typical grating illuminated by a plane wave.

finite difference method. The method is verified using analysis of some
special types of gratings.

2. THE WAVES OUTSIDE THE GRATINGS

Figure 1 shows a typical inhomogeneous two-dimensional periodic
dielectric grating with the thickness of d and periods of a and b. It
is assumed that the incident plane wave propagates obliquely towards
positive x, y and z direction with an angle of incidence ϕi and θi,
electric filed strength of Ei and the angular frequency of ω. The
incident wave consists of two different polarizations, TE and TM. Thus
we can write like as following

�Ei = Ei (αTE âTE + αTM âTM ) exp (−j(kx0x + ky0y + kz0z)) (1)

in which

kx0 = k0 sin θi cosϕi (2)
ky0 = k0 sin θi sinϕi (3)
kz0 = k0 cos θi (4)

where k0 = ω
√
µ0ε0 is the wave number in the free space. Also, αTE

and αTM are the weighting coefficients of TE and TM polarizations,
respectively, when 0 ≤ αTE , αTM ≤ 1 and α2

TE + α2
TM = 1.

Furthermore, âTE and âTM are the unit vectors related to TE and
TM polarizations, respectively, given by

âTE = − sinϕiâx + cosϕiây (5)
âTM = cos θi cosϕiâx + cos θi sinϕiây − sin θiâz (6)
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Regard to the periodicity of the geometry shown in Fig. 1, the electric
and magnetic fields are pseudo-periodic functions in x and y with a
period of a and b. One can use the following Fourier series expansion
for an arbitrary three-dimensional function F (x, y, z), which is periodic
with respect to x and y with a period of a and b, respectively.

F (x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

(F )m,n|
z=z

exp (−j(Umx + Vny)) (7)

(F )m,n|
z=z

=
1
ab

b/2∫
−b/2

a/2∫
−a/2

F (x, y, z) exp (j(Umx + Vny)) dxdy (8)

in which

Um =
2πm
a

(9)

Vn =
2πn
b

(10)

In fact, (F )m,n = (F )m,n(z) denotes the m,n-th Fourier coefficients of
F (x, y, z).

The electric and magnetic fields reflected or transmitted from
gratings, can be represented as �Fr = Frxâx + Fryây + Frzâz and
�Ft = Ftxâx + Ftyây + Ftzâz, respectively, where F represents E or H
(F = E,H). Each component of these fields are expressed by infinite
spatial harmonic plane waves, given by

Frw(x, y, z) =

[
m=∞∑

m=−∞

n=∞∑
n=−∞

(Frw)m,n exp (−j(Umx + Vny) + γm,nz)

]

exp (−j(kx0x + ky0y)) (11)

Ftw(x, y, z) =

[
m=∞∑

m=−∞

n=∞∑
n=−∞

(Ftw)m,n exp (−j(Umx + Vny)

−γm,n(z − d))
]
exp (−j(kx0x + ky0y)) (12)

where w represents x, y or z(w = x, y, z) and also

γm,n =




√
(kx)2m + (ky)2n − k2

0 = αm,n;

when k0 <
√

(kx)2m + (ky)2n

j
√
k2

0 − ((kx)2m + (ky)2n) = j(kz)m,n;

when k0 >
√

(kx)2m + (ky)2n

(13)
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in which

(kx)m = kx0 + Um (14)
(ky)n = ky0 + Vn (15)

are the transverse wave numbers. It should be noticed that in a
numerical computation, it is better to truncate the Fourier series
expansion of electromagnetic field components by setting

(F )m,n = 0 if |m| ≥ M or |n| ≥ N, (16)

where M and N are two positive integers. We use such a truncation
(−M ≤ m ≤ M,−N ≤ n ≤ N ) in the following sections.

3. THE WAVES INSIDE THE GRATINGS

In this section, the frequency domain equations of inhomogeneous
gratings are reviewed. From the Faraday and Ampere Laws, the
following six equations are obtained.

