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Abstract—In this paper, the independence, completeness of
Maxwell’s equations and uniqueness theorems in electromagnetics
are reviewed. It is shown that the four Maxwell’s equations are
independent and complete. A complete uniqueness theorem is
proposed and proven for the first time by pointing out logic mistakes
in the existing proof and presenting a truth table. Therefore,
electrostatics and magnetostatics can be reduced from dynamical
electromagnetics in all aspects including not only the equations as
subsets of Maxwell’s equations but also the corresponding uniqueness
theorems. It is concluded that the axiomatic system of electromagnetic
theory must consist of all four Maxwell’s equations.

1. INTRODUCTION

In each discipline, we always try to identify the smallest, most compact
set of laws or equations that could define the subject completely. This
is the axiomatic system of the matter. The axiomatic laws are general
physics laws that are not directly related to any particular cases such
as specific material properties etc. The laws are independent when
none of them can be deduced from others. The system is complete
when no other laws are needed to describe the subject in any case
other than the problem-related conditions. All other observations can
be mathematically deduced, explained and solved based on those laws
consistently and systematically. Although the laws in the axiomatic
system must be abstracted from many observations (experiments in
physics), they mean much more than any individual observation.
They must be also compatible, not contradictory to each other. In
mechanics, we have the great Newton’s three laws. Correspondingly
† Currently with Agere Systems Inc.
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James Clerk Maxwell established Maxwell’s equations in his famous
treatise [1, Vols.1, 2] in electromagnetics. Unfortunately, it is widely
accepted that only two of the Maxwell’s equations are independent in
electromagnetics. This issue will be reviewed in details from different
angles in this paper. Several typical reasonings are commented. It is
shown that all four of Maxwell’s equations are actually independent.
Without any of them, the system is incomplete.

It is noticed that the uniqueness theorems in electrostatics
and magnetostatics are not consistent. The uniqueness theorem in
electrostatics requires the normal components of electric fields on the
boundary, and the uniqueness theorem in magnetostatics requires the
tangential components of magnetic fields [2]. However, they satisfy
the same mathematical equations with special sources according to
the existing uniqueness theorem of a vector function [3]. Notice
that the above two uniqueness theorems can not be reduced from
that of electrodynamics (time-varying case). On the other hand,
the equations of electrostatics and magnetostatics are considered
as special cases of electrodynamics when ∂

∂t = 0. Actually, the
unification of electrostatics, magnetostatics and electrodynamics is a
great contribution of J. C. Maxwell.

The existing uniqueness theorems of static and dynamic theories
are also inconsistent. For example, in electrostatics normal components
of electric field on the boundary are required; in magnetostatics
tangential components of magnetic field are needed; however, in time-
varying case, only tangential component of electric field or magnetic
field are necessary [2, Sects. 3.20, 4.17 and 9.2]. Obviously, this is
illogical.

In order to resolve the above theoretical difficulties consistently, let
us review some existing conclusions that are widely accepted. In this
paper, we will investigate some fundamental problems by analyzing
the independence, uniqueness theorem and completeness of Maxwell’s
equations. A complete uniqueness theorem will be proven and all the
above concerns can then be consistently explained.

2. INDEPENDENCE OF MAXWELL’S EQUATIONS

In modern notations due to Heinrich Hertz and Oliver Heaviside,
Maxwell’s equations are written as the following differential equations
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[4, 5]:

∇× E(r, t) = − ∂

∂t
B(r, t) (1a)

∇× H(r, t) =
∂

∂t
D(r, t) + J(r, t) (1b)

∇ · D(r, t) = ρ(r, t) (1c)
∇ · B(r, t) = 0 (1d)

where E is the electric (field) intensity, H the magnetic (field) intensity,
D the electric displacement (or electric flux intensity), B the magnetic
induction (or magnetic flux intensity). (1a) is based on Faraday’s
experiment (1825), (1b) is Ampère’s law which is based on Biot-Savart
experiment (1826) and Maxwell’s great contribution — displacement
current (1890) after 64 years. The last two equations are Gauss’s laws
based on Coulumb’s type experiments (1785).

In terms of electric and magnetic fields, the above four field
equations are the complete Maxwell’s equations [6]. They are based
on carefully selected independent experiments. We can not derive or
substitute one by others. Readers who are interested in the history
can consult [7, 8] or other physics textbooks. Some existing laws
become natural consequences. For example, the empirical law of the
conservation of electric charge.

