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Abstract—In this paper, a set of formulas to analyze the scattering
from open-ended rectangular cavity is presented on the basis of
Shooting and Bouncing Ray (SBR) method. By analyzing the ray
paths inside the cavity, the Physical-Optics (PO) integration on the
aperture is carried out in a close form. Using closed-form solution, the
Radar Cross Section (RCS) of cavity in high frequency can be studied
sententiously and accurately. All the peaks and nulls in the RCS plot
of cavity are predicted successfully with the formulas deduced in the
paper, and a 3-D scattering pattern of rectangular cavity is simulated
by the proposed method.

1. INTRODUCTION

The problem of electromagnetic scattering from open-ended cavities
has been studied intensively by various computational electromagnetic
techniques for many years [1-5]. This problem serves as a simple
model of duct structures such as Jet engine intakes or antenna windows
embedded in more complex bodies [1, 6-8], and much research has been
carried out on analysis of both radar cross section and electromagnetic
pulse coupling [9-12]. At the low frequency end, i.e., cavities with
opening less than a wave-length, a rigorous integral equation can
be used [1, 5]. For an aperture opening on the order of several
wavelengths, one has to resort to high-frequency approximations [4].
The shooting and bouncing ray (SBR) method is proposed to
study the scattering from cavity for decades [3, 4, 9], and it has
been widely used in the simulation of electromagnetic wave scattering
from cavity. The validity and accuracy of SBR method is proved
in many papers available. In order to analyze the scattering from
cavity upon complex object, some hybrid methods of SBR with
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other computational electromagnetic techniques are developed. The
SBR method is know as a powerful RCS analysis method because it
can analyze the RCS characteristics for arbitrary shape open-ended
cavities, and it is also widely used if the space inside the cavity is
not homogeneous or the electrical dimension of the cavity is large [3].
While much research has been devoted to the problem that shape of
the cavity is arbitrary, little research has been done on the acceleration
of SBR method to analyze the cavity in large size.

Owning to the irregular positions of exit rays, the physical-optics
integration cannot be easily carried out in original SBR [3]. Although
the SBR approach can predict RCS for cavity in any shape, it is time-
consuming and unpractical to realize modeling of the physical problems
for cavity in large size. There are also other methods that can be
used to calculate the scattering from cavity, such as waveguide modal
approach, but it is cumbersome if the electrical dimension of the cavity
is very large.

The present paper discusses the characteristics of ray tracing
inside the cavity with typical shape such as rectangular cross section,
which is applied widely in the fields of electromagnetic. A closed-form
solution for analysis the RCS of rectangular cavity is developed based
on the SBR method. The formulas are of concise expression and can be
realized easily by computer. The characteristic of rectangular cavity is
studied, such as the peaks and nulls in the RCS plot of cavity, and the
scattering pattern for rectangular cavity is presented, which is difficult
to be realized by the original SBR or other methods.

2. PREDICTION METHOD

In the SBR method, the incident wave is divided into a set of ray
tubes. By the approach of ray tracing and physical optics integral, the
scattering from cavity is calculated. A detailed procedure of the SBR
can be found in [3]. On the basis of a study on ray tracing, the positions
of ray bounced on the wall of cavity and the location of ray exit are
analyzed, and the rules of ray path inside the cavity are investigated.
The property of ray bouncing in rectangular cavity is discussed in this
paper, and the relation between ray incident and ray exit is deduced.
A closed-form solution for 3-D problems of scattering from rectangular
cavity is presented. The procedure is bored and complex, and some
important results are listed here.
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The backscattered field can be carried out by the follows [3]:
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Here, 1, is defined as follows,

I, = // d:z:dyefjko(%ergm)'F (2)

mth exit
ray tube

In Eq. (1), m is the index of ray tube. E,y, and Ey,, are the x and
y components of the outgoing field on the aperture. The direction
vectors of the incident rays and exit rays for mth ray tube are denoted
by i, and §,, respectively, and the central ray in mth exit ray tube
hits aperture of cavity at point 7,, = (Trms Ym)-

Eq. (2) is the Fourier transform of the ray tube shape function
(normalized with respect to the ray tube area), and it can be carried
out as follows:

Iy, = (Al‘mAym)e—jkO(%m-’—ém).Fm
Az, AyYm (3)
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Where,

sha(z) = sinx
x

(Azy, Aym) = area of the exit ray tube.

