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Abstract—Fractional curl operator is utilized to construct the
solutions corresponding to fractional dual rectangular waveguides.
Fractional dual rectangular waveguides may be considered as
intermediate of two given waveguides, where both waveguides are
related through principle of duality. Characteristic impedance of
fractional waveguide is determined. Behavior of field lines in transverse
plane is also investigated.

1. INTRODUCTION

Fractional Calculus is a branch of Mathematics which deals with the
operators of general orders, including integer order, real non integer
order and even complex order [1]. Concept of fractional curl operator
was introduced by Engheta [2] and work was extended to operator
having higher and complex order [3]. Fractional curl operator may
be utilized to find the intermediate solutions between a given solution
and electromagnetic dual to the given solution. This operator had been
applied to many problems to study the intermediate or fractional dual
solutions [4-8]. Waveguide problems had been analyzed in different
respects [9-11]. In this paper, we have extended work on fractional
dual parallel plates waveguide [5] to rectangular waveguide. Field
expressions corresponding to fractional dual rectangular waveguide are
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determined. Impedance of fractional dual rectangular waveguide has
been derived.

2. FRACTIONAL RECTANGULAR WAVEGUIDE

Consider a rectangular waveguide, filled with a dielectric medium with
constitutive parameters € and p. Walls of the guide are PEC and are
located at x =0, x = a and y = 0, y = b. Let us suppose that a TM
wave (H, = 0) is propagating in z-direction. The axial component of
electric field is given by [9]

ZE.(x,y, 2) = ZAmn sin (kgx) sin (kyy) exp(—jB2) (1a)
where k, = ™%k, = 2% 3% = k% — k2 and k? = kzg—l—kg m and n are

) b
arbitrary inteagers. The transverse components of the fields propagating

inside the waveguide are [9]

TE(z,y,2) = —;%jié% A cos (kpx) sin (kyy) exp(—j6z) (1b)
IEy(2,y,2) = 520 A, sin (k k _jBz) @
9Ey(2,y,2) = ~§= 5 Amnsin (ksx) cos (kyy) exp(—jBz) (lc)
. k
$77Hz($ayaz) = _"L'BEy(:L'aya Z) (1d)
N Lk
gnty(z,y,z) = yEEm(:v,y,Z) (le)

where k = \/k2 + % = w\/1e.
We may express the field in the waveguide as superposition of 4
TEM plane waves. That is

E=E +E;+E3+E4 (2a)
nH = nH; + nHy + nH3z + nHy (2b)

where (E;,nH;) and i = 1,2,3,4 are the electric and magnetic fields
associated with ith plane wave and are given below

By = o (ol - g s) ety )
E, — AZW (xﬂ]fgm +§5k’z2y _ Z) i (—hez—kyy—p2) (3d)
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nH; = % (iky — kg ) Rt thyy=02) (3e)
nHy = kfﬁ (2ky + Jk,) ¢ Fat=kyy=52) (3f)
Hy = % (—itky — hy) eI e +huv=02 (3)
nHy = % (—&ky + Gk, ) e/ (TRer—kyy=52) (3h)

Fields E; and nH; given by Equations (3) are related through the
Maxwell equations as

V x E; = —jwuH;
k; x E; = nH; (4a)
Similarly
where
L
k, = j—k(—szx—Jkyy+Jﬂ2) (5a)
T
ky = j_k<_]kacfc+]kyy+]/82) (5b)
T . . .
ks = j—k(Jka:iE — jkyy + jB%) (5¢)
r ..
ks = E(kax+Jkyy+Jﬁz) (5d)

It may be deduced from above expressions that for set of fields
(E;,nH;), the operator (]ikv ><> is equivalent to cross product operator

