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Abstract—In this paper, a new tapered beamforming function for
side lobe reduction in the uniform concentric circular arrays (UCCA) is
proposed. This technique is based on tapering the current amplitudes
of the rings in the array, where all elements in an individual ring are
weighted in amplitude by the same value and the weight values of
different rings are determined by a function that has a normalized-
gaussian probability density function variation. This novel tapering
window is optimized in its parameters to have the lowest possible side
lobe level that may reach 43 dB below the main lobe and these optimum
weights are found to be function of the number of elements of the
innermost ring and the number of rings in the array. The proposed
tapering window can be modified to compensate the gain reduction
due to tapering when compared with the uniform feeding case.

1. INTRODUCTION

Circular arrays has considerable interest in various applications
including sonar, radar, and mobile communications [1-3]. It consists
of a number of elements usually omnidirectional arranged on a circle
[1] and can be used for beamforming in the azimuth plane for example
at the base stations of the mobile radio communications system [3]. In
two-dimensional beamforming especially at directions perpendicular to
the circular array plane, the side lobe level will be high (approximately
8dB below the main lobe) and the array is inefficient if utilized at
angles near to the normal of the array. Therefore, one possible solution
to reduce this higher side lobe level is to use multiple concentric circular
arrays (CCA) of different number of elements and radii. Uniform
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CCA (UCCA) is one of the most important configurations of the
CCA [4,5] where the inter-element spacing in individual rings and
the inter-ring spacing are kept almost half of the wavelength. The
side lobes in the UCCA will drop to about 17.5dB especially at larger
number of rings [4]. However, this side lobe level will be very high in
some applications especially that utilizes frequency reuse as in mobile
or broadband communications from high altitude platforms (HAPs)
[6]. In these applications the higher side lobe levels will result in
degraded carrier-to-interference ratio (CIR). Therefore, this paper is
devoted for reducing the side lobe levels in UCCA using a tapered
beamforming technique where the rings in the array are tapered in
amplitude. The proposed tapering function has an expression like a
normalized-gaussian density function of a mean value that equals 1 and
standard deviation that is function of the array geometry and size. This
tapering window is optimized to provide the lowest possible side lobe
levels and compromise the array gain reduction due to tapering. The
paper is arranged as follows; in Section 2 discusses the UCCA geometry
and Section 3 introduces the proposed tapering window. In Section 4,
the tapered UCCA performance is discussed in terms of beam power
pattern, side lobe levels and beamwidth while Section 5 discusses the
problem and possible solutions of the gain reduction due to tapering
and finally Section 6 concludes the paper.

Figure 1. Concentric circular arrays (CCA).
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2. GEOMETRY OF THE UCCA

Concentric circular antenna arrays has elements arranged in multiple
concentric circular rings which differ in radius and number of elements
as shown in Figure 1, where there are M concentric circular rings.
The mth ring has a radius r,, and number of elements NN, where
m=12...,M.

In array processing, it is generally assumed that all elements in
the array are omnidirectional radiators or sensors, therefore the power
pattern is well defined if we know the weighting and steering matrices
of the array. An expression for the array steering matrix has been
deduced in [4] and is given by:

AS(0,9) =
- ejk"‘l sin 6 cos(¢p—11) ejkrg sin 0 cos(¢p—¢21) ej]”‘]\l sin @ cos(p—dpr1) A
ejkrl sin 6 cos(¢p—12) ejkrg sin 0 cos(¢p—pa2) ejkmw sin 0 cos(p—dpr2)

ejkrl sin 6 cos(¢—d1n, )

0 ejk'rg sin0cos(¢7¢2N2) . i (1)
0 0

0 0 kM sin 6 cos(¢—dpn N, _q)

0 0 ejkrM sin@cos(¢—d>MNM)

where the azimuth angle of the mnth element in the array is given by:

2mn

¢ngMJ n:172737"‘7Nm (2)

Each column in the array steering matrix represents the corresponding
ring steering vector which in general for the mth ring is given by:

Sm (9, Qf)) = {ejkrm sin 0 COS(¢—¢m1)ejk'rm sin 6 cos(¢p—dm2)

B ejkrm sin 6 cos(¢p—Pmn ) o ejk'rm sin0c05(¢_¢mNm)} T (3)

Therefore, the array steering matrix may be rewritten as:

AS(0,¢) = [S1(0,$)S2(0,0) ... Sm(0,0)...... Su(0,¢)]  (4)

It is usually for the ring steering vectors to have different lengths
as they have different number of elements, therefore we append each
column with zeros for lower length vectors in the array steering matrix.