In order to get a precise result, the dimension of ray tube is
supposed to tend to zero, and Eq. (3) can be carried out with a new
expression:

—

I = (Azp Ay, )e o lm+5m) T (4)

The geometry of rectangular cavity is shown in Fig. 1, and Fig. 2 is
the local coordinate system at the reflected point on the wall of cavity.
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Figure 1. Geometry for rectangular cavity.
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Figure 2. Local coordinate system at reflect point.

According to the reflection laws of plane wave incidence on a
dielectric interface, some special rules for ray bounced in rectangular
cavity can be found:

i = (sin @’ cos ¢, sin 0 sin @', cos 6?) (5)
§=1—2(-n)n

& =2(&" -y —T)&), +T L&) (6)

Where, 1, 5, ¢ and é° are the direction vectors of the incident

wave, reflected wave, incident electric field and reflected electric field
respectively. The subscript | and L represent the components of
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parallel or perpendicular polarization accordingly. If the wall of cavity
is perfect conductor, then Eq. (6) can be rewritten into:

é5 =2(e ) — é (7)

Consider one of the incident ray tubes, given the location of incident
ray hit on the aperture, a set of reflected points in cavity and the
direction of the exiting ray can be obtained with the Geometric Optics
(GO) method. The detailed process of ray tracing is bored and lengthy
so only some results are described here.

In order to carry out Eq. (1), the relationship of incident ray tube
and exit ray tube should be determined at firstly. Given the incident
field, the ray paths in the cavity can be found by ray tracing and the
rules proposed above, and the field amplitude of the exit rays on the
aperture of cavity is got based on GO method. Table 1 presents a
summarization of the relation between incident ray and ray exit. As

Table 1. Relationship of ray incident and ray exit on the aperture.

Noz 1s ;[U(),EBI] Tout =T +a— By | s3 =g Zg _ :i;

odd L[UBi’a] Tout = —T+a+By | 85 = —iy ZZI _ ::% ii
Ny is ﬁ),EBI] Tout = —T + By Sy = —ig 2? B :z; —et
even L[EBi,a] Tout =T — By Sy = ig Z% i :i; iz
odd [yBEyjb] Yout = —Y+b+By | sy = —iy Z% : B :% T‘Z

even [yij] Yout = Y — By Sy = Uy 2% f ;;

the axis of cavity is parallel to the Z axis in Cartesian coordinates,
the location of ray incident and ray exit can be represented by (x,y)
and (Zout, Your) respectively. The parameters No,, Noy, B, and By in
Table 1 are defined as follows:

2h iy
No = Round (— . m) +1 (8)
a

1z
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2h i
Noy = Round (T . M) +1 9)
1z
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Once the incident rays have been defined, the impact point of each
ray on the inner wall or the bottom of the cavity will be determined,
and the parameters No;, No,, B, and B, can be carried out, which
will confirm the exit ray by the relationship shown in Table 1. For
example, consider the case in which Ny, is odd and Ny, is even, while
incident ray hits the aperture of cavity at point (z,y), if z € [0, B,] and
y € [0, B,], then then exit ray can be confirmed as following equations:

Tout =T+ a— B,
Yout = —Y + By

5 = (i:ca _iya _iz)
e’ = (627 76;‘;’ *ei)

