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Abstract—This paper presents the analysis of linear tapered
waveguide. Voltage-standing-wave-ratio (VSWR) is obtained from
transmission matrix of the taper waveguide. Taper section is divided
into number of section having uniform length. Transmission matrix of
taper waveguide is found by multiplication of transmission matrix of
each section. Transmission matrix of each section is obtained as the
product of three matrices. One is of the initial length of transmission
line, second one is due to discontinuity and third one is of the final
length of transmission line. Transmission matrix of discontinuity
is obtained by two methods. One is by equivalent circuit of step
discontinuity and another is by moment method. The results are seen
to be in good agreement with [1, 2] and [3].

1. INTRODUCTION

In a tapered section the dimension of waveguide varies smoothly and
for this reason there are possibilities of providing a transition from
one impedance level to another. Ref. [4] and then [5] analyzed taper
line by dividing it into a number of sections of equal length into the
direction of propagation. Ref. [1] found the transmission matrix of each
section as the product of five matrices and multiplied the matrices of
all sections.

This paper proposed that the transmission matrix of each section
is obtained as the product of three matrices. They are contributed
by initial length of transmission line, discontinuity and the final
length of transmission line. Transmission matrix of discontinuity is
obtained by two procedures. They are by equivalent circuit of step
discontinuity and by moment method. The final transmission matrix
of tapered waveguide is obtained by multiplication of matrices of all
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sections. Voltage-standing-wave-ratio (VSWR) is obtained from final
transmission matrix.

2. TRANSMISSION MATRIX OF TAPER SECTION

The linear tapered waveguide is shown in Figure 1 and it can be
considered as if it is formed with huge number of step discontinuities.
Let the number of sections be N and the length of taper be L.
Let 2a0, 2b0 are initial broad and narrow dimensions respectively and
2a1, 2b1 are respective final broad and narrow dimensions.

Figure 1. (a) Tapered waveguide of length L connecting uniform
waveguides of dimensions 2a0, 2b0 and 2a1, 2b1. (b) Taper waveguide
of Figure 1(a) divided into sections. (c) Expanded view of nth section.

The nth section is blown up and shown in Figure 1(c). Each
section consists of an initial length of waveguide, a step discontinuity
and a final length of waveguide. Each of the constituents can be
expressed by a transmission matrix of order 2.

For nth section initial and final broad dimensions are

2a0n = 2a0 +
2(a1 − a0)

N
(n− 1) (1)

2a1n = 2a0 +
2(a1 − a0)

N
n (2)
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Narrow wall dimensions are

2b0n = 2b0 +
2(b1 − b0)

N
(n− 1) (3)

2b1n = 2b0 +
2(b1 − b0)

N
n (4)

The matrix of each section is the product of three matrices. Let
matrix [T1] is for initial length, [T3] is of final length and [T2] is for
discontinuity. So transmission matrix of each section is given by

[T ] = [T1][T2][T3] (5)

The transmission matrices of all the sections are multiplied to obtain
the final transmission matrix of the taper.

Suppose d = L
N is the length of each section, k0n is the propagation

constant of initial length and k1n is the propagation constant of final
length of nth section. Then [T1] can be written as

[T1] =

[
ejk0n

d
2 0

0 e−jk0n
d
2

]
(6)

[T3] can be written as

[T3] =

[
ejk1n

d
2 0

0 e−jk1n
d
2

]
(7)

Let Γ1n be the reflection co-efficient in the forward direction at
discontinuity of nth section and Γ2n be the reflection co-efficient in
the backward direction at discontinuity of the nth section. Then [T2]
can be written as

[T2] =
1

1 + Γ1n

[
1 −Γ2n

Γ1n 1 + Γ1n + Γ2n

]
(8)

To obtain [T2], reflection co-efficients should be determined. Reflection
coefficient can be determined by two ways. One is using equivalent
circuit representing step discontinuities shown in Figure 2 as described
in [6]. Second is by using method of moment.

