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Abstract—There are some limitations on the statement of classic
Helmholtz theorem although it has broad applications. Actually,
it only applies to simply connected domain with single boundary
surface and does not provide any conclusion about the domain where
discontinuities of field function exist. However, discontinuity is often
encountered in practice, for example, the location of surface sources or
interface of two kinds of medium. Meanwhile, most existing versions
of Helmholtz theorem are imprecise and imperfect to some extent.
This paper not only tries to present a precise statement and rigorous
proof on classic Helmholtz theorem with the accuracy of mathematical
language and logical strictness, but also generalizes it to the case
of multiply connected domain and obtains a generalized Helmholtz
theorem in the sense of Lebesgue measure and Lebesgue integral
defined on three-dimensional Euclidean space. Meanwhile, our proof
and reasoning are more sufficient and perfect.

As an important application of the generalized Helmholtz
theorem, the concepts of irrotational and solenoidal vector function
are emphasized. The generalized Helmholtz theorem and the
present conclusion should have important reference value in disciplines
including vector analysis such as electromagnetics.

1. INTRODUCTION

It is well-known that Helmholtz theorem decomposes an arbitrary
vector function into two parts: one is an irrotational component which
can be expressed by the gradient of a scalar function and the other
is a rotational part which can be expressed by the curl of vector
function. As a particular decomposition form of a vector function,
the theorem has very important applications in electromagnetics
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because its decomposition terms have been closely related to the scalar
potential and vector potential of a vector field.

Many authors have presented their own versions of statement and
proof on Helmholtz theorem in books and literatures. Recently, it
caused much attentions and some statements on it is also published
[17–19]. In this paper, we try to give a rigorous statement on it, which
is to some extent different from that in Ref. [19]. Some of the most
influential versions are cited as follows with the form of proposition.

Proposition 1. If �F is an arbitrary continuous vector function with
all the second order partial derivatives in free space, and its surface
integration or its any partial derivative is zero at infinitive, then this
vector function must be able to be uniquely separated into the sum of
the gradient of a scalar function and the curl of a vector function, that
is

�F = −∇ϕ+∇× �A (1)

in which

ϕ =
∫
V

∇′ · �F (�r ′)
4πR

dV ′ �A =
∫
V

∇′ × �F (�r ′)
4πR

dV ′

Proposition 2. If �F is an arbitrary first order continuously
differentiable vector function with R2

∣∣∣�F ∣∣∣ bounded at infinitive, then
this vector function must be able to be completely and uniquely
decomposed into the sum of the gradient of a scalar function and the
curl of a vector function as shown in formula (1).

Proposition 3. If an arbitrary field function in bounded domain
satisfies the condition that field function is bounded on the boundary,
then this vector function must be able to be completely decomposed
into the sum of the gradient of a scalar function and the curl of a vector
function.

Proposition 4. An arbitrary vector function in bounded domain
satisfied vector homogeneous boundary condition must be able to be
completely and uniquely decomposed into the sum of an irrotational
field and a solenoidal field as shown in formula (1). Meanwhile,
irrotational field and solenoidal field are mutually orthogonal and
satisfy the same kind boundary condition.

Proposition 5. For an arbitrary vector field in bounded domain V ,
if the divergence, the curl of the field in domain V and the value of the
field on boundary S are given, then the vector field can be able to be
uniquely ascertained and expressed by the vector sum of an irrotational
field and a solenoidal field.
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All of above statements have been published in the form of
theorem or corollary in books and literatures. However, through deeply
consideration and inference, we can find that all above versions of
Helmholtz theorem are imprecise and imperfect to some extent.

Firstly, they lack precise and proper depiction about the condition
of proposition. It is well-known that the statement of theorem must
be rigorous and objective. The condition of theorem should be terse,
unrepeatable and as weak as possible. But the condition is a little
strong in some of above propositions, for example, Proposition 2
and Proposition 4. In some propositions, there is no obvious
distinction between the existence of decomposition and the uniqueness
of decomposition, which easily make reader misconceive.