As mentioned above, there should be enough ray tubes launched
into cavity to get an accurate result in SBR method, and the sizes of
ray tube must tend to zero (Az — 0, Ay — 0), which means that the
sum in Eq. (1) can be replaced by an integral operation, so Eq. (1) is
rewritten as:

Ap _ ] ko - cho Oum cos go + Eouty sin gp
Ay Eoute Sin @' + Eoypy cos ¢*) cos §°
xe_JkOZ.(TOUt_F) dmoutdyout (12)

Where, subscript out means the components related to ray exit.
Because the positions of exit rays are nonuniformly dispersed over the
aperture, the integration in Eq. (12) cannot be carried out directly.
However, the incident rays are launched uniformly. If we can carry out
Eq. (12) with the incident field on the aperture instead of outgoing
field, the integration may be solved out. As seen from Table 1, the
relation betweenr = (z,y) and 7 out = (Tout, Yout) can be concluded as
follows,

T =Fxo +C1

13
Y = £Your + C2 ( )
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Where, C1 and C2 are constant corresponding. That is to say,
dZoutdyoyr can be replaced by +dxdy, which implies that the integral
region may be converted to the aperture of cavity. The sign + will be
determined by the relationship of incident ray and exit ray, which is
shown in Table 1. In order to get a closed-form solution of Eq. (12),
the aperture of cavity is divided into four subregions which are shown
in Fig. 3.

y
b
Sa S3
By
S1 S2
X
0(0, 0) Bx a

Figure 3. Subregions of integral region.

As an example, the paper carries out the integral in Eq. (12) when
Nogand Ny, are both odd. The solution for other cases can be deduced
in a similar procedure, and the paper doesn’t list them here. Let the
integral part of Eq. (12) on region S; be denoted by I, then:

-
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s T (—el sing — el cos ') cos 0 €
L sin g’ — e}, cos ') cos
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Obviously, the integral in Eq. (12) is the sum of four integrals in those
subregions. Once the integral is carried out, Eq. (12) is solved in a
closed-form.

The formulas for other case are list as follows.
1). If Ny, is odd and Ny, is even,

[o_ | cacosd’ —eysing o ikolizatiyBy)
st (—el sin ¢! — ez cos ') cos 0
x By Bysha(koia By) (18)
el cos o' + eé sin ¢ —jko iz (a+Buy )+iy By]
I = (—elsinp’ + e} cos ') cos 7 | © pem
x(a — B,)B, (19)
P R e e
(e sing’ + e, cos ¢*) cos 0°
x(a — B,)(b — By)sha[koi, (b — B,)] (20)
Lo —el, cos ' — e sin ¢’ o—ikolizatiyb)
st (€l sin @’ — ! ‘ 6
»sing’ — ej cos ') cos

X By (b — By)sha(koyiyzBy)shalkoiy (b — By)] (21)

2). If Ny, is even and Ny, is odd,

P B I P
(e sin ¢’ + e; cos ¢') cos
X By Bysha(koiyBy) (22)
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3). If No, is even and Ny, is even,
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Then, Eq. (12) can be carried out in a close form as shown below.
= — 1z I 30
[ Ap } om g (80)

where,
I= Isl + 152 + IsS + Is4

The proposed method is summarized below,
1) Input the geometry size of cavity (a x b x H) and the direction of
incident wave i;

2) Calculate the values of Ny,, No,, B, and By by the equations
Eqgs. (8)-(11);
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3) Select a set of integral formulas according to whether Ny, and No,
are odd or even;

4) Carry out Eq. (30) with the integrals solved by step 3.

With the closed-form solution based on SBR method, the scattering
from rectangular cavity can be simulated succinctly. Without worrying
about time-consuming, the method is able to deal with the problems
in high frequency.

3. RESULTS AND ANALYSIS

As the validity of SBR method is tested in many papers available [3, 4],
and the purpose of the paper was to provide a method to analyze the
electromagnetic scattering from rectangular cavity in high precision
and fast speed, so the objective of the present simulations was to
verify the validity of new method and investigate the characteristics
of rectangular cavity. The scattering pattern of rectangular cavity is
visualized to show the advantage of proposed method.

