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Abstract—This paper deals with the performance of frequency
selective structures with defects. A frequency selective structure is
in this case a periodic pattern of apertures in a conducting plate.
The plate can be of arbitrary thickness. The defects can be due to
deviations in the placing of the apertures, in the material parameters,
or in the shape of the apertures. First, the perturbation to the far-
field pattern from a deviation in one aperture is analyzed. It is then
shown how this affects the mean scattered power from the structure.
Numerical illustrations of the perturbed fields on the structure are
given.

1. INTRODUCTION

A plane Frequency Selective Structure (FSS) is a periodic structure
of infinitely many identical cells. The structure acts as a filter for
an incident electromagnetic plane wave. For certain frequencies the
induced currents in the cells interfere constructively such that all
of the incident power is transmitted through the structure, whereas
waves with other frequencies are partly, or entirely, reflected. This
paper presents a simple method that can handle perturbations in the
periodic pattern and that can estimate the effects these perturbations
have on the filtering property. The method gives the surface fields,
as well as the far-fields, from the perturbed region. It is also shown
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how the scattered power is affected by a stochastic distribution of
perturbations.

A number of different techniques have been developed during
the years to analyze unperturbed frequency selective structures. The
Method of Moments (MoM), cf., [6, 7], the Finite Difference Time-
Domain (FDTD) technique [2], and the Finite Element Method
(FEM) [1, 8], are three of the most common methods. For more
complicated substrate materials, the methods in [3, 4] can be applied.
The philosophy behind the perturbation method in this paper is that
the numerical method and code used for the unperturbed periodic
structure can, without modifications, be used to estimate the effects
of perturbations to the periodic structure. Thus it is the chosen
method for the unperturbed problem that sets the limits for what
structures that can be handled. The methods mentioned above are very
general and can e.g., handle periodic patterns of metal strips, periodic
patterns of apertures in conducting planes, and periodic patterns that
include dielectric parts.

2. UNPERTURBED FSS

A frequency selective structure is a periodic pattern of identical cells.
For simplicity it is assumed that the structure is parallel to the xy-
plane and is periodic in the x-direction with a period a and in the
perpendicular direction, the y-direction, with a period b. Structures
that are periodic in non-perpendicular directions can be handled in the
same manner, cf., [8]. The FSS has a finite thickness and is assumed
to occupy the region −h < z < 0, cf., Figure 1. The FSS is assumed
to be excited by an incident plane wave

Ei(r) = E0eiki·r, (1)

z

h

Figure 1. The frequency selective plate. The apertures may be filled
with a dielectric material.
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where the time dependence e−iωt is assumed and where ki =
(kix, kiy, kiz) is the wave vector. For simplicity the incident wave is
assumed to be incident from below, i.e., with kiz > 0. Due to the
periodicity of the geometry, the reflected and transmitted fields are
periodic vector functions in the x- and y-directions. The periodicity is
utilized by the numerical programs and the scattering region is reduced
to one cell.

3. FSS WITH A SINGLE PERTURBED CELL

If one or more cells are perturbed, a field that is not periodic will be
superimposed the periodic field. This causes numerical problems since
the scattering region no longer can be reduced to one cell. However,
if the perturbation is small the interaction of the perturbed field with
the surrounding cells can be neglected and the scattering region can be
reduced to one cell. It is this approximation that makes the problem
numerically feasible.

First consider an FSS where the cell Sk is perturbed, but all of
the other cells are unperturbed. The total electric and magnetic fields
at the surfaces of the cell are denoted E, H, the corresponding fields
for the unperturbed case are denoted E0, H0, and the perturbation
fields are denoted EP, HP. Thus

E = E0 + EP, (2)

H = H0 + HP, (3)

where the unperturbed fields are assumed to be known. The
perturbation is assumed to be small enough for the following
approximation to hold:

The tangential electric and magnetic surface fields on the surface
of the perturbed cell are the same as the corresponding fields for an
FSS where all of the cells are identical with the perturbed cell.