∂zEx = −jωµ0Hy + ∂xEz (17)
∂zEy = jωµ0Hx + ∂yEz (18)
∂zHx = jωε0εr(x, y, z)Ey + ∂xHz (19)
∂zHy = −jωε0εr(x, y, z)Ex + ∂yHz (20)

Ez =
1

jωε0
ε−1
r (x, y, z)(∂xHy − ∂yHx) (21)

Hz =
−1
jωµ0

(∂xEy − ∂yEx) (22)

The electric and magnetic fields inside the inhomogeneous gratings,
i.e., �F = Fxâx + Fyây + Fzâz where (F = E,H and w = x, y, z), can
be written as follows

Fw(x, y, z) =

[
m=∞∑

m=−∞

n=∞∑
n=−∞

(Fw)m,n exp (−j(Umx + Vny))

]

exp (−j(kx0x + ky0y)) (23)

Using the Fourier series expansion of the field components and that of
the permittivity functions in (17)–(22), the following matrix equations
are obtained for the Fourier coefficients of the fields.

d

dz

[
e
h

]
= W(z)

[
e
h

]
(24)
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where e = [ex ey]T and h = [hx hy]T , are the electric and magnetic
fields vectors, respectively, in which

fw(z) = [(Fw)−M,−N (Fw)−M,−N+1 · · · (Fw)−M,N · · · (Fw)0,0

· · · (Fw)M,−N (Fw)M,−N+1 · · · (Fw)M,N ]T (25)

(f = e,h and w = x, y) represents the Fourier coefficients of the electric
and magnetic field components. Also, W(z) is a matrix as follows

W(z) =




0 0 W1(z) W2(z)
0 0 W3(z) W4(z)

W5 W6(z) 0 0
W7(z) W8 0 0


 (26)

in which eight (2M +1)×(2N +1) by (2M +1)×(2N +1) sub-matrices
have been defined as the following

W1(z) =
−j

ωε0
KxQ(z)Ky (27)

W2(z) = −jωµ0I +
j

ωε0
KxQ(z)Kx (28)

W3(z) = jωµ0I −
j

ωε0
KyQ(z)Ky (29)

W4(z) =
j

ωε0
KyQ(z)Kx (30)

W5 =
j

ωµ0
KxKy (31)

W6(z) = jωε0P(z) − j

ωµ0
KxKx (32)

W7(z) = −jωε0P(z) +
j

ωµ0
KyKy (33)

W8 = − j

ωµ0
KyKx (34)

In (27)–(34), I is an identity matrix and also

P(m,n, z) = (εr)m−m′,n−n′(z) (35)

and
Q(m,n, z) = (ε−1

r )m−m′,n−n′(z) (36)
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(m,m′ = −M, . . . ,M and n, n′ = −N, . . . , N) are the convolution
matrices associated with εr(z) and ε−1

r (z), respectively. Also,

Kx = diag ([(kx)−M · · · (kx)−M · · · · · · (kx)0 · · · (kx)0
· · · · · · (kx)M · · · (kx)M ]) (37)

Ky = diag ([(ky)−N · · · (ky)0 · · · (ky)N · · · · · · (ky)−N

· · · (ky)0 · · · (ky)N ]) (38)

are diagonal matrices containing the transverse wave numbers. One
sees that (24) is a problem with two-point boundary conditions for
gratings and hence is difficult to solve.