— SBR method
= - Formualtion | _|
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Figure 4. Comparison between the results traditional SBR method
and formulation, ¢ = 45°

Firstly, the results in traditional SBR and closed-form formulas
are compared in Fig. 4 to verify the correctness of the developed
method. The example is selected from the literature [4], which studied
a rectangular cavity with a 10\ by 10\ square cross section and 30X\ in
length. Excellent agreements can be found between two curves. The
results show an interesting phenomenon that almost all nulls and peaks
in curve take place where the value of % . % is an integer. Referring to
the closed-form expression, it can be explained visually. In Eq. (8), By
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tends to zero as % . ‘z—’““l is close to an integer number. That is to say,

according to Table 1, nzearly all ray tubes exit cavity in the direction of
incident wave or in the contrary direction. It can be predicted exactly
that peaks will take place at 6 = 13.26°, 35.26° and so on, when the
ray exit cavity in the direction of incident ray. There will be a null at
0" = 25.24°, 43.31° when ray exit cavity in a contrary direction.
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Figure 5. Pattern of RCSyy for rectangular cavity.

Then, a pattern of scattering from cavity is shown in Fig. 5.
Benefited from the solution in closed-form, simulation of RCS pattern
in 3-D becomes practicable. In order to avoid some special phenomena
for cavity with square cross section, a rectangular cavity with
dimensions ¢ = 10\, b = 15\ and H = 40\ is selected, and the
paper calculates the RCS in parallel polarization. As complicated
procedure of ray tracing in SBR method, pattern analysis of cavity is a
burdensome work for traditional SBR. With the closed-form formulas
proposed here, it takes few seconds to get the results. Fig. 6 shows
the projection of pattern to the z-o-y plane. Due to the symmetry
of geometry, the image shows symmetrical characteristic with the
variation of ¢'. As mentioned above, it can be predicted that there
are four nulls at ¢* = 0° and three nulls at ¢* = 90°. Fig. 6 shows
that the size of cavity in width plays an important role in the region
from @' = —16° to ¢' = 16°, and the size of cavity in height is
important in the region from ¢* = —78° to ¢* = —100°. The impact
of geometry size on scattering characters of cavity can be studied in
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Figure 6. Projection of RCSyy pattern to X-O-Y plane.

Figure 7. Pattern of RCSyy for rectangular cavity in sphere
coordinates.
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detail with equations from Eq. (8) to Eq. (11). In order to give a visual
understanding of RCS pattern for cavity, Fig. 7 plots the normalized
RCS pattern in sphere coordinates.

4. CONCLUSIONS

A set of formulas was proposed to calculate the electromagnetic
scattering from a rectangular cavity. This approach is based on the
SBR method by taking into consideration 1) launching enough ray
tubes into the cavity, 2) tracking the ray path inside the cavity, and
3) determining the GO field associated with each incident ray. The
relation between incident rays and exit rays is found by investigating
the characteristics of ray launched into the cavity. The sum of
the scattered field due to each individual exit ray tube is replaced
by an integral of incident rays on aperture of cavity, and a 3-D
closed-form solution based on SBR to analyze the high frequency
backscattering from open cavities are carried out. Although there are
other analytical solutions that may be possible for regular shapes, they
become cumbersome if the electrical dimension of the cavity is large.
Using the proposed method, the problem of cavity with rectangular
cross section can be solved in high speed and precision, and it makes
scattering pattern simulation for cavity possible. The locations of
peaks and nulls in the scattering are predicted accurately with the
formulas proposed in the paper. The scattering pattern of rectangular
cavity is visualized by the closed-form formulas, and some interesting
characteristic is presented. Due to the assumption that the size of
ray tube in SBR tends to infinitesimal, a higher precision of results is
expected.
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