Secondly, the applicable range of above propositions is restricted
to simply connected domain with single boundary surface, and
propositions is failed when the domain is a simply connected domain
with multiply boundary surface or multiply connected domain.
Nevertheless, discontinuity is often encountered in practice, for
example, the location of surface sources or interface of two kinds of
medium.

Finally, it is must be emphasized that Helmholtz theorem is not
equivalent to the uniqueness theorem of a vector function. Helmholtz
theorem is an operator-based decomposition theorem of a vector
function and does not indicate directly any uniqueness theorem for
boundary value problem. So Proposition 5 is not a kind form of
statement on Helmholtz theorem.

Actually, there exist other imprecise even wrong statements and
proofs in other books and literatures.

It is easily to find that our comments on above-mentioned
Helmholtz theorem are objective and rational after reading this paper.

Strictly speaking, Helmholtz theorem has various formulae and
statements according to the difference in topological property of the
discussed region, decomposition method, the dimension of vector
function and the function space with which vector function is affiliated.
It is much emphasized that this paper bases its discussion on Lebesgue
measure and Lebesgue integral defined on Euclidean space, which make
our adoptive mathematical statements and foundation of theory more
general than traditional method.

Generally, our discussed domain is a connected domain. A
disconnected domain can be decompounded into the union of some
connected domains and boundaries. Connected domain can be divided
into two categories: simply connected domain and multiply connected
domain. The boundary face of simply connected domain can be a
simple surface or a simple closed surface. According to the difference
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of boundary face, a simply connected domain can be classified into the
case with single boundary surface and the case with multiply boundary
surface. Correspondingly, the boundary face of multiply connected
domain is named multiply connected boundary surface.

This paper firstly presents precise statements and rigorous proofs
on bounded and unbounded domain cases of Helmholtz theorem in
simply connected domain, then we generalize it to multiply connected
domain and obtain a generalized Helmholtz theorem. Meanwhile,
the physical meaning and application of the theorem are indicated
in electromagnetics.

2. HELMHOLTZ THEOREM IN SIMPLY CONNECTED
DOMAIN

A simply connected domain can be classified into the case of single
boundary surface and multiply boundary surface. We only need to
discuss the case of single boundary surface because the case of multiply
boundary surface can be divided into several simply connected domains
with single boundary surface by means of appropriate auxiliary curves
or surfaces.

Theorem 1. Helmholtz theorem in bounded domain
Let G ⊂ R3 and G is a open domain, S is an arbitrary closed

curved surface that is smooth or piecewise smooth, V is the volume
surrounded by the surface S, V (V ∪ ∂V = V ∪ S) represents a closure
of domain V .

For a single-valued vector function of several variables �F (�r ) which
is defined in domain V (�r ∈ V ), if it satisfies the following conditions:

(1) ∀�r ∈ V , �F (�r ) ∈ C1,
(2) �F (�r ) is almost everywhere continual and bounded on boundary

S,

then �F (�r ) must be able to be completely decomposed into the sum
of an irrotational field and a solenoidal field. Decomposition form is
written as follow:

�F (�r ) = −∇

∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∮
S

�F (�r ′) · n̂
4πR

dS′


+∇×

∫
V

∇′ × �F (�r ′)
4πR

dV ′ +
∮
S

�F (�r ′)× n̂
4πR

dS′

 (2)
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Let

ϕ =
∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∮
S

�F (�r ′) · n̂
4πR

dS′ (3)

�A =
∫
V

∇′ × �F (�r ′)
4πR

dV ′ +
∮
S

�F (�r ′)× n̂
4πR

dS′ (4)

then (2) is abbreviated to

�F = −∇ϕ+∇×A (5)

in which R = |�r − �r ′|, n̂ is a exterior unit normal vector of closed
surface S.