∇ · J(r, t) +
∂ρ(r, t)
∂t

= 0 (2)

is a consequence of (1b) by taking divergence of (1b) and substituting
(1c) into it. In fact, J. C. Maxwell was motivated by (2) when
he introduced the great term ∂D

∂t in (1b) [8] etc. Kirchhoff’s laws
become consequences of (1a) and (1b), etc. [9]. Unfortunately, in most
existing (advanced) textbooks and literature about electromagnetic
theory, it is widely accepted that Maxwell’s equations (1a)–(1d) are
not independent of one another [2, 4, 5, 10–19]. [20, p. 5] considers (1c)
as the definition of ρ(r, t). This is incorrect. We already have the
definition of electric charges, then ρ(r, t) can be defined directly based
on charges. (1c) is essentially an experimental discovery.

The most popular statement is proposed in [2] and [20] etc. The
authors referred “Maxwell’s equations” to the curl equations (1a) and
(1b) only, then “derived” the divergence (1c) and (1d) equations.
Similar descriptions can be found in some books of mathematical
physics as well [21, p. 603]. J. A. Stratton was probably the first
person who tried to start from (1a) and (1b) to establish axiomatic
electromagnetic theory. His famous book [2] has become a standard
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reference. Typical reasoning is given in section 1.3 of [2] or in section
1.5 of [19], it says taking divergence of (1a)

∇ · ∂B(r, t)
∂t

=
∂

∂t
∇ · B(r, t) = 0 (3)

from which

∇ · B(r, t) = c1(r), independent of t only! (4)

Since whatever EM field is identically zero before an initial instant,
we can conclude that the constant in (4) is zero, which results in
(1d). Note that Maxwell’s equations govern electromagnetic behaviors
at everywhere in the universe. We can not conclude or prove
mathematically that the EM field is identically zero at an initial instant
at every point in the universe.

Another reasoning is described in books such as [17, p. 2] which
says, “Such a constant, if not zero, then implies the existence of
magnetic monopoles similar to free electric charges. Since magnetic
monopoles have not been found to exist, this constant must be zero.”
Obviously, a basic assumption that “magnetic monopoles do not exist”
is employed. This assumption can not be proven mathematically from
(3), it can only be verified by experiments. And also this assumption
itself is (1d) in words, which means we do not need to derive it from
(1a) at all. In fact, some physicists conjecture the existence of magnetic
monopoles based on the beauty of symmetry. In this case, we need to
modify Maxwell’s equations. But the number of equations stays the
same. Furthermore, the c1(r) in (4) still cannot be mathematically
proven to be necessarily the density of magnetic monopoles. This is
similar to the charge divergence equation as described later. None of
them can be derived from others [9]. Therefore, (1d) is independent of
(1a). Of course, (1d) is compatible with (1a) since zero is one of many
possibilities.

Similarly (1c) is the mathematical expression of the experimental
fact that flux of D through a closed surface equals the electric source.
The popular “derivation” is the following.

Taking divergence of (1b) yields

∂∇ · D(r, t)
∂t

+ ∇ · J(r, t) = 0 (5)

Then using the charge continuity equation (2), we arrive at

∂

∂t
(∇ · D − ρ) = 0 (6)
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Since the field is zero at the initial instant [2, 17], (1c) holds.
But from (6), mathematically we can have only

(∇ · D − ρ) = c2(r) (7)

It is independent of time only, not really a constant. c2(r) can
be determined to be zero by experiments only. The experiment is
Coulumb’s experiment (1785) or Cavendish’s experiment (1773) which
leads to just (1c), Gauss’s law itself [7].

The above “derivation/reasoning” is an improper logical circle.
For example, (2) can be derived from (1b) and (1c) by substituting (1c)
into (5), but (1c) cannot be derived from (2) and (1c) without using(1c)
(implicitly by assuming initial conditions) to conclude c2(r) = 0.
Obviously, it is not good to choose (2) to be one of the fundamental
equations in axiomatic electromagnetic theory. Of course, charge
conservation is recognized as a fundamental belief in physics, Maxwell’s
equations must be compatible with it. This is the way how Maxwell
introduced the milestone concept — displacement current. Maxwell’s
equations include much more information than (2). (2) becomes
a natural conclusion in Maxwell’s system after the introduction
of displacement current. A comparable example can be found in
Newton’s mechanism systems. Once the first, second and third
laws are established (based on many discoveries), the conservation of
momentum is one of many important deductions,etc.