The approximation is referred to as the single cell approximation
and is illustrated in Figure 2. The numerical examples in the
numerical section indicate that this is a relevant approximation, even
for quite large perturbations. There are two important features of
this approximation; firstly the approximation is independent of the
numerical method that is used for the solution of the scattering
problem, and secondly, the perturbation is obtained by numerically
solving the surface fields for two different periodic structures. A
numerical method that can handle the unperturbed structure can also
handle the perturbation and hence no new numerical code is needed.

In the case of a large perturbation, the single cell approximation
becomes inaccurate. It is then possible to introduce supercells in order
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(a) (b) (c)

Figure 2. The single cell approximation. a) The periodic structure
with one perturbed cell. b) The unperturbed periodic structure. c) The
periodic structure with all of the cells perturbed. The surface field in
the perturbed cell in a is approximately the same as the surface field
in the corresponding cell in c. The perturbation of the surface field in
the perturbed cell is approximately the difference between the surface
fields in the corresponding cells in c and b.

to obtain the perturbed fields. A supercell is depicted in Figure 3. It
consists of the perturbed cell and at least one of the cells surrounding
the perturbed cell. To obtain the perturbation to the field, one creates
a periodic structure of supercells. The perturbed surface field of the
perturbed cell is given by EP = E − E0, where in this case E is
the surface field from the periodic structure with each cell being a
supercell. The supercells can be handled by an FDTD program for
periodic structures without modification. Methods based on FEM or
on MoM have to be slightly modified. In Appendix A it is seen how a
method based on FEM is modified to handle supercells. Obviously the
numerical calculations with supercells are more CPU-time consuming
than without supercells. By comparing the single cell calculation with
a supercell calculation, a good estimate of the error can be obtained.
In the rest of the paper the approximation based on supercells is
referred to as the supercell approximation, in contrast to the single
cell approximation.

4. FSS WITH SEVERAL PERTURBED CELLS

Now consider an FSS with more than one perturbed cell. If
the perturbed cells are densely distributed, then if the supercell
approximation is used, all of the cells in the supercell should be
unaltered and a periodic structure with that supercell is formed, cf.,
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Figure 3. The supercell approximation. The surface field in the
perturbed cell in the structure in Figure 2 is approximately the same
as the surface field in the corresponding cell in the above structure. The
approximation obtained from the supercell structure is better than the
one obtained from the single cell approximation, cf., Figure 2.

Figure 4. Otherwise, if the perturbed cells are sparsely distributed and
it is unlikely that two neighboring cells are perturbed, supercells where
the other cells are unperturbed are accurate. When the perturbed cells
have stochastic variations and when their distribution is stochastic the
methods described in [5] and Section 7 are applicable.

5. FAR-FIELD AMPLITUDE

The perturbation of the far-field can be determined from the integral
representation of the field. The perturbation to the far-field from one
perturbed cell yields

Es(r) =
eikr

kr
F (r̂). (4)



146 Karlsson, Sjöberg, and Widenberg

The far-field amplitude is different above and below the FSS. In both
cases the expression for the perturbation reads

F P(r̂) = i
k2

4π
r̂ ×

∫∫
Sk

[n̂ × EP(r′) − η0r̂ × (n̂ × HP(r′))]e−ikr̂·r′
dS′.

(5)

For the far-field above the FSS (z > 0), Sk is the surface of the cell at
z = 0 and n̂ = ẑ, and for the far-field below the FSS (z < −h), Sk is
the surface of the cell at z = −h and n̂ = −ẑ.

From this expression it is seen that the far field is essentially a
Fourier transform of the spatial distribution of the tangential electric
and magnetic fields. This means that if the perturbed fields are non-
zero only in a very small region, they will affect many scattering
directions r̂, since the Fourier transform of a function with small
support always has large support. This is the origin of diffuse
scattering from the perturbed FSS; the unperturbed FSS only scatters
in the specular directions, whereas the perturbed FSS scatters in all
directions (albeit with a small amplitude). This also reduces the
polarization sensitivity of an FSS.