Proof: For an arbitrary given vector function �F (�r ), a transform
can be introduced as below:

�F (�r ) = −∇2 �W (�r ) (6)

where vector function �W (�r ) is first order continuously differentiable.
In Euclidean space, vector operator ∇2 can be projected into three

scalar operators corresponding three directions x̂, ŷ and ẑ, So (6) can
be decomposed into three scalar equations as follows:

Fx = −∇2Wx (7.1)
Fy = −∇2Wy (7.2)

Fz = −∇2Wz (7.3)

Each equation in (7) is a scalar Poisson equation and has a
unique solution when �Wi(�r ) (i = x, y, z) is a first order continuously
differentiable function and has proper boundary condition. Meanwhile,
(6) is virtually a vector Poisson equation with respect to �W (�r ) and the
introduction of the above transform aims to establish a constructed
problem of �W (�r ) based on given �F (�r ). Therefore different kinds
of boundary conditions of �W (�r ) can be applied and �W (�r ) satisfied
the first kind homogeneous boundary condition is chosen as the base
of following discussion. So adopting the Green’s function satisfied
Dirichlet boundary condition, we can get the expression of �Wi(�r ) as
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below:

�Wi(�r ) =
∫
V

�Fi
(
�r ′

)
G

(
�r ′, �r

)
dV ′ −

∮
S

�Wi

(
�r ′

)∂G (�r ′, �r )
∂n′

dS′

=
∫
V

�Fi
(
�r ′

)
G

(
�r ′, �r

)
dV ′ (8.1)

where

∇2G
(
�r ′, �r

)
= −δ

(
�r ′ − �r

)
(8.2)

G
(
�r ′, �r

)∣∣
S

= 0 (8.3)

Prolong the function �F (�r ) defined in domain V to whole space
by assuming �F (�r ) ≡ 0 outside the volume V . Noting that (6) is just
a constructed problem, we can discuss the boundary value problem in
especial case, for example, �Wi(�r ) in free space. Correspondingly we
obtain Green’s function of a free space G0 (�r ′, �r ).

G0

(
�r ′, �r

)
=

1
4πR

(8.4)

Firstly, substituted (8.4) into (8.1), (8.1) becomes:

�Wi =
∫ �Fi (�r ′)

4πR
dV ′, i = x, y, z (9)

After compounding the above solution of three directions, we gain

�W =
∫ �F (�r ′)

4πR
dV ′ (10)

where R = |�r − �r ′|, �r represents the coordinate of field point in �W , �r ′

represents the coordinate of the source point in �F .
We quote a vector identity

∇2 = −∇×∇×+∇∇·

The above identity holds for any first order continuously differentiable
vector function. Therefore (6) becomes:

�F = −∇2 �W = −∇∇ · �W +∇×∇× �W (11)
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Secondly, substituted (10) into (11), (11) becomes:

�F (�r ) = −∇

∇ · ∫
V

�F (�r ′)
4πR

dV ′

 +∇×

∇× ∫
V

�F (�r ′)
4πR

dV ′

 (12)

Since ∇ operator has no effect on variables with prime sign and the
following property formula holds.

∇ 1
R

= −∇′ 1
R

Simplifying (12), we obtain

�F (�r ) = −∇
∫
V

[
∇′ · �F (�r ′)

4πR
−∇′ ·

�F (�r ′)
4πR

]
dV ′

+∇×

∫
V

∇′ × �F (�r ′)
4πR

−∇′ ×
( �F (�r ′)

4πR

)
dV ′

 (13)

Finally, based on classic Gauss theorem and Stokes theorem in
single connected domain, (13) becomes (2).

The decomposition form of (2) is really existent because scalar
Poisson Equations (7) have unique solution when the domain V and
proper boundary condition are given. However, it is much emphasized
that as a decomposition form the uniqueness of (2) can not be
assured under present conditions. The uniqueness of decomposition
is determined by independence, completeness and orthogonality in
decomposition terms. Under the present conditions, orthogonality of
decomposition terms can not be ensured, therefore we can not confirm
the uniqueness of decomposition.

Smoothness of boundary surface S, that is, the equation of surface
is continuous differentiable, confirms the existence of surface integral
of the first kind, the second kind and corresponding volume integral,
thus the derivation of (9), (10), (12), (13) and (2) is guarantied.