4. ANALYSIS OF GRATINGS USING WAVE-SPLITTING
APPROACH

In this section, the scattering from inhomogeneous two-dimensional
periodic gratings is determined. For this purpose, the vacuum wave-
splitting approach [13] is used. This approach changes the problem
with two-point boundary conditions to a problem with one-point
boundary conditions. In this approach, the transverse electric and
magnetic fields are mapped to forward and backward transverse fields
in outside the gratings (vacuum region). One can see that this mapping
may be done as follows [

e+

e−

]
= A

[
e
h

]
(39)

where e+ = [e+
TM e+

TE ]T and e− = [e−TM e−TE ]T are the forward and
backward transverse fields vectors, respectively, in which both TM and
TE modes are existed. Also, A is a matrix as follows

A =
1
2




C S −ZTMS ZTMC
−S C −ZTEC −ZTES
C S ZTMS −ZTMC
−S C ZTEC ZTES


 (40)

in which

C = diag [cos(ϕ−M,−N ) · · · cos(ϕM,N )] (41)
S = diag [sin(ϕ−M,−N ) · · · sin(ϕM,N )] (42)

ZTM = η0diag [cos(θ−M,−N ) · · · cos(θM,N )] (43)

ZTE = η0diag
[
cos−1(θ−M,−N ) · · · cos−1(θM,N )

]
(44)
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are four diagonal matrices. In (41)–(44), the following functions have
been used

cos(ϕm,n) =
(kx)m√

(kx)2m + (ky)2n
(45)

sin(ϕm,n) =
(ky)n√

(kx)2m + (ky)2n
(46)

cos(θm,n) =




√
k2

0 − (kx)2m − (ky)2n
k0

; when k0>
√

(kx)2m + (ky)2n

−j

√
(kx)2m + (ky)2n − k2

0

k0
; when k0<

√
(kx)2m + (ky)2n

(47)

Using (39) and (24), the differential equation for forward and backward
waves is obtained as

d

dz

[
e+

e−

]
= B(z)

[
e
h

]
(48)

where
B(z) = AW(z)A−1 =

[
B11 B12

B21 B22

]
(49)

Now, the transverse reflection and transmission coefficient matrices are
defined, respectively as follows

e−(z) = Γt(z)e+(z) (50)
e(d+) = Tt(z)e+(z) (51)

Indeed, Γt(0) and Tt(0) are the reflection and transmission matrices,
respectively for transverse electromagnetic fields on two main surfaces
of grating. Differentiating (50)–(51) and using (48)–(49), yields the
following differential equations.

dΓt(z)
dz

= B21(z)+B22(z)Γt(z)−Γt(z)B11(z)−Γt(z)B12(z)Γt(z) (52)

dTt(z)
dz

= −Tt(z)B11(z) − Tt(z)B12(z)Γt(z) (53)

The above differential equations can be solved numerically. First, the
inhomogeneous grating is subdivided to K thin homogeneous gratings,
whose thickness is very smaller than the wavelength. Then, the
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backward difference approximation is used to descritize (52)–(53). The
following boundary conditions have to be used to solve the resulted
difference equations step-by-step from z = d to z = 0.

Γt(d) =

{
0; for open-end gratings
−I; for short-end gratings

(54)

Tt(d) =

{
I; for open-end gratings
0; for short-end gratings

(55)

In (54)–(55), we have considered two types of application for gratings
calling them as open-end (as shown in Fig. 1) and short-end (coated
by a perfect electric conductor) gratings. The short-end gratings can
be utilized as the walls of anechoic chambers.

After determining Γt(0) and Tt(0), the complete (not transverse)
reflection and transmission coefficient matrices are obtained as follows

Γ =

[
ΓTM,TM ΓTM,TE

ΓTE,TM ΓTE,TE

]
=

[
D−1 0
0 I

]
Γt(0)

[
D 0
0 I

]
(56)

T =

[
TTM,TM TTM,TE

TTE,TM TTE,TE

]
=

[
D−1 0
0 I

]
Tt(0)

[
D 0
0 I

]
(57)

where

D = diag [cos(θ−M,−N ) · · · cos(θM,N )] (58)

Of course, only two columns of matrices Γ and T corresponding
to scattering due to fundamental spatial harmonic incidence, i.e.,
m = n = 0, are our interesting.

5. EXAMPLES AND RESULTS

In this section, two special types of inhomogeneous planar layers are
analyzed using the presented method.