6. TRANSLATED APERTURE

The simplest case of perturbation is a displacement of the cell number
p by a vector δrp = (δxp, δyp, 0). The displacement is assumed to be
small enough for the single cell approximation to hold. The difference
between the case with all of the apertures displaced and the case with
no cells displaced is simply due to the translation of the coordinate
system. The surface fields of the displaced cell are given by

ET(r) = eiki·δrpE0
T(r), (6)

HT(r) = eiki·δrpH0
T(r), (7)

where again E0
T and H0

T are the tangential field for the unperturbed
cell. The corresponding perturbations to the surface fields are

EP
T(r) = (eiki·δrp − 1)E0

T(r), (8)

HP
T(r) = (eiki·δrp − 1)H0

T(r). (9)

The far-field amplitude is given by

F (r̂) = eiq·δrpF 0(r̂), (10)
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where F 0 is the far-field amplitude for a cell that is not translated and
where

q = ki − kr̂. (11)

Hence k is the wave number and r̂ = r/r. In all directions where
q ·δrp = n2π the perturbation to the far-field is zero. Since δrp is small
this only happens for n = 0, i.e., in the forward direction (ki−kr̂ = 0)
and in the specular reflection direction, kr̂ = (kix, kiy,−kiz). If the first
order term in powers of δ is kept, it is seen that

EP
T(r) = i(ki · δrp)E0

T(r), (12)

HP
T(r) = i(ki · δrp)H0

T(r), (13)

F P(r̂) = i(q · δrp)F 0(r̂). (14)

The perturbations to the far-field in the forward direction and in the
specular reflection direction are of second order in δrp and can not be
obtained by retaining only terms linear in δ. Since the perturbed far-
field is proportional to the unperturbed far-field, this demonstrates
that (to first order) the polarization sensitivity of the FSS is not
affected by pure translations of the apertures.

7. SCATTERED POWER

From the previous analysis we see that, at least to first order, the
perturbed fields are proportional to the perturbation δrp. This means
that if we take the mean value of many perturbations with zero mean,
the perturbed field is zero. However, for any random variable X with
zero mean, 〈X〉 = 0, and probability density fX(x), we have〈

X2
〉

=
∫
x2fX(x) dx �= 0. (15)

since the probability density satisfies fX(x) ≥ 0 for all outcomes x.
This means that even though the mean perturbed far field is zero,〈
F P

〉
= 0, it still carries some energy, corresponding to the mean

of the square of the far field,
〈
|F P|2

〉
. In [5], the scattered power is

computed using the scattered power per unit solid angle,

Us(r̂) =
1

2η0

〈
r2|Es(r)|2

〉
, (16)

and the incident power,

Pi =
1

2η0
|E0|2NA|k̂i · ẑ|. (17)
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The corresponding power scattering coefficient per unit solid angle
(differential scattering cross section) for an infinite structure is then

Us(r̂)
Pi

=
1

k2A|k̂i · ẑ|

(〈
|F P(r̂)|2

〉
|E0|2

+
|F 0(r̂)|2
|E0|2

4π2δD(qx)δD(qy)

)
,

(18)

where F 0(r̂) is the far-field amplitude for one cell of the unperturbed
structure, and we assume that the perturbed far field F P(r̂) has zero
mean, 〈F P〉 = 0. Since we already use the symbol δ for perturbations,
the Dirac delta functions in the last term have been denoted δD(qx)
and δD(qy). Their occurrence indicates that this term contributes
only in the specular directions, defined by qxy = ki,xy − kr̂xy = 0,
or kr̂ = (ki,x, ki,y,±ki,z).

In the case where the perturbations are due to zero-mean
translations δrn = (δxnδyn, 0), assumed much smaller than the
wavelength so that |q · δrn| 
 1, this simplifies to

Us(r̂)
Pi

=
|F 0(r̂)|2

k2A|E0|2|k̂i · ẑ|

{
(q2x + q2y)δ

2 + 4π2δD(qx)δD(qy)
}
, (19)

where δ2 =
〈
|δr|2

〉
is the variance of the translations. From this

expression it is clearly seen that the first term inside the curly brackets
represent a diffuse scattering, i.e., power is scattered in directions other
than the specular directions.