3. DETERMINATION OF CIRCUIT PARAMETERS OF
EQUIVALENT CIRCUIT FOR STEP DISCONTINUITIES

Discontinuity of each section of linear taper waveguide is step
discontinuity. This step discontinuity can be represented by equivalent
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Figure 2. Equivalent circuit of discontinuity.

Figure 3. Cross section of waveguide junction for step discontinuity
at narrow dimension.

circuit as shown in Figure 2. Following [6] the circuit parameters of the
equivalent circuit can be obtained. From circuit parameters reflection
coefficients can be calculated. Evaluation of circuit parameters of
equivalent circuit for step discontinuities (1) in narrow dimension only
and (2) in both narrow & broad dimension are as follows:

3.1. Evaluation of Circuit Parameters of Equivalent Circuit
for Step Discontinuities in Narrow Dimension

Consider the waveguide junction as shown in Figure 3. Let junction is
at z = 0. Waveguide of dimension 2a× 2b extends up to z = − ∝ and
waveguide of dimension 2a × 2(b +W ) extends upto z = + ∝. The
dimensions are such that only dominant mode can propagate in each
section. Let there be an incident wave from −z direction.

In the region z < 0 transverse fields are

E−
t =

(
e−jβz + Γejβz

) V0

1 + Γ
e0 +

∑
i

Vie
αizei

H−
t = Y −

0

(
e−jβz − Γejβz

) V0

1 + Γ
h0 −

∑
i

YiVie
αizhi (9)

where ei, hi are the mode vectors, αi are the cutoff mode-attenuation
constants, Yi are the characteristics admittances, and Γ is the reflection
coefficient for the dominant mode. The subscript 0 signifies the
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dominant mode. It is assumed that at z =∝ matched load is there. So
in the region z > 0

E+
t = V̂0e

−jβ̂z ê0 +
∑
i

V̂ie
−α̂iz êi

H+
t = Y +

0 V̂0e
−jβ̂zĥ0 +

∑
i

ŶiV̂ie
−α̂izĥi (10)

where the carets are used to differentiate the above parameters from
there z < 0 counterparts. At junction region∫

z=0

∫
E+ ×H+ · ds =

∫
z=0

∫
E− ×H− · ds (11)

So

Y +
0 V̂

2
0 +

∑
i

ŶiV̂
2
i =

1 − Γ
1 + Γ

Y −
0 V

2
0 −

∑
i

YiV
2
i (12)

Relative admittance observed from z < 0 is
1 − Γ
1 + Γ

=
Y

Y −
0

=
G

Y −
0

+ j
B

Y −
0

(13)

Y0 is real and Yi are imaginary. For real Vi and V̂i

jB

Y −
0

=

∑
i

YiV
2
i +

∑
i

ŶiV̂
2
i

Y −
0 V

2
0

(14)

G

Y −
0

=
Y +

0 V̂
2
0

Y −
0 V

2
0

(15)

For equivalent circuit of Figure 2, with matched condition at z =∝, it
is evident that

G

Y −
0

= n2Y
+
0

Y −
0

(16)

From Eq. (15) and Eq. (16)

n2 =
V̂ 2

0

V 2
0

(17)

For the junction shown in Figure 3, the dominant mode vectors [6] are

�e0 = ûy

√
1

2ab
sin

π

2a
(x+ a) (18)

�̂e0 = ûy

√
1

2a(b+W )
sin

π

2a
(x+ a) (19)
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Assumed tangential electric field in the aperture

�Ea
t = ûy sin

π

2a
(x+ a) (20)

Therefore following [6]:

V0 =
a∫

x=−a

b∫
y=−b

1√
2ab

sin2 π(x+ a)
2a

dxdy =
√

2ab (21)

V̂0 =
a∫

x=−a

b∫
y=−b

1√
2a(b+W )

sin2 π(x+ a)
2a

dxdy =

√
2a

b+W
b (22)

Therefore

V̂0

V0
=

√
b

b+W
(23)

n2 =
b

b+W
(24)