If the interelement spacing in any array exceeds half of the
wavelength, the resulted radiation pattern will have grating lobes of
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higher levels. On the other hand, if this distance is smaller than
half of the wavelength, the pattern will have a wider main lobe
and the mutual coupling between elements will increase. Therefore,
the uniform concentric circular array (UCCA) configuration that has
almost half of the wavelength separating distance either between
neighboring elements in a ring or between any two neighboring rings is
needed to have a reasonable radiation pattern and this can be obtained
if the number of elements is incremented by 6 elements [4] or:

Npg1 =Ny +6 (5)

This gives inter-ring separation distance of 0.4775\ (which is the
nearest possible value to half of the wavelength) which occurs only
if for any ring the distance between any two neighboring elements is
set half of the wavelength or:

27T,
N,

= 0.5\ (6)

We can control the radiation pattern of the array by controlling
the magnitudes and phases of the exciting currents, therefore the array
factor or gain will be determined by the following equation

G(0,0) = SUM {W(0,6)" 45(0, )} (7)

where the SUM operator is the summation of the elements of the
resulted matrix and W (6, ¢) is the weight matrix that controls the
amplitudes and phases of the input currents. To have a delay-and-sum
beamformer, we can form the main lobe in the direction (6, ¢g) by
setting the weight matrix to equal the array steering matrix at the

same direction or
W (0, ¢) = AS(6o, ¢o) (8)

and therefore, the normalized array gain is given by

Go(60,6) = 1—SUM {AS(60.60)745(0,6)}  (9)

M
SN
=1

Figure 2 shows a typical radiation pattern of UCCA that has N; =5
elements and M = 10 rings. The pattern is determined at three planes
of the azimuth angle where ¢ = 0,45,90 degrees. All the patterns are

identical which is a property of the UCCA even if at any value of IV;
or M.
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Figure 2. Radiation pattern of typical uniformly-fed UCCA.

3. THE PROPOSED TAPERING WINDOW

In this section, an amplitude tapering window is proposed that likes a
normalized-gaussian probability density function that has a mean value
of 1 and standard deviation set as the number of rings, M, divided by
some parameter ¢ denoted by the correlation constant. Therefore the
normalized-gaussian window has weighting amplitudes given by:

Q= e~ m=D2/20% 193 M (10)

where o is given by:

M
o= 5 (11)

the correlation constant ¢ controls the convergence between the weight

values; therefore for lower values of §, ¢ will increase which means that

the weights change slowly from the innermost value (i.e., aq).
Rewriting Eq. (10) in terms of M and d gives:

Q= 67(m71)252/2M2 (12)
and the complete weight matrix will be given by:

W(9,¢) = [a151(00,¢0)a25’2(60,¢0) ......
amSm(90,¢0) ...... O[MSM(907¢Q)] (13)
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Figure 3. Optimum correlation constant variation with the number
of rings at different innermost ring size.

For practical considerations, it is popular to the weight amplitudes to
have little spread or low ¢ to minimize the radiation pattern distortion
due to amplitude variations or errors, while lower spread decreases the
amount of side lobe reduction. In the normalized-gaussian UCCA, it
is found that there are some optimum values of the weight amplitudes
which give the lowest possible side lobe level and occur at optimum
values of the correlation constant 4.

Figure 3 depicts the optimum values of the correlation constant ¢
as a function of the number of the array number of rings, M, at different
values of the innermost ring size (i.e., N1). This figure shows that most
of the optimum values lies in the range between 2 and 3 for most array
geometries and almost has a mean of 2.5. If the number of elements in
the innermost ring increases, the optimum value of § will decrease while
it increases for larger arrays (i.e., for higher values of M). Figure 4
displays the amplitude values of the window function, a.,, as a function
of the ring number at different values of the correlation constant for a
typical UCCA of 10 rings. In this figure, the range of most optimum
values of the weights lies between two curves corresponding to § = 2
and 3.