8. NUMERICAL EXAMPLES

In this section it is indicated that the perturbed surface fields are
localized fields that in most cases are negligible in the cells surrounding
the perturbed cell. This is done by calculating the perturbation to the
tangential electric and magnetic fields on the surface of the perturbed
cell, using the single cell approximation. In this case the unperturbed
cell consists of a circular aperture in a perfectly conducting plate. The
thickness of the plate is 1 mm, the radius of the aperture is 15 mm, the
cell is quadratic 23 × 23 mm, and the center of the aperture coincides
with the center of the cell. The incident electric field is a linearly
polarized plane wave at normal incidence, with the electric field in the
x-direction, i.e., the horizontal direction in the figure. The frequency is
10 GHz. The perturbed cell has its aperture displaced either a distance
4 mm to the right or 4 mm upwards.

The surface fields were calculated by a method that utilizes FEM
in combination with a mode matching technique, cf., [8]. The
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Figure 4. The surface fields of the tangential electric and magnetic
fields of cells with circular apertures. The incident field, the geometry,
and the figures are described in Section 8.

perturbed fields, EP
T(r) and HP

T(r), were obtained by first solving the
unperturbed periodic case to get E0

T(r) and H0
T(r), and then solving

the periodic case with all cells displaced to obtain ET(r) and HT(r).
It was checked that the latter fields only differ by a phase shift k · δr
compared to the unperturbed fields, cf., Subsection 6. The resulting
fields, EP

T(r) and HP
T(r), are shown in Figure 4. Let (i, j) denote the

subfigure in row i and column j. The unperturbed tangential electric
field E0

T is shown in figure (1,1) and the corresponding magnetic field
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H0
T in figure (2,1). In figures (1,2) and (2,2) the tangential electric

and magnetic fields ET and HT are shown for the periodic case with
all of the apertures displaced horizontally a vector δr = δxx̂, with
δx = 4 mm. The perturbation to the tangential electric and magnetic
fields, EP

T and HP
T, are shown in figures (1,3) and (2,3), respectively.

The case with a perturbation δr = δyŷ with δy = 4 mm is shown
in figures (3,2), (3,3), (4,2), and (4,4). Then the figures (3,2) and
(4,2) depict the electric and magnetic fields for the periodic case with
all of the apertures displaced and figures (4,2) and (4,3) depict the
perturbations to the tangential electric and magnetic fields.

As seen from the plots in Figure 4, the perturbation of the fields
are concentrated to the area close to the edge of the aperture. The
perturbation is close to zero at the border between the cells. Due to
(18), the effect of these perturbations do not appear primarily in the
reflection and transmission coefficients, but in a diffuse scattering in
the non-specular scattering directions.

It is anticipated that the perturbation to the surface fields are
negligible in the other cells. This can be checked by calculations using
supercells, the method of which is described in Appendix A.

9. CONCLUSIONS

A manufactured frequency selective structure will always deviate
slightly from a perfect periodic structure. This paper presents a
procedure to estimate the deterioration of the desired performance
of the structure, focussing on the change of tangential electric and
magnetic fields. The procedure utilizes numerical methods that are
developed for perfect periodic structures. This is an advantage since
only a small amount of new code has to be written. The procedure
gives possibilities to choose the level of accuracy of the numerical
calculations. This is done by the introduction of supercells that consist
of several individual cells.
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APPENDIX A. SUPERCELLS

In [8] a method that can handle frequency selective structures with
apertures was described. The method is based on FEM and expansions
in Floquet modes. The drawback is that the method can only handle
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(a) (b)

Figure A1. Two examples of unit cells that contain more than one
aperture: (a) Four apertures. (b) Two apertures: an annular and a
crossed dipole aperture.

cells with a single aperture. In this appendix it is shown how the
method can be generalized to handle supercells.