One more point we should point out is that if only (1a) and (1b)
are independent, static problems cannot be included in the theoretical
frame properly. W. C. Chew wrote in [4, p. 2] “For static problems
where ∂

∂t = 0, the electric field and magnetic field are decoupled. In
this case, Equations (3) and (4) (i.e., (1c) and (1d)) cannot be derived
from Equations (1) and (2) (i.e,(1a) and (1b)). Then, the electric
field equations (1) and (4) are to be solved independently from the
magnetic field equations (2) and (3).” This explanation indicates a
logic drawback if only (1a) and (1b) are independent. It is expected
that static theory must be reduced cases (subsets) of dynamic theory
when ∂

∂t → 0 (practically).
Consequently, the four Maxwell’s equations (1a)–(1d) are

independent and compatible (not contradictory one another), the
divergence equation of B (1d) is compatible with the curl equation
of E (1a), and the divergence equation of D (1c) is compatible with
the curl equation of H (1b). We can not derive mathematically any one
of them from others without introducing additional assumption that
is usually one of Maxwell’s equations, or without falling into improper
logical circles. This conclusion will be used in the next section.
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3. COMPLETENESS AND UNIQUENESS THEOREM OF
MAXWELL’S EQUATIONS

It is expected that if a set of equations is complete, the solutions are
uniquely determined by all the equations with the particular properties
and conditions of the case under study. About electromagnetic fields,
physicists have been believing that J. A. Maxwell already established
the complete electrodynamic theory — Maxwell’s equations. Maxwell’s
equations completely determine the electromagnetic fields, and are
the fundamental equations of the theory of such as electromagnetics
[6, 8, 22]. In theoretical aspects, if Maxwell’s equations are complete,
all important electromagnetic theorems and principles like Poynting
theorem, duality theorem, reciprocity theorem etc. [4, 23] are
important corollaries of Maxwell’s equations, which means they can
be derived from Maxwell’s equations without additional equations
or assumptions. None of them can substitute Maxwell’s equations
themselves as postulates of electrodynamics.

As we discussed in the previous section, Maxwell’s equations
(1a)–(1d) are independent and compatible. Now we may ask: are
they complete? The answer is, as general physical laws, they are
complete; however, they are not complete to uniquely determine fields
in particular cases. Constitutive equations are needed. Although
constitutive equations are not general physics laws, they are needed for
two reasons. The physical reason is that constitutive relations reflect
medium polarizations that are related to the case under study. This
is an important topic in solid physics [8]. They are independent of
Maxwell’s equations.

Let us discuss the mathematical reasons. The existing reasons
are questionable. For example, in [24, p. 3], the author claims “The
necessity of using constitutive relations to supplement the Maxwell’s
equations is clear from the following mathematical observations. There
are a total of 12 (= 3 × 4) scalar unknowns for the four field
vectors E, H, B, and D. As we have learned (3) and (4) are not
independent equations; they can be derived from (1), (2) and (5). The
independent equations are (1) and (2), which constitute six (3 × 2)
scalar equations. Thus we need six more scalar equations. These are
the constitutive relations.” Although J. D. Jackson indicated that
the four Maxwell’s equations provide a complete description of the
classical electromagnetics [8, p. 239], he gave a similar reason for the
necessity of constitutive equations. In his argument, there are 14 (8
from Maxwell’s equations +6 from two constitutive equations) scalar
equations, but only 12 variables [8, p. 14]. The numbers do not match.
Similar statements can be found in [2, Sec. 1.5] [4, p. 5] and many other
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references. Obviously, the above mathematical observations are based
on our knowledge about solutions to a set of linear algebra equations,
the Cramer’s rule: N linear algebra equations of N unknowns can
determine these N unknowns uniquely if the determinant is nonzero
[26, Sec. 1.9–2] [27]. Although this is true for linear algebra equations,
it has not been shown that it is applicable to vector differential equation
systems. However we strongly believe it is true in any case. A
contradictory example is the uniqueness theorem of a vector function
discussed in [3, p. 92–97], which reads: “A vector is uniquely specified
by giving its divergence and its curl within a region and its normal
component over the boundary.” Mathematically

∇ · F(r) = s (8a)
∇× F(r) = c (8b)

and the boundary conditions determine F uniquely. There are 4 scalar
equations, but only 3 scalar unknowns. We should not be confused
by some techniques used in electrostatics that are related to the above
theorem. The above equations are converted into Possion’s equation
by introducing a scalar potential. In many cases, we solve the field by
solving potentials. However, the introduction of potential relies on the
curl equation. Implicitly, the same number (4 in this case) of scalar
equations is still used in term of F(r).