As the correlation constant increases, the weight amplitude values
will drop rapidly and the outermost rings will have very low weight
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Figure 4. The variation of tapering weights at different values of the
correlation constant for a typical 10 ring UCCA.

values, while for lower values of §, the weights has little spread and
drop slowly.

4. POWER PATTERN, SIDE LOBE LEVEL AND
BEAMWIDTH PERFORMANCE

Figure 5 displays a typical normalized power gain pattern of a tapered
UCCA at § = 2.5 where N1 = 5 elements and M = 10 rings and shows
a reduction in side lobe level to less than —40dB. Generally, the side
lobe level at different innermost ring sizes and at § = 2.5 is shown in
Figure 6 where it will decrease if we increase the number of rings or
decreasing the innermost ring size, for example it drops to —43dB at
Ny =5 and M = 20 that was —17.5dB without tapering indicating
a reduction in the side lobe level by 25.5dB. The price paid here is
obtaining wider beam as shown in Figure 7, which has a beamwidth
of 3.7 degrees that was 2.82 degrees in the uniform feeding case (i.e.,
without tapered beamforming). This problem can be alleviated by
increasing the number of elements in the tapered array to have the
same beamwidth without tapering. The increase in beamwidth will be
smaller for UCCA of larger sizes than for smaller ones, therefore the
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Figure 5. Radiation pattern of typical tapered UCCA at § = 2.5.

tapering is more efficient for larger arrays. On the other hand if we
decrease the number of elements in the innermost ring, the beamwidth
will increase at a specific number of rings while the side lobe level
decreases.

5. ARRAY GAIN DEGRADATION: PROBLEM AND
SOLUTION

Another cost paid is the reduced array gain compared with the uniform
feeding because in tapering, the outer rings has a little contribution
than the inner ones. This reduction can be determined considering the
amplitude of the weight value, «,,, and the number of elements, N,,,
corresponding to each ring. The maximum array gain in the case of
uniform feeding will be:

Gmax = Y Ni (14)
while in the case of tapered beamforming it will be given by:

M
Gmax = Z OJZ'NZ‘ (15)
=1
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Figure 6. Variation of the side lobe level with the number of rings at
different innermost ring size and at § = 2.5.
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Figure 7. Variation of the beamwidth with the number of rings at
different innermost ring size and at § = 2.5.
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Figure 8. Percentage gain reduction due to tapering as a function of
the correlation constant.

therefore the reduction in the maximum array gain due to tapering
will be:

M M
=1 =1
or
M
i=1

and it will be advantageous to express the amount of reduction as a
percentage of the

BAG ==« 100% (18)

Figure 8 depicts the percentage gain reduction due to tapering as a
function of the correlation constant § where the reduction may reach
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90% at § = 5, while there is no reduction for § = 0 (i.e., in the case of
uniform array feeding).

The solution to gain reduction may be either normalizing the array
gain to have unit gain in the mainlobe direction for the two cases or
increasing the amplitude values of the tapering window by the ratio
of the maximum gain for uniform feeding to that for tapered feeding.
The second solution may be formulated in the weights of the tapering
window as follows:

M
>N
am = | 5 i=1 6—(m—1)262/2M2 (19)
ZNief(i71)262/2M2
i=1

6. CONCLUSION

Uniform concentric circular arrays (UCCA) has considerable interest in
various applications where two dimensional beamforming is possible.
The array performance can be improved in terms of side lobe levels
reduction by tapered beamforming where the array elements are
weighted by a tapering window to reduce these levels. A novel tapering
window is proposed and the array performance is discussed showing the
reduction in side lobe levels. The tapering function has optimum values
which are function of the array geometry such as the number of rings
and the number of elements of the innermost ring. This beamforming
technique is also found to be more efficient for arrays of larger number
of rings where the reduction in sidelobe levels will be more than 40 dB
at lower cost of increased beamwidth.
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