Type 1: (Homogeneous Planar Layer)

Consider a homogeneous planar layer with the following parameter

εr(x, y, z) = εr0 (59)

The Fourier coefficients of the permittivity functions of this type of
planar layer will be as follows

(ε±1
r )m,n = ε±1

r0 δ(m)δ(n) (60)
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Figure 2. The amplitude of the reflection and transmission coefficients
of open-end homogeneous planar layer versus θi.

It is simple to show that the solution is independent to the parameters
a, b,M and N for this type of planar layers.

Now, consider a homogeneous planar layer with parameters of
εr0 = 2 − j1 and d = 5 cm. Figure 2, compares the amplitude of
the reflection and transmission coefficients of open-end layer versus θi

for f = 1.0 GHz and ϕi = 0◦, obtained from the exact solution and
from the presented method with K = 10, 20 and 50. One sees a good
agreement between the exact solutions and the solutions obtained from
the proposed method. It is seen and also evident that, as the number
of thin layers, K, increases the accuracy of the obtained solutions
increases. The better accuracy for larger angles of incidence, may
be due to larger wavelength along the thickness of the layer for these
angles (λz = λ/ cos θi, in which λ is the wavelength in the layer).

Type 2: (Wedge Grating)

Consider a dielectric wedge grating with the following parameter for
|x| < a/2 and |y| < b/2

εr(x, y, z) =


 εr0 |x| < a

2d
z and |y| < b

2d
z

1 otherwise
(61)

The Fourier coefficients of the permittivity functions of this type of
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Figure 3. The amplitude of the co-polarized reflection and
transmission coefficients of open-end wedge grating versus θi.

planar layer will be as follows

(ε±1
r )m,n =




ε±1
r0 − 1
π2mn

sin(mπz/d) sin(nπz/d); m, n �= 0

ε±1
r0 − 1
πn

(z/d) sin(nπz/d); m = 0, n �= 0

ε±1
r0 − 1
πm

(z/d) sin(mπz/d); m �= 0, n = 0

1 +
(
ε±1
r0 − 1

)
(z/d)2; m = n = 0

(62)

Now, assume that εr0 = 2 − j1, a = b = d = 5 cm and f = 1.0 GHz.
With these assumptions, only the fundamental spatial harmonic wave,
i.e., m = n = 0, is not evanescent. Figure 3 shows the amplitude
of the co-polarized reflection and transmission coefficients of open-
end grating for fundamental spatial harmonic versus θi, assuming
ϕi = 0◦, K = 50 and M = N = 0, 1, 2 and 5. Figure 4 shows the
amplitude of the cross-polarized reflection and transmission coefficients
of open-end grating for fundamental spatial harmonic, also. Moreover,
Figure 5 plots the amplitude of the co-polarized reflection coefficient
of short-end grating for fundamental spatial harmonic versus θi. One
sees in Figs. 3 and 5 reasonable curves and finds a good convergence
with respect to increasing M and N , especially for larger angles of
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Figure 4. The amplitude of the cross-polarized reflection and
transmission coefficients of open-end wedge grating versus θi.

 
 

Figure 5. The amplitude of the co-polarized reflection coefficient of
short-end wedge grating versus θi.
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incidence (as before with respect to increasing K). So, it may be
concluded that as the thickness or the periods of gratings (with respect
to the wavelength) increase, the necessary parameters K or M and N
increase, respectively.

6. CONCLUSION

A general and efficient method is proposed to frequency domain
analysis of inhomogeneous two-dimensional periodic gratings. Each
component of electromagnetic fields is expressed by several spatial
harmonic plane waves. Then, two differential equations are obtained
for the reflection and transmission matrices, using wave-splitting
approach. To solve these differential equations, the inhomogeneous
gratings are subdivided to several thin homogeneous gratings (layers),
at first. Then total co- and cross- polarized reflection and transmission
coefficients are obtained using finite difference method. It concluded
that as the thickness or the periods of gratings (with respect to the
wavelength) increase, the necessary number of thin layers and spatial
harmonics increase, respectively.
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