The essential idea behind the above discussions is the correspond-
ing uniqueness theorem, rather than the number of equations. In this
sense, the expression about N linear algebra equations should be prob-
ably considered as the first uniqueness theorem in science. Various
uniqueness theorems in mathematics are discussed in [28] for scalar
differential equations and in [29] for vector differential equations in
electricity.

In electromagnetics, the uniqueness theorem of a vector function
implies four special cases [11, p. 63]. They are also special cases of
Maxwell’s equations: static or decoupled. Most textbooks discussed
the third case in [11, p. 63]) as electrostatics and the second case as
magnetostatics. In the proof of the uniqueness theorem of a vector
function both divergence and curl equations are used explicitly. In the
above cases, constitutive relations are needed if they are considered
as reduced cases of Maxwell’s equations. Based on the uniqueness
theorem, we can solve the equations via any expedient means.

For time-varying electromagnetic fields, the uniqueness theorem
is given in many textbooks [2, Sec. 9.1.2] in time domain, [4, Sec. 1.5.2]
[23, Sec. 7.3] [10, Sec. 372] [17] in frequency domain, [19, Sec. 3.3] in
both domains. The proofs are essentially based on the Poynting
theorem of the difference fields, or more generally, the so-called method
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of energy integrals [21]. Note that in the proofs, only the two curl
equations of Maxwell’s equations are used, which means fields can be
solved uniquely only by solving the two curl equations. If this is true,
the two divergence equations (even the charge continuity equation) are
not fundamental equations. At least they should be derivable from the
two curl equations, only the two curl equations are independent. As
some authors claimed “... we need only work with the first two ...” [4,
p. 5]. But this is even contradictory to the existing statement “only
three of (1a)–(2) are independent, since (2) is not used in the proof”
[2]. However, we already show that (1a)–(1d) are independent from
the physical and mathematical point of views. What is the problem?

Let us review the proof of the uniqueness theorem for time-
varying electromagnetic fields. According to [21], the method of
energy integrals was first introduced into electromagnetic theory by
A. Rubinowicz [25], then cited by others.

The original method of energy integrals was developed for wave
equations in mechanics/acoustics or the so-called hyperbolic type
differential equations [21]. For example, for the two-dimensional wave
equation

L(u) = utt − uxx − uyy = 0 (9)

we can transfer (9) into the following identity

2utL(u) = −2(utux)x − 2(utuy)y + (u2
x)t + (u2

y)t + (u2
t )t = 0 (10)

then prove the uniqueness theorem by integrating it. See the details in
[21, p. 644–646]. The above transformation is identical if ut is nonzero
or nonsingular. Note that the starting equation (9) is inherently
a second order differential equation based on the physical equation,
Newton’s second law [30, p. 791 and p. 827]. However, the physical
laws in electromagnetics, Maxwell’s equation (1a)–(1d) are inherently
first order differential equations. There are two ways to apply the
method of energy integral to electromagnetics.

First, we can recognize Maxwell’s equations as wave equations
[4, Sec. 1.5.2]. R. Courant claimed in [21, p. 178] that “Maxwell’s
system of differential equations is essentially hyperbolic” based on
the characteristic form of the two curl equations. In this method,
we take the risk of extending solution sets since we derived the wave
equations (Helmholtz’s equation) by taking divergence of the original
curl equations (1a) and (1b). It is easy to show that differentiating
equations may extend solution space. As a consequence, we will need
to impose all the original Maxwell (four) equations on the solutions.
Maxwell’s equations are not pure hyperbolic.
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The existing uniqueness theorem of electrodynamics is typically
stated as [2, p. 487] “An electromagnetic field is uniquely determined
within a bounded region V at all time t > 0 by the initial values
of electric and magnetic vectors throughout V , and the values of
the tangential component of the electric vector (or of the magnetic
vector) over the boundaries for t ≥ 0.” The most popular proof of the
uniqueness theorem in electromagnetics is based on Poynting identity
of the difference fields. For simplicity, we discuss the time domain case
in which the constitutive equations are