Closure of surface S and continuity of one order partial difference
of �F (�r ) in domain V are the precondition of the utilization of Gauss
theorem and Stokes formula. Strictly speaking, classic Gauss theorem
and Stokes formula only indicate the property of single connected
domain. It can be applied to multiply connected domain after the
theorem is modified.

For the condition (1), it ensures not only the feasibility of
divergence and curl operation of vector function, but also the
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integrability of the result of divergence and curl operation of vector
function. Accordingly it is a most proper restriction condition up to
now.

The condition (2) implies that all discontinuity points on boundary
S are discontinuity points of the first kind and its area measure is zero.
It ensures not only the utilization of Gauss theorem and Stokes formula,
but also surface integral in (2) exists and the value of surface integral
is invariant. This completes the proof.

Remarks on Theorem 1.
(1) Piecewise smooth surface in the theorem, which is also called

regular surface, requires that not only every piece is smooth, but also
its positive normal vector is uniquely determinate and continuous on
every point of surface.

(2) For the condition (1), we have the following propositions.
Proposition A. ∀�r ∈ V , �F (�r ) ∈ C1 ⇔ �F (�r ) has a continuous

partial derivative of first order in domain V .
Proposition B. �F (�r ) has a continuous partial derivative of first

order in domain V ⇔ its component function �Fi(�r )(i = 1, 2, 3) has
a continuous partial derivative of first order in domain V , in which
�F (�r ) = (�F1(�r ), �F2(�r ), �F3(�r )).

Proposition C. �F (�r ) has a continuous partial derivative of first
order in domain V ⇒ �F (�r ) is a first order differentiable function in
domain V .

Proposition D. �F (�r ) has a continuous partial derivative of first
order in domain V ⇒ �F (�r ) have all the second order partial derivatives
in domain V .

Proposition E. �F (�r ) has a continuous partial derivative of first
order in domain V ⇐ �F (�r ) is a first order continuous differentiable
function in domain V .

Proposition F. �F (�r ) has a continuous partial derivative of first
order in domain V ⇒ �F (�r ) is bounded and integrable in domain V .

If �F (�r ) is only a first order differentiable function in Theorem 1,
it is not enough to ensure the integrability of the result of divergence
and curl operation of �F (�r ). So the condition is too weak to adopt.

If �F (�r ) is a vector function with all the second order partial
derivatives on some points in domain V , it is not able to insure the
order interchange of the operation about mixed partial derivative of
�F (�r ). So the condition is also unfitting.

If the condition that �F (�r ) is a first order continuous differentiable
vector function in domain V is assumed, then the conclusion of
Theorem 1 still holds, but it is a little strong compared with the present
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condition (1).
From Proposition F and the condition (2), we can infer that �F (�r )

is bounded in domain V . Therefore it is redundant to restrict the
boundedness and integrability of �F (�r ) in domain V or V under the
condition (1).

From the above discussion, the condition (1) is proper and precise
for the theorem.

(3) The condition (2) implies that all discontinuity points on
boundary S are discontinuity points of the first kind and its area
measure is zero. If the measure of all discontinuity points is not equal to
zero, then we must define some new concepts such as surface gradient,
surface divergence and surface curl to ensure Gauss theorem and Stokes
formula validated. If there exist some singular points in discontinuity
points, we can discuss it with the theory of singular integral. These
cases are not explicitly stated here.

(4) There are many proof methods on Helmholtz theorem, for
example, with impulse function and vector identity or with Green
vector identity of the second kind. Compared with the proof based
on impulse function our proof is more precise and more natural. And
our condition for the theorem is weaker compared to the proof based
on Green vector identity of the second kind.

(5) The conclusion of Theorem 1 implies a fact that the uniqueness
of decomposition can not be confirmed because the two parts of
decomposition form are not mutually orthogonal and complete. If we
want to obtain the uniqueness, the proper boundary condition of vector
function must be appended.