(k;x). It is also obvious that if (E;,nH;) is one set of solutions to
Maxwell’s equation then other set of solutions to Maxwell’s equations
is (nH;, —E;). Our interest is to determine the fields which may be
regarded as intermediate step of the field (E,nH) and (nH, —E), that
is, new set of solutions (Eyq,nHjq). For this purpose solutions sets
(Eitd,nH;5q) with ¢ = 1,2,3,4 are required. (E;zq,7H;zq) may be
obtained by using the following relations [2]

Bijs = g [(7)°ES
— (kix)"E; (6a)
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1
(Jk)"
= (kix)" nH;, 1=1,2,3,4 (6b)

nH;rq = [(Vx)*nH,]

Solutions (Eq,nHyq) may be obtained by linear combination of
(Eifdy nHifd)y that is

Etg = Eifg+Eopqg+ Espqg+ Eyypqg (7a)

nHyq = nHypq +nHayq +nHszpq +nHayg (7b)

In order to determine the fractional dual solutions (E;tq, nH;fq), the

eigenvalues and eigenvectors of the cross product operators k;x are
required. Eigenvectors and eigenvalues of the operator (k; x) are

1
Ay = — [(Bky + jkky))i + (Bk. — jkko)y + k22], a1 =4  (8a
1 ﬂkkc[(ﬁ 7kky)E + (Bk. — jkks)y |, ar=37 (8a)
1
Ay = — [(Bky — jkky)Z + (Bk, + jkke)y + k22], ag = —j (8b
12 \/Ekkc[(ﬂ jkky)& 4+ (Bk- + jkka)g ], az=—j (8b)
1
Az = E(—kxf — kyg) + kzé), a3 =0 (8C)

Eigenvectors and eigenvalues of the operator (ko x) are

1
Ao =——— [(Bky — jkky)i + (— Pk, — jkko)y + k22], a1 =5 (8d
21 ﬂkkc[(ﬁ gkky)& 4 (= Bk — jkkz)g ], ar=j (8d)

1 o . R R .
AQQZﬁch [(Bka + jkky)d + (— Bk, + jkky)g + k22], as = —j (8e)

1
Agy=1 (~koft 4 kyf + k:2), a5 =0 (8f)

Eigenvectors and eigenvalues of the operator (kgx) are

1
Az =—— [(—Bky + jkky)2 + (Bk. + jkky)y + k22], a1 =5 (8
31 ﬁkkc[(ﬂ Jkky)Z + (B + jkke)] ], ai=j (8g)

1
Asp=— [(—=Bky — jkky)Z + (Bk, — jkks)y + k22|, ag = —j (8h
32 ﬁkkc[(ﬁ Jkky) + (Bk: — jkk.)y ], az=—j (8h)

1. . . .
A33:E(k:xa: —kyy+k.2), a3 =0 (81)
Eigenvectors and eigenvalues of the operator (kyx) are

Ay [(—Bky — jkky) 2+ (—Bks + jkky)) + k22], ar=j  (8)

1
2k,

1 . . . . N .
A42:\/§ch [(—Bka + jkky)i+(—Bk. — jkka)j + k22|, aa=—j (8k)
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1. . .
A= E(k:xx +kyg+k.2), az=0 (81)

Fields (E;,nH;) may be expressed in terms of the eigenvectors of
the operator (dropping the exponential terms), that is

E; = [P A7 + QiAp + RiA;3) (9a)
nH; = [SiAin + T Ay + U Ays) (9b)

The coefficients are given below

Ampn k
1 = Q1 =P =0Q4=—jS =—jSy=—jTh = —jI} A
Py=Qy=Py=Q3=—jT1 = —jTy = —jSs = —jS _ A &
2 =k2=M3=43="J01= Jd4=7)02= ‘73_4\/5190
Using (6), (8) and (9) the fractional fields are given as
Eipg = —2mn 1o (oﬂ) (2Bkai + 28kyi + 2k22)
1 8k2 2 g yy o e
_jsin (ag) (2jkky& — 2jkkyg})eih=o+ikyy—iBz (10a)
Amn ™ N N 24
Esrqg = k2 [cos (a§> {28k, & — 20kyg + 2k22}