D(r, t) = ε(r) · E(r, t) (11a)
B(r, t) = µ(r) · H(r, t) (11b)

where ε(r) and µ(r) are 3× 3 tensors (rank of 2), independent of time
(stationary). Substituting (11) into (1a) and (1b), we have two curl
equations about E and H. In order to comment on the existing proof,
let us summarize it. According to the reduction to absurdity (proof by
contradiction), usually we assume the current source J is given, there
are two different solutions, then the differences

e(r, t) = E2(r, t) − E1(r, t) �≡ 0 (12a)
h(r, t) = H2(r, t) − H1(r, t) �≡ 0 (12b)

satisfy

∇× e(r, t) = − ∂

∂t
[µ(r) · h(r, t)] (13a)

∇× h(r, t) =
∂

∂t
[ε(r) · e(r, t)] (13b)

Dot multiplying (13a) with h, and (13b) with e, then subtracting the
first result from the second, we have

∇ · (e × h) = −1
2
∂

∂t
(h · µ · h + e · ε · e) (14)

Integrating in the volume V bounded by surface S yields∫
S
(e × h) · n̂dS = −1

2
∂

∂t

∫
V

(h · µ · h + e · ε · e) dV (15)

Since at the initial time t0, the fields are given, for t ≤ t0, e = 0 and
h = 0, integrating again respect to time yields∫ t

t0

dt

∫
S
(e × h) · n̂dS +

1
2

∫
V

(e · ε · e) dV +
1
2

∫
V

(h · µ · h) dV = 0

(16)
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We are posing boundary conditions on S. Only the first integral is
related to S. If at any time on S

(e × h) · n̂ ≡ 0 (17)

In terms of boundary conditions, we have chosen

n̂× e = 0, on some parts of S (18a)
n̂× h = 0, on the rest parts of S (18b)

we have ∫
V

(e · ε · e) dV +
∫

V
(h · µ · h) dV = 0 (19)

They are the simplest conditions satisfying (17). For physical
materials, ε and µ must be positive definite since the introduction of
dielectrics increases the stored energy in the same region. The integrals
in (19) are associated with the energy (even not exactly [2]), expressed
in independent variables e and h, they must be non-negative definite,
thus they equal zeros, which lead to

e = 0 (20a)
h = 0 (20b)

(20a) and (20b) are contradictory to the assumptions (12a) and (12b).
We concluded that the uniqueness theorem is proved.

From the discussions about independence in Section 2, the
above proof and then the given uniqueness theorem is physically,
mathematically and logically questionable. Now, we can question
the proof at least in two aspects. First, only the curl equations are
used. If the four Maxwell’s equations are independent, this theorem
must be incomplete. Second, in order to satisfy (17), there are other
choices. The existing choices (18a) and (18b) are contradictory to the
uniqueness because they imply that the normal components can be
undetermined. Logically and most importantly, the method of proof
by contradiction has been misused in this case. In many cases, the
method of contradiction involves only one statement or variable. The
basic structure is that if we want to prove “If A, then B”, we work on
it by assuming that A and NOT B are true [31]. Here B is usually
a single judgment that involves one variable in mathematics. The
contradiction method is successfully applied to the proofs of many
uniqueness theorems [3, 21, 29] where only a single scalar or vector
unknown is involved. However, there are two vector unknowns e and
h in (13). By logics [32], we have a truth table as follows.
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Table 1. Truth table of e and h.

Cases e ≡ 0 h ≡ 0 e ≡ 0 ∧ h ≡ 0 Explanations

1 T T T Both E and H are unique

2 T F F E is unique, but not H

3 F T F H is unique, but not E

4 F F F Both E and H are not unique

If we want to show that Case 1 in the truth table is true, we have
to negate all other three cases. Unfortunately, in the existing proof
of the uniqueness theorem of electromagnetics, only Case 4 (implied
in the assumption (12)) is negated as the contradiction of Case 1.
However, Case 2, Case 3 and Case 4 are all contradictory (fields are
not unique) to Case 1 (fields are unique). Thus, the proof is logically
incomplete. We will show in the next section that if (1a)–(1d) are
considered together with constitutive equations (11a) and (11b), a
complete uniqueness theorem can be proved without any physical,
mathematical and logical doubts.