Consider a frequency selective structure where the unit cell
contains M apertures Ω1,Ω2, . . . ,ΩM . An example of such a cell with
two different apertures; Ω1 as an annular aperture, and Ω2 as a a
crossed dipole aperture, is given in Figure A1. The structure may
contain dielectric layers on both sides of the metallic plate. In the
regions outside the structure and in the dielectric layers, the fields are
expanded in Floquet modes, whereas in the apertures the fields are
expanded in waveguide modes. For general structures these modes
are determined numerically by FEM. The waveguide mode amplitudes
and the amplitudes for the Floquet modes are related to each other by
scattering matrices. In this appendix it is shown how the scattering
matrix between the waveguide mode amplitudes and the Floquet mode
amplitudes in an adjacent dielectric layer can be obtained.

The fields inside the dielectric layer are expanded in Floquet
modes

Ea
T(r) =

∑
lmn

(a+
lmneiγa

mnz + a−lmne−iγa
mnz)Ra

Tlmn(ρ), (A1)

Ha
T(r) =

∑
lmn

(a+
lmneiγa

mnz − a−lmne−iγa
mnz)T a

Tlmn(ρ). (A2)

The explicit expressions for the Floquet modes Ra
Tlmn and T a

Tlmn are
given in [8]. The fields inside the apertures are expanded in waveguide
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modes. In aperture Ωi the expansion is

Ebi
T (r) =

∑
vn

(bi+vneikbi
znz + bi−vne−ikbi

znz)Ebi
Tvn(ρ), (A3)

Hbi
T (r) =

∑
vn

(bi+vneikbi
znz − bi−vne−ikbi

znz)Hbi
Tvn(ρ), (A4)

where the waveguide modes Ebi
Tvn(ρ) are an orthonormal set of vector

waves, cf., [8].
At the interface z = z0 the tangential electric field is continuous

over the entire interface D, while the magnetic field is continuous over
the apertures, i.e., the boundary conditions read

Ea
T(ρ, z0) =

{
Ebi

T (ρ, z0), ρ ∈ Ωi, i = 1, 2, . . . , N,
0, ρ ∈ D \ (Ω1 ∪ Ω2 ∪ . . . ∪ ΩN ),

(A5)

Ha
T(ρ, z0) = Hbi

T (ρ, z0), ρ ∈ Ωi, i = 1, 2, . . . , N. (A6)

Introducing

A±
lmn(z) = a±lmne±iγa

mnz, (A7)

Bi±
vn(z) = bi±vne±ikbi

znz, (A8)

and enforcing the continuity condition of the fields at the interface
z = z0 yield

∑
lmn

(A+
lmn(z0) +A−

lmn(z0))Ra
Tlmn(ρ)

=

{∑
vn

(Bi+
vn(z0) +Bi−

vn(z0))Ebi
Tvn(ρ), ρ ∈ Ωi,

0, ρ ∈ D \ (Ω1 ∪ Ω2 ∪ . . . ∪ ΩN ),
(A9)

and∑
lmn

(A+
lmn(z0) −A−

lmn(z0))T a
Tlmn(ρ)

=
∑
vn

(Bi+
vn(z0) −Bi−

vn(z0))Hbi
Tvn(ρ), ρ ∈ Ωi. (A10)

To obtain a linear system of equations for the coefficients, the inner
product is taken between (A9) and T a∗

Tl′m′n′ , and between (A10) and
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Ebi∗
Tv′n′ , i = 1, 2, . . . , N . The inner product integrals are

Rlmn,l′m′n′ =
∫

D
ẑ · (Ra

Tlmn × T a∗
Tl′m′n′) dS

=
∫

D
Ra

Tlmn · (T a∗
Tl′m′n′ × ẑ) dS

=
Y a∗

l′m′n′

η0

∫
D

(Ra
Tlmn · Ra∗

Tl′m′n′) dS

=
Y a∗

lmn

η0
δll′δmm′δnn′ , (A11)