+jsin (ag) (~2jkky @ — 2jkkgg}|elF=m—ikw=if  (10b)

Amn A~ ~ ~
Esfq = =" [cos (ag) {—2Bkyd + 28kyg + 2K22)

8k2
+jsin (ag) (2jkkyd + 2jkkgg})eTEsmtikv=ifz  (10c)
Amn A ~ A
Eyjrqg = — 52 [cos a%) {fQﬂk:xx — 2Bkyy + 2k§z}

—jsin (ag) (=2jkkyi + 2jkkyg}|eFem—dkw=i2  (10q)

]Amn ™ . X . N
nHipg = — 82 [cos <a§> {2jkkyz — 2jkk,y}

—jsin (ag) {2Bksd + 28k + 222 }|eTher k=3B (10c)

. ]Amn E iy s o R
nHafq = e [cos (a2>{ 2jkky& — 2jkk, 0}

+jsin (ag) {28k, — 2Bky§ + 2k22 }|eTkem—ihu=0% (10f)
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>Amn . “ . N
nHzfq = jSkg [cos (a%){?gkkyx—i—%kkxy}
44 sin (ag){—wkxﬂ25@@+2k§2}]e*ﬂw+jkyﬁﬂz (10g)
Amn ™ . . . N
nHyfq = _jSkg [cos <a§>{—2jkkyx+2]kkzy}

_jsin (ag){—2ﬁkx:% — 2Bkyj+2k2 2} e Ike kv (10D)

Putting (10) in (7), the fractional field (Ezq, nHyq) are given by

Ey = Erfdi’ + Eyfdgj + Ezfd?:“ (11a)
nHyq = nHypa® +nHypay +nH.pa? (11b)
where
E = —jAmn {6k cos (az> + kk, sin (az> } cos (k x — az)
zfd — kg T 2 Y 2 T 9
X sin (kyy - a%) e %2 (12a)
jAmn ™ . ™ . T
Eyrq = — P2 {ﬁky cos <a§> — kk, sin (a§> } sin (kxac — ag)
X €OS (kzyy - a%) e=IP? (12b)
E.rqg = Apncos (a%) sin <kxa: — a%) sin (kyy — a%) e IP~ (12¢)
jAmn s . ™ . s
nHyrq = 2 {k:ky cos (ag) — Bk 51n(oz§)} sin (k:xx - a§)
X €OS (kyy - a%) e~IP? (12d)
jAmn ™ . ™ T
nHypg = — 2 {kkm cos (a§) + Bk, sin (ai) } cos (kxac — a§>
X sin (kyy — a%) e=iP? (12e)

nH.rq = —Apnsin (a%) cos (k:ﬂ:—@z%) cos (k:yy—ag> e I8z (12f)

Equation (12) gives the fractional dual solution.
For a = 0,
_ JAmn . —iBz _
E rqg = — 12 Bk cos(kzx) sin(kyy)e =FE, (13a)
&

.Amn . —iBz
Eyfa = - ) By sin(kyx) cos(kyy)e Bz — K, (13b)
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Ezfd

nHmfd

nHyrq

nH rq

Apan sin(kyx) sin(k:yy)e*jﬂz =F,
k?
JAmn

ke
0=nH,

kk, sin(k,x) cos(kyy)e %% = nH,

kky cos(kyx) sin(kyy)e P = nH,

yields original TM solution in PEC waveguide.
For a =1, we get

E;rq

Eyrd
E.;q

nHg fq

nHyrq

nH 4

Amn . —q

J 12 kk, sin(k,x) cos(kyy)e %% = nH,
JAmn . —jBz

2 kky cos(kyx) sin(kyy)e =nH,

0=nH,

]Amn . —iBz
12 Bk cos(kzx) sin(kyy)e =-FE,

JAmn g1 sin(h kyy)e 9P = —E
B sin(ks) cos(ky)e % = I,

— A sin(kpx) sin(kyy)e 797 = —E,

389
(13c)
(13d)
(13e)