This is the transformation ratio of the transformer of equivalent circuit.
Now the first summation in the numerator of Equation (14) is zero and
second summation is related to aperture susceptance Ba by∑

i

ŶiV̂
2
i = j|V |2Ba = j4b2Ba (25)

Now

V0 =
a∫

x=−a

b∫
y=−b

sin
π(x+ a)

2a
1√
2ab

sin
π(x+ a)

2a
dxdy =

√
2ab (26)

So
B =

2Bab

a
(27)

3.1.1. Determination of Aperture Susceptance Ba

Let Ex = 0 and Ey = f(x, y) be known over the cross section at z = 0.
For TE to x mode at z > 0 scalar potential function is:

ψ =
∞∑

m=1

∞∑
n=0

Amn sin
mπ

2a
(x+ a) cos

nπ

2(b+W )
(y+ b+W )e−γmnz (28)
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where Amn are mode amplitudes and γmn are the mode propagation
constants. In particular Ey at z = 0 is given by

Ey|z=0 =
∞∑

m=1

∞∑
n=0

γmnAmn sin
mπ

2a
(x+a) cos

nπ

2(b+W )
(y+b+W ) (29)

This is the form of double Fourier series: a sine series in x and a cosine
series in y. It is thus evident that γmnAmn are fourier coefficients of
Ey, or

γmnAmn = Emn =
εn

2a(b+W )

a∫
−a

(b+W )∫
−(b+W )

Ey|z=0 sin
mπ

2a
(x+ a)

× cos
nπ

2(b+W )
(y + b+W )dxdy (30)

where εn = 1 for n = 0 and εn = 2 for n > 0 (Numann’s number). The
Amn and hence the field are now evaluated. The z directed complex
power at z = 0 is

P =
∫

z=0

∫ (
�E × �H∗

)
· ûzds

= −
a∫

−a

(b+W )∫
−(b+W )

[EyH
∗
x]z=0 dxdy

=
a∫

−a

(b+W )∫
−(b+W )

[∑
m,n

Emn sin
mπ(x+ a)

2a
cos

nπ(y + b+W )
2(b+W )

]




∑
p,q

k2 −
(
pπ

2a

)2

jωµγ∗pq
E∗
pq sin

pπ(x+ a)
2a

cos
qπ(y + b+W )

2(b+W )


 dxdy

(31)

This reduces to

P =
∞∑

m=1

∞∑
n=0

(Y0)∗mn|Emn|2
2a(b+W )
εmn

(32)
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Assume

Ey|z=0 =


 sin

π(x+ a)
2a

−b < y < b
0 |y| > b

(33)

Only non zero amplitudes are:

E10 = γ10A10 =
b

b+W
(34)

E1n = γ1nA1n=
2
nπ

[
sin

nπ

b+W

(
b+

W

2

)
− sin

(
nπW

2(b+W )

)]
(35)

Therefore

P =
2ab2

b+W


(Y0)∗10 + 8

∞∑
n=1

(Y0)∗1n




sin
(
nπb

b+W

)
cos

(
nπ

2

)
nπb

b+W




2

 (36)

Now

(Y0)10 =
k2 −

(
π

2a

)2

ωµβ
=

√
1 −

(
fc
f

)2

η
(37)

(Y0)1n =
k2 −

(
π

2a

)2

−jωµα =
j4(b+W )(Y0)10

λg

√√√√n2 −
(

4(b+W )
λg

)2
(38)

Therefore

P ∗

|V |2 = (Y0)10




a

2(b+W )
+ j

16a
λg

∞∑
n=1

sin2

(
nπb

2(b+W )

)
cos2

(
nπ

2

)
(
nπb

b+W

)2
√√√√n2−

(
4(b+W )
λg

)2




(39)
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Figure 4. Cross section of waveguide junction for step discontinuity
at both broad and narrow dimension.

where V = 2b. The imaginary part of this is the aperture susceptance
Ba.