In Theorem 1, �r represents the coordinate of field point, �r ′

represents the coordinate of the source point, ∇′ · �F (�r ′) and ∇′× �F (�r ′)
are the density of flux and the density of curl source individually. The
part of surface integral indicates the contribution of surface sources in
boundary S which can be sources or induced sources. So the Theorem
1 presents a kind of quantitative relation between field and source. The
vector function satisfied the condition of the theorem can be completely
decomposed into the sum of the gradient of a scalar function and the
curl of a vector function.

Theorem 2. Helmholtz theorem in unbounded domain
Let V = R3. For a single-valued vector function of several

variables �F (�r ), which is defined in domain V (�r ∈ V ), if it satisfies
the following conditions:

(1) ∀�r ∈ V , �F (�r ) ∈ C1,
(2) �F (�r ) is vanishing at infinitive at enough quick rate and make its

surface integration approach zero,
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then �F (�r ) must be able to be completely and uniquely decomposed into
the sum of an irrotational field and a solenoidal field. Decomposition
form is written as follow:

�F (�r ) = −∇
∫
V

∇′ · �F (�r ′)
4πR

dV ′ +∇×
∫
V

∇′ × �F (�r ′)
4πR

dV ′ (14)

Let

ϕ =
∫
V

∇′ · �F (�r ′)
4πR

dV ′ (15)

�A =
∫
V

∇′ × �F (�r ′)
4πR

dV ′ (16)

then (14) is abbreviated to

�F = −∇ϕ+∇× �A (17)

in which R = |�r − �r ′|.
Proof: Infinite domain can be looked upon as the limit case of

finite domain, which is equivalent to the case of R → ∞. Along the
proving thread of Theorem 1, we let the closed surface S be infinite
surface. If the convergence of integral in (2) is ensured, we can obtain
the feasibility and the utilization of limit operation which is applied to
the expression (2) of the case of finite domain.

The condition, which ∃δ > 0, such that R1+δ
∣∣∣�F · n̂∣∣∣ and

R1+δ
∣∣∣�F × n̂∣∣∣ bounded, is the sufficient condition of identity �F (�r ) =

−∇2
∫
V

�F (�r ′)
4πR dV ′, and ensures that Green theorem and Stokes formula

can be applied to the case of infinite domain without any amendment.
Of course the condition (2) includes the above condition. So

�F (�r ) = −∇

∇·∫
V

�F (�r ′)
4πR

dV ′

+∇×

∇×∫
V

�F (�r ′)
4πR

dV ′


= −∇

∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∮

S→∞

�F (�r ′) · n̂
4πR

dS′


+∇×

∫
V

∇′ × �F (�r ′)
4πR

dV ′+
∮

S→∞

�F (�r ′)× n̂
4πR

dS′


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= −∇
∫
V

∇′ · �F (�r ′)
4πR

dV ′ +∇×
∫
V

∇′ × �F (�r ′)
4πR

dV ′ (14)

At fact the condition (2) implies the homogeneous boundary
condition of �F (�r ), which makes the decomposition components mutual
orthogonal. Therefore the decomposition form (14) of �F (�r ) must be
unique. This completes the proof.

Remarks on Theorem 2
(1) For the condition (2), the qualitative description has

to adopted because it is very difficult to strictly determine the
quantitative condition that surface integration approach zero at
infinitive. Many authors have tried to find the quantitative condition
of condition (2). We cite them as below:

Condition A. R2
∣∣∣�F ∣∣∣ is bounded when R→∞.

Condition B. R2
∣∣∣�F · n̂∣∣∣ and R2

∣∣∣�F×n̂∣∣∣ is bounded when R→∞.

Condition C. ∀ε > 0, R1+ε
∣∣∣�F ∣∣∣ is bounded when R→∞.

Condition D. R1
∣∣∣�F · n̂∣∣∣→ 0 and R1

∣∣∣�F×n̂∣∣∣→ 0 when R→∞.

Condition E. �F (�r )→ 0 when R→∞.
Actually, Condition A and B are theoretically feasible, but it is

too strong to adopt, Condition C is practically feasible but there is no
theoretical proof. Condition D and E are too weak to be applied in
the theorem. Therefore it is not proper to adopt any kind of above
conditions as a strict and universal condition.