(13f)

(14a)

(14b)
(14c)
(14d)
(14e)

(14f)

The field for @ = 1 is dual to the field for « = 0. For 0 < a < 1,
the field given by (12) may be regarded as intermediate between (13)
and (14), and may be called fractional dual field or fractional field.
Field expressions (14) are TE fields in a rectangular waveguide with
perfect magnetic conductor (PMC) walls. From (12) it may be noted,
for 0 < a < 1, behavior is changing in a same way as discussed in [7].
PEC guide is changing to PMC and TM mode is changing to TE mode.

For a = 2,
E;rq
Eysa
E.fq

nHyfq

nHyzq
nH rq

j Amn X .
/ kf2 lgkx COS(kxﬂ?) Sln(kyy)e 3B~ = _ECC
Cc
JAmTL . 7]BZ
k2 ﬂky Sln(kxil:) COS(kyy)e = —Ey

— A sin(k,x) sin(kyy)e 9P = — B,
-
ke

0=-nH,

kk, sin(k,x) cos(kyy)e %% = —nH,

kky cos(kyx) sin(kyy)e P = —nH,

(15a)

(15b)
(15¢)
(15d)

(15€)
(15f)
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and we have TM mode in PEC waveguide and these solution are dual
to solution for o = 1.

For a = 3,
]Amn . —jBz
E rqg = — 12 kky sin(kyx) cos(kyy)e =-nH, (16a)
]Amn . —iBz
E g = 12 kky cos(kzx) sin(kyy)e = —nH, (16b)
Ezfd =0= —nHz (16C)
Amn . —q
nHyrq = _J 2 Bk cos(kyx) sin(kyy)e Bz — B, (16d)
.jAmn . —jBz
nHyrq = _Tﬁk‘y sin(k,x) cos(kyy)e =FE, (16e)
nH,¢q = Apnsin(k,x) sin(k,y e 187 — E, 16f
f Y

we have TE solution in PMC waveguide and these solution are dual to
solution for a = 2.

For o = 4,
E, = LA gy kyx) sin(kyy)e 7% = E 17
xfd = —75 2 cos(kex) sin(kyy)e = Lz (17a)
JAmn . —jBz
Eyrq = _Tﬁky sin(kgx) cos(kyy)e =E, (17b)
E.fq = Appsin(k,z)sin(kyy)e % = E, (17¢)
.Amn . —J
nH, g = J 12 kk, sin(k,x) cos(kyy)e 9% = nH, (17d)
JAmn : —jBz
nHyrq = R kky cos(kzx) sin(kyy)e =nH, (17e)

These are original solution so, fractional dual field are periodic with
period a = 4.
The characteristic impedance of the fractional guide is

Eyra Eyra

= Hyrq Hfd

Z = ol v 18
Eyta Eyta ( )
Hypa  Hyfa
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Z=n
Bz cos(af Hkky sin(af ) co
kky cos(a 5 )—-Bkz sin(ag) co

Bky cos(a g )—kke sin
kky cos(a g )—Bkz sin

3) Bkg cos(a g Hkky sin(a )
kyy—a3) kkz cos(a g HBky sin(ay) (19)
) Bky cos(aF )—kke sin(a ) tan(ke v 7 )

) kg cos(ag HBky sin(ay) tan(kyy—ay)

(a3
(ag

Equation (19) gives the characteristic impedance of fractional

waveguide.
Fora=0
_ Bkg cot(kgx) B
= Eky cot(kyy) k
Z=n Ié; Bky tan(kyx) (20)
k kkz tan(kyy)
we have characteristic impedance of TM mode.
Fora =1
kky tan(kzx) k
7 Bka tan(kyy) B
Z=n k _ kky cot(kzx) (21)
B By cot(kyy)

we have characteristic impedance of TE mode. For a = 2, we get the
same result as for @ = 0. It can be seen from (19), that characteristic
impedance is periodic with period a = 2.