Ba =
16a
λgZ0

∞∑
n=1

sin2

(
nπb

2(b+W )

)
cos2

(
nπ

2

)
(
nπb

b+W

)2
√√√√n2−

(
4(b+W )
λg

)2
(40)

3.2. Evaluation of Circuit Parameters of Equivalent Circuit
for Step Discontinuities at Both Broad and Narrow
Dimension

Consider the waveguide junction as shown in Figure 4. Let junction is
at z = 0. Waveguide of dimension 2a× 2b extends upto z = − ∝ and
waveguide of dimension 2(a+W1) × 2(b+W ) extends upto z = + ∝.
The dimensions are such that only dominant mode can propagate
in each section. Let there be an incident wave from −z direction.
Following similar procedure as described earlier it can be shown:

n2 =
16(a+W1)3ab

π2(b+W )W 2
1 (2a+W1)2

cos2
πa

2(a+W1)
(41)

B =
2Bab

a
(42)

Ba =
∞∑

m=1

∞∑
n=0

4a2λ2

[
k2−

(
mπ

2(a+W1)

)2
]

(b+W )

n2π6b2η(a+W1)


 1

1−
(
ma

a+W1

)2




2
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Figure 5. Cross section of waveguide junction for step discontinuity
at narrow dimension.

sin2

(
mπ

2

)
cos2

(
nπ

2

)
cos2

(
mπa

2(a+W1)

)
sin2

(
nπb

2(b+W )

)
√(

mλ

2(a+W1)

)2

+
(

nλ

2(b+W )

)2

− 1

(43)

4. REFLECTION COEFFICIENT FOR STEP
DISCONTINUITIES BY METHOD OF MOMENT

Method of moment can be used for the analysis of waveguide
discontinuities. Evaluation of reflection coefficient using moment
method for step discontinuities (1) in narrow dimension only and (2)
in both narrow & broad dimension are as follows:

4.1. Reflection Coefficient for Step Discontinuities in
Narrow Dimension by Method of Moment

Consider the waveguide junction as shown in Figure 5. Let junction
is at z = 0. Waveguide of dimension 2a × 2b1 extends up to z = − ∝
and waveguide of dimension 2a × 2b2 extends upto z = + ∝. It is
assumed that b2 > b1. The dimensions are such that only dominant
mode can propagate in each section. Let there be an incident wave
from −z direction. In the present analysis, the following assumptions
are made:

• the x component of the electric field at the plane of the aperture
is ignored;

• only the x component of the magnetic field at the aperture plane
is considered;

• the excitation in the feed waveguide is TE10 dominant wave
with the incident electric field y-directed and uniform in the
same direction, the assumption of uniform y-directed electric
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field having no component in the x-direction follows as a natural
consequence;

• the electric field Ey in the aperture is assumed to vary only in the
x-direction and is constant in the y-direction.

At the region of window the tangential component of the magnetic
field on both sides should be identical. In this analysis two sources
producing these fields — the source in the waveguide exciting the
TE10 mode and the magnetic current source at the discontinuity are
considered. Using the principle of superposition, the x components of
the magnetic field at the plane of discontinuity are derived.

When aperture is shortened (no magnetic current source) the x
component of magnetic fields are denoted by HI/1

x and HII/1
x on guides

with narrow dimensions 2b1 & 2b2 respectively.
When the generator is shortened the x component of magnetic

fields are denoted byHI/2
x andHII/2

x on guides with narrow dimensions
2b1 & 2b2 respectively.

At the plane of discontinuity using principle of superposition it is
possible to write

HI/1
x +HI/2

x = HII/1
x +HII/2

x (44)

Electric field at plane of discontinuity is considered as

�Edis = ûy

M∑
p=1

E′
pe

′
p, p = 1, 2, . . . . . . ,M. (45)

Where basis function e′p, (p = 1, 2, . . . . . . ,M) are defined by

e′p =


 sin

pπ(x+ a)
2a

,
−a < x < a
−b1 < y < b1

0, otherwise
(46)

As in [6] internally scattered electric field is given by

�Escat =
∑
m

∑
n

V e
mn�e

e
mn + V m

mn�e
m
mn (47)

Magnetic fields are related to the electric fields as follows:

He
x = Y e

mn1E
e
y

Hm
x = Y m

mn1E
m
y

}
for wave propagating in −z direction. (48)

He
x = −Y e

mn2E
e
y

Hm
x = −Y m

mn2E
m
y

}
for wave propagating in +z direction. (49)
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Where Y e
mn1 & Y m

mn1 are the characteristic admittances of TEmn &
TMmn modes for the waveguide of −z direction Y e

mn2 & Y m
mn2 are the

characteristic admittances of TEmn & TMmn modes for the waveguide
of +z direction.