4. A COMPLETE UNIQUENESS THEOREM

Based on the above discussions about the independence, completeness
and uniqueness theorem of Maxwell’s equations, a complete uniqueness
theorem is presented and proved in this section.
Theorem 1 An electromagnetic field is uniquely determined within a
bounded region V at all time t > 0 by the initial values of electric and
magnetic vectors throughout V , and the values (both tangential and
normal components) of the electric vector and of the magnetic vector
over the boundaries for t ≥ 0. In equations, considering the constitutive
equations (11a) and (11b), the solution to

∇× E(r, t) = − ∂

∂t
[µ · H(r, t)] (21a)

∇× H(r, t) =
∂

∂t
[ε · E(r, t)] + J(r, t) (21b)

∇ · [ε · E(r, t)] = ρ(r, t) (21c)
∇ · [µ · H(r, t)] = 0 (21d)

E(r, t)|r on S; t≥0 = E0(r, t)|r on S; t≥0 (21e)

H(r, t)|r on S; t≥0 = H0(r, t)|r on S; t≥0 (21f)
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is unique, provided the existence [33] and the initial values in V are
given.

Proof. In order to consider the truth Table 1, we need to combine two
logic methods, proof by contradiction and exclusive case [32], instead
of proof by contradiction only. All four cases have to be considered by
using the method of exclusive cases. When we negate Cases 2, 3 and
4, we have to use the method of proof by contradiction.

Assuming the difference fields are e(r, t) and h(r, t), we have from
(21)

∇× e(r, t) = − ∂

∂t
[µ · h(r, t)] (22a)

∇× h(r, t) =
∂

∂t
[ε · e(r, t)] (22b)

∇ · [ε · e(r, t)] = 0 (22c)
∇ · [µ · h(r, t)] = 0 (22d)

e(r, t)|r on S; t≥0 = 0 (22e)

h(r, t)|r on S; t≥0 = 0 (22f)

Let us negate Cases 2, 3 and 4 in the truth table one by one.
Case 2: Assume

e(r, t) ≡ 0 and h(r, t) �≡ 0 (23)

In this case, the original proof (for case 4) is invalid since e(r, t) ≡ 0.
An equation cannot be multiplied by constant 0. (23) is interpreted
as: the electric field is unique, but not the magnetic field. Then the
electromagnetic field is not unique. Substituting (23) into (22) yields

µ · h(r, t) = b(r) (24a)
∇× h(r, t) = 0 (24b)

∇ · [µ · h(r, t)] = 0 (24c)
h(r, t)|r on S; t≥0 = 0 (24d)

(22c) and (22e) are identities. (24a) shows that under the assumption
of (23), the difference (it is important to notice that it is not necessarily
the original) magnetic field must be time independent, i.e., static.
Unfortunately b(r) cannot be determined by (24a) itself. Then,

∇× h(r) = 0 (25a)
∇ · [µ · h(r)] = 0 (25b)

h(r)|r on S = 0 (25c)
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Rewrite (25c) as

n̂× h(r)|r on S = 0 (26a)
n̂ · h(r)|r on S = 0 (26b)

since the tangential and normal parts of h(r) are independent and
unique in a given coordinate system. (25a) and (26a) imply that one
can introduce

h(r) = −∇φh(r) (27)

Substituting (27) into (25b) and (26b) yields

∇ · [µ · ∇φh(r)] = 0 (28a)
n̂ · [µ · ∇φh(r)]|r on S = 0 (28b)

Considering the identity [34, p. 487]

∇ · [φh(µ · ∇φh)] = φh∇ · (µ · ∇φh) + (∇φh) · (µ · ∇φh) (29)

and (28a), one obtains

∇ · [φh(µ · ∇φh)] = (∇φh) · µ · (∇φh) (30)

Integrating over the volume, (30) becomes
∫

S
[φh(µ · ∇φh)] · n̂dS =

∫
V

(∇φh) · µ · (∇φh)dV (31)