3. FIELD LINES IN TRANSVERSE PLANE

To study the behavior of field lines in the waveguide, we select xy-plane
which is transverse to the guide. We have plotted the field lines for
square guide(a = b = 1) for m = n = 1. For this mode k. = /27 so we
have taken k& = 27. To plot field lines we need to write instantaneous
field expression, by multiplying (12) with exp(jwt) and taking the real
part, that is

Apmn 7T . T ™
E g = 2 {Bks cos(a§) + kk, s1n(oz§)} cos(kpx — a§)
x sin(kyy — ag) sin(fz — wt) (22a)
Apn, 0 . ™ . m
Eyrq = 2 {Bk, cos(a§) — kky sm(aa)} sin(kyz — a§)
x cos(kyy — ag) sin(fz — wt) (22b)

E.tg = Amn cos(ag) sin(k:xa:—ag) sin(k:yy—ozg) cos(fz—wt) (22¢)
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Amn . .
Hzpa = _k—g{kky Cos(ag) — Bk SIH(O%)} sin(kyz — ag)
x cos(kyy — ag) sin(fz — wt) (22d)
Amn ™ . ™ T
nHyrq = k—g{kzkx Cos(ag) + Bky 31n(a§)} cos(kpx — 045)
x sin(kyy — ag) sin(fz — wt) (22e)
nH g = —Amnsin(ag)cos(k:x:c—ag)cos(kzyy—ag)cos(ﬂz—wt)(22f)

Slope of Electric field lines in zy-plane is given by

dy _ Eypa (23)
dzr E:(:fd

putting values in (23) from (22) and integrating we get following
equation which describes electric field lines in the guide for different
values of constant

In cos(kyy — aF) In cos(k,z — aF)
ky{Bkycos(af)—kkysin(af)}  ke{Bk; cos(af)+kk,sin(af)}

—Cy
(24)

where C] is a constant. Plots of 30 such lines are given in Figure 1 for
different values of «. Similarly for magnetic field

dy _ Hyja

2
dr  Hgpq (25)
and its solution is
Insin(k,y — aF) Insin(kz — af) _o
ky{kky cos(al)+Bkysin(ad)}  ki{kkycos(a])—Bkysin(af)} 2
(26)

and Cs is another constant. Plots of 30 field lines is given in Figure 2
for different values of a. For o = 0, plot (la) gives electric field
and plot (2a) gives magnetic field for T'M;; mode in PEC waveguide.
These plots are in agreement with [10] and [11]. It can be seen from
these plots that electric field lines are perpendicular to guide walls
and magnetic field lines are parallel. Plot (1e) gives electric field lines
and plot (2e) magnetic field lines for a = 1. It is evident from these
plots that electric field lines are parallel and magnetic field lines are
perpendicular to guide walls, so, the guide can be considered as made
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o] 0.2 0.4 0.6 0.& 1

(a)y. a=10

1] 0.z 0.4 0.6 0.8 1

(d). a=0.38

0 0.2 0.2 0.6 0.8 1

(e) a=1

Figure 1. Plots of electric field lines in transverse plane.

up of perfect magnetic conductor (PMC). Plots (1b-1d) shows the
electric field lines and plots (2b—2d) magnetic field lines for @ = 0.2,
0.5 and 0.8 respectively. The electric and magnetic fields are neither
perpendicular nor parallel to walls so the walls can be considered as
intermediate of PEC and PMC.
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0 0.2 0.4 0.6 0.5 1

(b). @ =102

o] n.g 0.4 0.6 0.8 1

(d). a=038

[

0.6 0.3 1

Figure 2. Plots of magnetic field lines in transverse plane.