Qi
vn,v′n′ =

∫
Ωi

ẑ · (Ebi
Tvn × Hbi∗

Tv′n′) dS =
Y bi∗

vn

η0
δvv′δnn′ , (A12)

and

Ci
vn,l′m′n′ =

∫
Ωi

ẑ·(Ebi
Tvn×T a∗

Tl′m′n′) dS =
∫

Ωi

Ebi
Tvn·(T a∗

Tl′m′n′×ẑ) dS

=
Y a∗

l′m′n′

η0

∫
Ωi

(Ebi
Tvn · Ra∗

Tl′m′n′) dS, (A13)

where D is the entire surface of the cell. With these definitions, the
linear system for the coefficients is


R(A+ + A−) =

∑
i

Ct
i(B

+
i + B−

i ),

C∗
i (A

+ − A−) = Q∗
i (B

+
i − B−

i ), i = 1, 2, . . . , N,
(A14)

The matrices R and Qi are quadratic, but the matrix Ci is not
necessarily quadratic. The linear system is rewritten as


A− =

∑
i

R−1Ct
i(B

+
i + B−

i ) − A+,

B+
i = Q∗−1

i C∗
i (A

+ − A−) + B−
i i = 1, 2, . . . , N.

(A15)

The lower expression is inserted in the upper expression in (A14). This
gives

R(A+ + A−) =
∑

i

[Ct
iQ

∗−1
i C∗

i (A
+ − A−) + 2Ct

iB
−
i ] ⇔

(R +
∑

i

Ct
iQ

∗−1
i C∗

i )A
− = −(R −

∑
i

Ct
iQ

∗−1
i C∗

i )A
+ + 2

∑
i

Ct
iB

−
i

(A16)
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which implies

A− = −(R +
∑

j

Ct
jQ

∗−1
j C∗

j )
−1(R −

∑
j

Ct
jQ

∗−1
j C∗

j )A
+

+ 2(R +
∑

j

Ct
jQ

∗−1
j C∗

j )
−1

∑
i

Ct
iB

−
i . (A17)

When this expression is inserted in the lower expression in (A15) the
following relation is obtained

B+
i = Q∗−1

i C∗
i [I + (R +

∑
j

Ct
jQ

∗−1
j C∗

j )
−1(R−

∑
j

Ct
jQ

∗−1
j C∗

j )]A
+

+ 2Q∗−1
i C∗

i (R +
∑

j

Ct
jQ

∗−1
j C∗

j )
−1

∑
k

Ct
kB

−
k + B−

i . (A18)

By introducing a scattering matrix, the linear system can be written
as 


A−

B+
1
...

B+
N


 =




Sl
1,1 Sl

1,2 . . . Sl
1,N+1

Sl
2,1 Sl

2,2 . . . Sl
2,N+1

...
...

. . .
...

Sl
N+1,1 Sl

N+1,2 . . . Sl
N+1,N+1







A+

B−
1
...

B−
N


 ,

(A19)

where the elements of the scattering matrix are


Sl
1,1 = −(R +

∑
j

Ct
jQ

∗−1
j C∗

j )
−1(R −

∑
j

Ct
jQ

∗−1
j C∗

j ),

Sl
1,i+1 = 2(R +

∑
j

Ct
jQ

∗−1
j C∗

j )
−1Ct

i,

Sl
i+1,1 = Q∗−1

i C∗
i [I + (R +

∑
j

Ct
jQ

∗−1
j C∗

j )
−1(R −

∑
j

Ct
jQ

∗−1
j C∗

j )],

Sl
i+1,i+1 = 2Q∗−1

i C∗
i (R +

∑
j

Ct
jQ

∗−1
j C∗

j )
−1Ct

i + I.

Sl
i+1,k+1 = 2Q∗−1

i C∗
i (R +

∑
j

Ct
jQ

∗−1
j C∗

j )
−1Ct

k.

(A20)

This is the supercell correspondence of the single cell scattering matrix
that is derived in [8]. The rest of the analysis used in [8] can now be
applied.
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