For waveguide of −z direction modal vectors are given by

�e emn =
1
π

√
ab1εmεn

(mb1)2 + (na)2

[
ûx

(
nπ

2b1

)
cos

{
mπ

2a
(x+ a)

}

× sin
{
nπ

2b1
(y + b1)

}
− ûy

(
mπ

2a

)
sin

{
mπ

2a
(x+ a)

}

× cos
{
nπ

2b1
(y + b1)

}]
(50)

�emmn = − 2
π

√
ab1

(mb1)2 + (na)2

[
ûx

(
mπ

2a

)
cos

{
mπ

2a
(x+ a)

}

× sin
{
nπ

2b1
(y + b1)

}
+ ûy

(
nπ

2b1

)
sin

{
mπ

2a
(x+ a)

}

× cos
{
nπ

2b1
(y + b1)

}]
(51)

Similarly for waveguide of +z direction modal vectors are given by

�e emn =
1
π

√
ab2εmεn

(mb2)2 + (na)2

[
ûx

(
nπ

2b2

)
cos

{
mπ

2a
(x+ a)

}

× sin
{
nπ

2b2
(y + b2)

}
− ûy

(
mπ

2a

)
sin

{
mπ

2a
(x+ a)

}

× cos
{
nπ

2b2
(y + b2)

}]
(52)

�emmn = − 2
π

√
ab2

(mb2)2 + (na)2

[
ûx

(
mπ

2a

)
cos

{
mπ

2a
(x+ a)

}

× sin
{
nπ

2b2
(y + b2)

}
+ ûy

(
nπ

2b2

)
sin

{
mπ

2a
(x+ a)

}

× cos
{
nπ

2b2
(y + b2)

}]
(53)

where εm, εn are the Neumann’s number satisfying

εi =

{
1 for i = 0
2 otherwise

(54)
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Following [6] modal voltages of waveguide of −z direction are given by

V e
mn =

∫
aperture

∫
�Edis · �e emnds

=
mb1 sin(nπ)

nπ

√
ab1εmεn

(mb1)2+(na)2

M∑
p=1

E′
p

[
sin(p+m)π
π(p+m)

− sin(p−m)π
π(p−m)

]

(55)

V m
mn =

∫
aperture

∫
�Edis · �emmnds

=
2a sin(nπ)

π

√
ab1

(mb1)2+(na)2

M∑
p=1

E′
p

[
sin(p+m)π
π(p+m)

− sin(p−m)π
π(p−m)

]

(56)

Similarly modal voltages of waveguide of +z direction are given by

V e
mn =

mb2
nπ

√
ab2εmεn

(mb2)2 + (na)2

M∑
p=1

E′
p

[
sin(p+m)π
π(p+m)

− sin(p−m)π
π(p−m)

]

×
[
sin

nπ(b2 + b1)
2b2

− sin
nπ(b2 − b1)

2b2

]
(57)

V m
mn =

2a
π

√
ab2

(mb2)2 + (na)2

M∑
p=1

E′
p

[
sin(p+m)π
π(p+m)

− sin(p−m)π
π(p−m)

]

×
[
sin

nπ(b2 + b1)
2b2

− sin
nπ(b2 − b1)

2b2

]
(58)

Now
HI/1

x = 2H inc
x = −2Y0 cos

πx

2a
(59)

Where H inc
x is the x component of magnetic field due to incident TE10

mode and Y0 is the characteristic admittance of the line due to TE10

mode.
Now

HII/1
x = 0 (60)