Condition (2) has abundant connotation and can derive radiation
boundary condition of far field. However, it is cursory to consider them
equivalent.

3. HELMHOLTZ THEOREM IN MULTIPLY
CONNECTED DOMAIN

Boundary surface of a domain has two categories: boundary surface of
simply connected domain and boundary surface of multiply connected
domain. The latter can be classified into many cases.

In simply connected domain, boundary surface can be single
boundary surface or multiply boundary surface. However for multiply
connected domain, boundary surfaces are consisted of boundary
surfaces of several simply connected domains, boundary surface of
multiply connected domain or composite surfaces of them. For
simplification, this paper only discusses the domain with composite
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surface which is consisted of several simply connected sub-domains
because multiply boundary surface can be always divided into several
single boundary surfaces of simply connected domain by means of
appropriate auxiliary surfaces. The argument in the general case is
similar.

In open domain, at most countable discontinuity points or point
sets of the first kind can constitute isolated set, curve line or surface
according to geometry. Based on these discontinuity points or point
set, multiply connected domain can be partitioned into at most
countable simply connected domain. The continuous function defined
in the above domain is called piecewise continuous function.

Lemma 1. Assume f(x) is a bounded function defined on a
measurable set E, and the measure of E is bounded, then f(x) is
integrable in the sense of Lebesgue if and only if f(x) is a measurable
function.

Theorem 3. Generalized Helmholtz theorem in bounded domain
Let G ⊂ R3 and V is a multiply connected domain in domain G,

boundary S of domain V is piecewise smooth. A single-valued vector
function of several variables �F (�r ) which is defined in domain V (�r ∈ V )
has at most countable discontinuity points or point sets of the first
kind. Based on the piecewise continuous vector function �F (�r ), V can
be partitioned into the form V =

⋃
i∈I

Vi, where I represents at most

counted index set, �F (�r ) is a continuous function for simply connected
domain Vi (∀i ∈ I), meanwhile, ∀i, j ∈ I, Vi ∩ Vj = ∅ and as closed
surface of domain Vi, Si (∀i ∈ I) is at least piecewise smooth. If �F (�r )
satisfies the following conditions:

(1) ∀i ∈ I, ∀�r ∈ Vi, �F (�r ) ∈ C1,
(2) �F (�r )is bounded in every surface Si (∀i ∈ I), meanwhile, both

�F (�r ′)·n̂i
4πR and

�F (�r ′)×n̂i
4πR are measurable function,

then �F (�r ) must be able to be completely decomposed into the sum
of an irrotational field and a solenoidal field. Decomposition form is
written as follow:

�F (�r ) = −∇

∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∑
i∈I

∮
Si

�F (�r ′) · n̂i
4πR

dS′i


+∇×

∫
V

∇′ × �F (�r ′)
4πR

dV ′ +
∑
i∈I

∮
Si

�F (�r ′)× n̂i
4πR

dS′i

 (18)
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= −∇

∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∮
S

�F (�r ′) · n̂
4πR

dS′

−
∑
i,j∈I

∫
Sij

(�Fi(�r ′)− �Fj(�r ′)) · n̂ij
4πR

dS′ij


+∇×

∫
V

∇′ × �F (�r ′)
4πR

dV ′ +
∮
S

�F (�r ′)× n̂
4πR

dS′

+
∑
i,j∈I

∫
Sij

(�Fi(�r ′)− �Fj(�r ′))× n̂ij
4πR

dS′ij

 (19)

where both �Fi and �Fj represent vector functions defined on surface
Sij(Sij = Si ∩ Sj), meanwhile, they are located in two sides of Sij , n̂ij
is the unit normal vector of closed surface Sij and directed to Vj from
Vi. Summation appeared in (19) is a kind of unilateral sum, that is,
unrepeated sum in interfaces.