4. CONCLUSION

In this paper we have studied the fractional dual field in rectangular
waveguide. It is noted that for « = 0, we have original solution i.e.,
TM solution in PEC waveguide. For a = 1, we have solution dual to
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original i.e., TE solution in PMC waveguide. For 0 < a < 1, we have
solution which may be regarded as intermediate of these two solutions.
It is noted that these solution are periodic with period a = 4. Also we
calculated the characteristic impedance of fractional or intermediate
waveguide. It is seen that for a = 0, we have impedance for TM mode
and for @ = 1, we have impedance for TE mode. For 0 < a < 1, we
have fractional characteristic impedance (characteristic impedance of
fractional waveguide). At the end we have shown and discussed the
behavior of electric and magnetic field lines inside fractional waveguide.
It is noted that for o« = 0, electric field lines are perpendicular and
magnetic field lines parallel, so guide walls may be considered as made
of walls PEC. For a = 1, magnetic field lines are perpendicular and
electric field lines are parallel, so, guide walls may be considered as of
PMC walls. For 0 < a < 1, both electric and magnetic field lines are
neither completely perpendicular nor parallel to waveguide walls, so,
guide walls can be considered intermediate between PEC and PMC.

REFERENCES

1. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic
Press, New York, 1974.

2. Engheta, N., “Fractional curl operator in electromagnetics,”
Microwave Opt. Tech. Lett., Vol. 17, 86-91, 1998.

3. Naqvi, Q. A. and M. Abbas, “Complex and higher order fractional
curl operator in electromagnetics,” Optics Communications,
Vol. 241, 349-355, 2004.

4. Veliev, E. I. and N. Engheta, “Fractional curl operator in
reflection problems,” 10th Int. Conf. on Mathematical Methods
in Electromagnetic Theory, Ukraine, Sept. 14-17, 2004.

5. Hussain, A., S. Ishfaq, and Q. A. Naqvi, “Fractional curl
operator and fractional waveguides,” Progress In Electromagnetics
Research, Vol. 63, 319-335, 2006.

6. Hussain, A., Q. A. Naqvi, and M. Abbas, “Fractional duality
and perfect electromagnetic conductor (PEMC),” Progress In
Electromagnetics Research, PIER 71, 85-94, 2007.

7. Hussain, A. and Q. A. Naqvi, “Perfect electromagnetic conductor
(PEMC) and fractional waveguide,” Progress In Electromagnetics
Research, PIER 73, 61-69, 2007.

8. Hussain, A., M. Faryad, and Q. A. Naqvi, “Fractional curl
operator and fractional chiro-waveguides,” J. of FElectromagn.
Waves and Appl., Vol. 21, No. 8, 1119-1129, 2007.



396

10.

11.

12.

13.

14.

Faryad and Naqvi

Park, J. K., J. N. Lee, D. H. Shin, and H. J. Eom, “Full wave
analysis of a coaxial waveguide slot bridge using the Fourier
transform technique,” Journal of FElectromagnetic Waves and

Applications, Vol. 20, No. 2, 143-158, 2006.

El Sabbagh, M. A. and M. H. Bakr, “Analytical dielectric constant
sensitivity of ridge waveguides filters,” Journal of Electromagnetic
Waves and Applications, Vol. 20, 3, 363-374, 2006.
Khalaj-Amirhosseini, M., “Analysis of longitudinally inhomoge-
neous waveguides using Taylors series expansion,” Journal of Elec-
tromagnetic Waves and Applications, Vol. 20, No. 8, 1093-1100,
2006.

Blanis, C. A., Advanced Engineering FElectromagnetics, John
Wiley & Sons, 1989.

Lee, C. S, S. W. Lee, and S. L. Chuang, “Plot of modal
field distribution in rectangular and circular waveguides,” IFEE
Transactions on Microwave Theory and Techniques, Vol. 33, No. 3,
271-274, Mar. 1985.

Chu, L. J. and W. L. Barrow, “Electromagnetic waves in hollow
metal tubes of rectangular cross section,” Proceedings of the IRE,
Vol. 26, Issue 12, 1520-1555, Dec. 1938.