HI/2
x = −

∑
m

∑
n

M∑
p=1

E′
p[sin c(p+m)π−sin c(p−m)π]

[
ab1

(mb1)2+(na)2

]

×(sin c(nπ))

[
m2b1εmεnY

e
mn1

2a
+

2n2a

b1
Y m
mn1

]
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× sin
{
mπ

2a
(x+ a)

}
cos

{
nπ

2b1
(y + b1)

}
(61)

HII/2
x =

∑
m

∑
n

M∑
p=1

E′
p [sin c(p+m)π−sin c(p−m)π]

[
ab2

(mb2)2+(na)2

]

×
(

1
nπ

) [
m2b2εmεnY

e
mn2

2a
+

2n2a

b2
Y m
mn2

]

×
[
sin

nπ(b2 + b1)
2b2

− sin
nπ(b2 − b1)

2b2

]

× sin
{
mπ

2a
(x+ a)

}
cos

{
nπ

2b2
(y + b2)

}
(62)

Therefore continuity equation will be

HI/1
x +HI/2

x = HII/2
x (63)

The weighting function Wq is selected to be the same form as the basis
function.

Wq =


 sin

qπ(x+ a)
2a

,
−a < x < a
−b1 < y < b1

0, otherwise
(64)

where q = 1, 2, . . . . . . ,M .
Inner multiplication is defined as

< H,Wq >=
∫

Aperture at discontinuity

∫
H ·Wq dxdy (65)

So 〈
HI/1

x ,Wq

〉
+

〈
HI/2

x ,Wq

〉
=

〈
HII/2

x ,Wq

〉
(66)

or
L1 + L2 = L3 (67)

Therefore

L1 =
4Y0ab1
π

[
1

q + 1
cos

π

2
(2q + 1) +

1
q − 1

cos
π

2
(2q − 1)

]
(68)

L2 = 2
M∑
p=1

E′
p

[∑
m

∑
n

[
m2b1εmεnY

e
mn1

2a
+

2n2aY m
mn1

b1

]

×
[

a2b21
(mb1)2+(na)2

]
(sin(nπ))2 [sin c(p+m)π−sin c(p−m)π]
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× [sin c(q +m)π − sin c(q −m)π]] (69)

L3 = −2
M∑
p=1

E′
p

[∑
m

∑
n

[
m2b2εmεnY

m
mn2

2a
+

2n2aY m
mn2

b2

]

×
[

a2b22
(mb2)2 + (na)2

](
1
nπ

)2 [
sin

nπ(b2+b1)
2b2

−sin
nπ(b2−b1)

2b2

]2

× [sin c(p+m)π−sin c(p−m)π] [sin c(q+m)π−sin c(q−m)π]

]

(70)

To solve the unknown coefficients E′
p(p = 1, 2, . . . . . . ,M), Equation

(67) can be written in the matrix form for all p and q as below:

[A1] + [A2]
[
E′
p

]
= [A3]

[
E′
p

]
(71)

or,[
E′
p

]
= {[A3] − [A2]}−1 [A1] (72)

Ei = Incident electric field = cos
πx

2a
(73)

ER = Reflected electric field

= − cos
πx

2a
−

M∑
p=1

E′
p [sin c(p+ 1)π − sin c(p− 1)π] sin

π(x+a)
2a

(74)

Reflection coefficient is given by

Γ1 = −1 −
M∑
p=1

E′
p [sin c(p+ 1)π − sin c(p− 1)π] (75)

Similarly if there be an incident wave from +z direction then

Ei = Incident electric field = cos
πx

2a
(76)

ER = Reflected electric field

= − cos
πx

2a
− b1
b2

M∑
p=1

E′
p [sin c(p+1)π − sin c(p−1)π] sin

π(x+a)
2a

(77)
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Figure 6. Cross section of waveguide junction for step discontinuity
at both broad and narrow dimension.