Let

ϕ =
∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∑
i∈I

∮
Si

�F (�r ′) · n̂i
4πR

dS′i (20)

�A =
∫
V

∇′ × �F (�r ′)
4πR

dV ′ +
∑
i∈I

∮
Si

�F (�r ′)× n̂i
4πR

dS′i (21)

then (18) is abbreviated to

�F = −∇ϕ+∇× �A (22)

in which R = |�r − �r ′|, n̂i is an exterior unit normal vector of closed
surface Si.

Proof: After the decomposition of domain V , we can infer that
surface integrals on every surface Si and S are exist from Lemma 1 and
condition (2). Then we obtain the decomposition form of every simply
connected domain based on Theorem 1. And then the superposition of
decomposition forms is done to obtain (18). Finally, we separate the
integral domain of surface integral in (18) into two parts: one part is
outside surface S of whole domain V and the other part is the interface
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between sub-domains. So the surface integral is simplified to (19). This
completes the proof.

Remarks on Theorem 3.
In the sense of the Lebesgue integral, countable additivity always

holds. But in order to ensure the validity of inference, the integrability
of every domain or surface must be satisfied because the measure of
discontinuous sets in every domain may be not zero. So condition (2)
in the case of multiply connected domain is stronger than the condition
of Theorem 1.

Corollary 1.
Let G ⊂ R3 and V is a bounded multiply connected domain in

domain G, boundary S of domain V is at least piecewise smooth. A
single-valued vector function of several variables �F (�r ), which is defined
in domain V (�r ∈ V ), has at most countable discontinuity points or
point sets of the first kind. Based on the piecewise continuous vector
function �F (�r ), V can be partitioned into the form V =

⋃
i∈I

Vi, where I

represents at most counted index set , �F (�r ) is a continuous function in
simply connected domain Vi (∀i ∈ I), meanwhile, ∀i, j ∈ I, Vi ∩Vj = ∅
and as closed surface of domain Vi, Si (∀i ∈ I) is at least piecewise
smooth. If �F (�r ) satisfies the following conditions:

(1) ∀i ∈ I, ∀�r ∈ Vi, �F (�r ) ∈ C1,
(2) �F (�r ) is almost everywhere continual and bounded in every surface

Si (∀i ∈ I),
then �F (�r ) must be able to be completely decomposed into the sum
of an irrotational field and a solenoidal field. Decomposition form is
written as follow:

�F (�r ) = −∇

∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∮
S

�F (�r ′) · n̂
4πR

dS′


+∇×

∫
V

∇′ × �F (�r ′)
4πR

dV ′ +
∮
S

�F (�r ′)× n̂
4πR

dS′

 (23)

Let

ϕ =
∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∮
S

�F (�r ′) · n̂
4πR

dS′ (24)

�A =
∫
V

∇′ × �F (�r ′)
4πR

dV ′ +
∮
S

�F (�r ′)× n̂
4πR

dS′ (25)
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then (23) is abbreviated to

�F = −∇ϕ+∇× �A (26)

in which R = |�r − �r ′|, n̂i is an exterior unit normal vector of closed
surface Si.

Proof: Condition (2) implies that the geometry which is consisted
of the discontinuous points in every interface is at most curve line.
Consequently area measure of every surface Sij in (19) is equal to zero
and surface integral on every interface Sij is also zero.

So,

�F (�r ) = −∇

∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∑
i∈I

∮
Si

�F (�r ′) · n̂i
4πR

dS′i


+∇×

∫
V

∇′ × �F (�r ′)
4πR

dV ′ +
∑
i∈I

∮
Si

�F (�r ′)× n̂i
4πR

dS′i


= −∇

∫
V

∇′ · �F (�r ′)
4πR

dV ′ −
∮
S

�F (�r ′) · n̂
4πR

dS′


+∇×

∫
V

∇′ × �F (�r ′)
4πR

dV ′ +
∮
S

�F (�r ′)× n̂
4πR

dS′

 (27)

This completes the proof.
Remark on Corollary 1
From condition (2) we can infer that �F (�r ) is almost everywhere

continuous and bounded in boundary S. Therefore Theorem 1 is a
particular case of Corollary 1, where S is outside surface Si(i = 1),
that is, the case of without interface.