The left volume integral is converted to a surface S by using the
divergence theorem. Note that discontinuities (of µ) are allowed [34,
p. 488]. Substituting (28b) into (31) yields

∫
V

(∇φh) · µ · (∇φh)dV = 0 (32)

Since physical µ makes the integral non-negative definite, (32) can only
be satisfied in the case

∇φh ≡ 0 (33)

from which

h(r) ≡ 0 (34)

This is contradictory to the assumption (23). Then Case 2 is negated.
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Case 3: Assume

e(r, t) �≡ 0 and h(r, t) ≡ 0 (35)

i.e., the electric field is not unique, but the magnetic field is unique.
Similarly to the Case 2, we have from (35) and (22) the following
homogeneous static problem about the difference electric field,

∇× e(r) = 0 (36a)
∇ · [ε · e(r)] = 0 (36b)
e(r)|r on S = 0 (36c)

(36) is mathematically the same as (25). Then the assumption (35) is
negated exactly in the same way.

Case 4: Assume

e(r, t) �≡ 0 and h(r, t) �≡ 0 (37)

It is the case in which both the electric and magnetic fields are not
unique. This case is negated in the most popular proof.

Consequently, only Case 1 could be true if the solution exists.
Therefore, the proof is completed.

Note that all four Maxwell’s equations are used in the proof, and
also no more laws are needed. In fact, the physical explanation of the
difference field equation is very clear: An electromagnetic system (here
it is the difference fields) is null if and only if there is no static and
time-varying sources anywhere and isolated (no energy exchange).

5. UNIQUENESS THEOREMS IN ELECTROSTATICS
AND MAGNETOSTATICS

As we pointed out in Section 1 and Section 4, the existing
uniqueness theorems in electrostatics and magnetostatics are not
consistent with each other and with the existing uniqueness theorem of
electrodynamics. This is a paradox. On one hand, the field equations
in electrostatics and magnetostatics can be reduced from Maxwell’s
equations if the four Maxwell’s equations are independent as concluded
in early sections. On the other hand, their uniqueness theorems can not
be deduced from the same Maxwell’s equations . We can now resolve
the paradox based on the present uniqueness theorem of Maxwell’s
equations.
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5.1. Uniqueness Theorem in Electrostatics

The existing uniqueness theorem requires only the normal components
of electric field on the boundary S [2, 35]. From Maxwell’s equations
(1a) and (1c), the electrostatic equations are

∇× E(r) = 0 (38a)
∇ · (ε · E)(r) = ρ(r) (38b)

As a result of the uniqueness theorem 1, the corresponding uniqueness
theorem in electrostatics is proposed as follows.

Theorem 2 An electrostatic boundary value problem in a region V
bounded by S is uniquely determined by

∇× E(r) = 0 (39a)
∇ · (ε · E(r)) = ρ(r) (39b)

E(r)|r on S = E0(r)|r on S with n× E0|r on S ≡ 0 (39c)

The proof is exactly the same as the Case 3 in Theorem 1 although
the original fields are not necessarily static in Case 3.

5.2. Uniqueness Theorem in Magnetostatics

The same discussions are suitable for magnetostatics. We have the
following uniqueness theorem.

Theorem 3 A magnetostatics boundary value problem in a region V
bounded by S is uniquely determined by

∇× H(r) = J(r) (40a)
∇ · (µ · H(r)) = 0 (40b)

H(r)|r on S = H0(r)|r on S with n ·H0|r on S ≡ 0 (40c)

The proof is the same as the Case 2 in Theorem 1 since only the
difference field is involved.

The traditional proof of the uniqueness theorem is based on the
introduction of a vector potential from (40b) [2] [36, p. 258–259]. It is
applicable to Theorem 3 by using the identity

∫ [
(∇× A) · µ−1 · (∇× A) − A · (∇× µ−1 · ∇ × A)

]
dV

=
∫

S
(A × µ−1 · ∇ × A)dS

(41)
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if we define the difference magnetic flux intensity

b(r) = ∇× A (42)

However, if we consider that B is a function of H, the proof in the
Case 2 of Theorem 1 is more natural and general. Consequently,
Theorem 2 and Theorem 3 are now derivable from Theorem 1.
The uniqueness theorems of electrodynamics, electrostatics and
magnetostatics are compatible. Therefore, the axiomatic system of
electromagnetic theory must consist of all four Maxwell’s equations.
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