Reflection coefficient is given by

Γ2 = −1 − b1
b2

M∑
p=1

E′
p [sin c(p+ 1)π − sin c(p− 1)π] (78)

4.2. Reflection Coefficient for Step Discontinuities at Both
Broad and Narrow Dimension by Method of Moment

Consider the waveguide junction as shown in Figure 6. Let junction is
at z = 0. Waveguide of dimension 2a1 × 2b1 extends up to z = − ∝
and waveguide of dimension 2a2 × 2b2 extends upto z = + ∝. It is
considered that a1 > a2 and b2 > b1. The dimensions are such that
only dominant mode can propagate in each section. Following similar
procedure as described in previous section it can be shown:

If there be an incident wave from −z direction then reflection
coefficient:

Γ1 = −1 − a2

a1

M∑
p=1

E′
p

[
cos

π(p+ 1)
2

sin c
π(pa1 + a2)

2a1

− cos
π(p− 1)

2
sin c

π(pa1 − a2)
2a1

]
(79)

If there be an incident wave from +z direction then reflection
coefficient:

Γ2 = −1 − b1
b2

M∑
p=1

E′
p [sin c(p+ 1)π − sin c(p− 1)π] (80)
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Figure 7. VSWR versus number of sections for tapering in narrow
dimensions.

5. RESULTS

From final transmission matrix of taper waveguide reflection co-
efficient and the VSWR are calculated. For tapering in narrow
dimension considering 2a0 = 5.81 cm, 2b0 = 1.20 cm, 2a1 = 5.81 cm,
2b1 = 2.91 cm, f = 3.96 GHz, and L = 4 cm, VSWR is plotted
against number of sections N in Figure 7 using equivalent circuit
representation of step discontinuities. For large number of sections
VSWR is converged. In convergence region the plot of VSWR with
taper length is shown in Figure 8 along with previously published
results.

Calculating reflection coefficient of step discontinuities by moment
method, for tapering in narrow dimension with same dimensional
parameter as above, the plot of VSWR against length is shown
in Figure 9 along with previously published results. Similarly for
tapering in both dimension with 2a0 = 0.90 inch, 2b0 = 0.40 inch,
2a1 = 0.75 inch, 2b1 = 0.60 inch, f = 8.7 GHz and L = 2.85 inch,
VSWR is plotted against number of sections N in Figure 10 using
equivalent circuit representation of step discontinuities. In convergence
region the plot of VSWR with frequency is shown in Figure 11 along
with previously published results.

Calculating reflection coefficient of step discontinuities by moment
method, for double taper section with same dimensional parameter as
above, the plot of VSWR against frequency is shown in Figure 12 along
with previously published results.
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Figure 8. VSWR versus taper length of a taper at a fixed
frequency of 3.96 GHz. A- Theoretical curve by Johnson’s [3] method.
B- Theoretical curve by chakraborty & Sanyal’s [1] method. C-
Experimental points as reported by Matsumaru [2]. D- By equivalent
circuit.

Figure 9. VSWR versus taper length of a taper at a fixed
frequency of 3.96 GHz. A- Theoretical curve by Johnson’s [3] method.
B- Theoretical curve by chakraborty & Sanyal’s [1] method. C-
Experimental points as reported by Matsumaru [2]. D- By moment
circuit.
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Figure 10. VSWR versus number of sections for double taper section.

Figure 11. VSWR versus frequency for a linear double taper. A-
Theoretical curve by Johnson’s [3] method. B- Theoretical curve
by chakraborty & Sanyal’s [1] method. C- Experimental points as
reported by Johnson [3]. D- By equivalent circuit.

Figure 12. VSWR versus frequency for a linear double taper. A-
Theoretical curve by Johnson’s [3] method. B- Theoretical curve
by chakraborty & Sanyal’s [1] method. C- Experimental points as
reported by Johnson [3]. D- By moment circuit.
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6. CONCLUSION

The results obtained in the presented methods are to be in good
agreement with results of [1, 2] and [3]. Here it is assumed that only
TE10 mode is propagating along the tapered line. Even if other modes
are generated they are not supported by the structure.
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