Theorem 4. Generalized Helmholtz theorem in unbounded domain
Let V = R3. A single-valued vector function of several variables

�F (�r ), which is defined in domain V (�r ∈ V ), has at most countable
discontinuity points or point sets of the first kind. Based on the
piecewise continuous vector function �F (�r ), V can be partitioned into
the form V = (

⋃
i∈I

Vi) ∪ (
⋃
j∈J

Vj), where Vi (∀i ∈ I) is a bounded

simply connect domain and Vj (∀j ∈ J) is a unbounded simply
connect domain, both I and J are at most counted index set, �F (�r )
is a continuous function in every simply connected domain Vi and Vj ,
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meanwhile, l ∈ I ∪ J , m ∈ I ∪ J , Vl ∩ Vm = ∅ and as closed surface
of domain Vi, Si (∀i ∈ I) is at least piecewise smooth. Sj (∀j ∈ J) is
asymptotic closed surface of domain Vj , If �F (�r ) satisfies the following
conditions:

(1) ∀l ∈ I ∪ J , �r ∈ Vl, �F (�r ) ∈ C1,
(2) �F (�r ) is bounded in every surface Si (∀i ∈ I), meanwhile, both

�F (�r ′)·n̂i
4πR and

�F (�r ′)×n̂i
4πR in every surface Si are measurable functions,

(3) �F (�r ) is vanishing at infinitive at enough quick rate and make its
surface integration approach zero,

then �F (�r ) must be able to be completely and uniquely decomposed into
the sum of an irrotational field and a solenoidal field. Decomposition
form is written as follow:

�F (�r ) =−∇

∫
V

∇′ · �F (�r ′)
4πR

dV ′−
∑

i,j∈I∪J

∫
Sij

(�Fi(�r ′)− �Fj(�r ′))·n̂ij
4πR

dS′ij


+∇×

∫
V

∇′× �F (�r ′)
4πR

dV ′+
∑

i,j∈I∪J

∫
Sij

(�Fi(�r ′)− �Fj(�r ′))×n̂ij
4πR

dS′ij

(28)

in whichR = |�r − �r ′|, both �Fi and �Fj represent vector functions defined
on surface Sij (Sij = Si∩Sj), meanwhile, they are located in two sides
of Sij , n̂ij is the unit normal vector of closed surface Sij and directed
to Vj from Vi. Summation in (28) is a kind of unilateral sum, that is,
unrepeated sum in interfaces.

Proof: From Theorem 3, we know that the condition (2) can
ensure that classic Green theorem and Stokes formula can be applied to
the case of infinite domain without any amendment. More importantly,
condition (3) makes the surface integral on S is vanished. So (28) is
obtained from (19). This completes the proof.

4. CONCLUSION

Theorem 1 can be derived from Theorem 3 when the number of
piecewise continuous function is only single, at the same time,
Theorem 2 is also a particular case of Theorem 4 when the area measure
of discontinuous points and point sets is equal to zero.

Theorem 1 and Theorem 3 is for the case of bounded
domain, meanwhile, Theorem 2 and Theorem 4 is for the case of
unbounded domain. From derivation we can obtain the uniqueness
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of decomposition on the case of unbounded domain, however, for the
case of bounded domain there is no similar conclusion because the
decomposition terms are not mutual orthogonal. There are some
important problems needed to be considered by us for the future such
as how to realize the uniqueness and completeness of decomposition on
the case of bounded domain, how to build the difference and connection
between Helmholtz theorem and deterministic theorems of vector field,
how to strictly define irrotational field and solenoidal field and how to
ascertain the uniqueness of potential function.

In this paper we not only present a precise statement and rigorous
proof on classic Helmholtz theorem, but also generalize it to the case
of multiply connected domain and obtain a generalized Helmholtz
theorem in sense of Lebesgue measure and Lebesgue integral defined
on three-dimensional Euclidean space. Meanwhile, our proof and
reasoning are more sufficient and perfect.
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