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Abstract—Using eigen-modes of a one-dimensional array of slits
together with a mode matching technique, we investigate the
extraordinary transmission through a subwavelength grating. The
analysis serves to determine the contribution of various transmission
mechanisms to the overall transmission. It is shown that surface
plasmon polaritons excited on the input interface of the grating at
certain wavelengths can absorb the incident power and thus reduce
the total transmitted power. We also examine the characteristics of
the different types of modes involved in the transmission through a
metallic grating.

1. INTRODUCTION

Surface plasmon polariton according to Reather [4] is a localized wave
on the interface of metal and dielectric for which the propagation
constant along the interface can be obtained from Maxwell’s equations
as: ksp = ko

√
εrmεrd/(εrm + εrd) where εrm and εrd are the relative

permittivities of metal and dielectric, respectively, and ko is the free-
space wavenumber. These waves on a metal-dielectric interface offered
a new way to nanophotonics, such as refractive-index measurements [2]
and enhanced light transmission in subwavelength metallic structures
[3, 4]. At microwave frequencies analysis of metallic strip gratings have
been done assuming that the metals are perfect electric conductors
(PEC) [5, 6]. Thin wire two-dimentional gratings at these frequencies
have been proposed for increasing antenna gain as a metamaterial
[7, 8]. At optical wavelengths the losses in metals are important and
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the complex permittivity of metals should be considered investigating
such metallic gratings. According to the Bethe theory of small
apertures, optical transmission through subwavelength apertures must
be negligible [9]. However, in the recent decade, certain experiments
have verified that an extraordinary optical transmission is possible if
there is a periodic array of subwavelength holes in a thin metallic
film [10]. Because of the potential applications of this effect in
nano-photonic technology, there have been many theoretical and
experimental investigations to explain the origin of the extraordinary
transmission. The investigation of this phenomenon in one-dimensional
slits smaller than half a wavelength is more complicated than in two-
dimensional arrays since for the former, there exists a guided mode
without cut-off. In the one-dimensional slit arrays, the mechanism
of transmission is explained from different standpoints. Porto et
al. using the transfer matrix method, show that it is the surface
plasmon polaritons (SPP) which mainly contribute to the transmission
[11]. Subsequent theoretical studies of complex band structure
of transmission gratings [12] have also suggested the existence of
coupled surface resonances and cavity modes. In [13], Lalanne et al.
using a rigorous coupled wave analysis (RCWA), conclude that high
transmission is due to diffraction and waveguide mode resonances and
that SPP can reduce transmission efficiency. In his paper, Treacy has
summarized three physical models for explaining high transmission
and has shown that the dynamic diffraction theory can explain the
transmission mechanism properly [14]. Other analytical works based
on the modal expansion are presented in [15, 16] and [17] to explain the
interaction of light and gratings. In [17], the excitation of the grating
modes in a semi-infinite grating and the transfer of power just after
interface are examined. It is concluded that the guided mode plays an
important role in power transmission. Finite-difference time-domain
(FDTD) method is also used for investigation of the problem. For
instance, [18] shows that the high transmission occurs when the period
of the structure is slightly shorter the wavelength of SPP. Here, the
current present in the slits supports the guided mode and is responsible
for the transmission.

In the present paper, we carry out a modal analysis for a periodic
array of subwavelength slits realized in a thin silver layer. The
transmission efficiency of such a grating is calculated by matching
the tangential fields outside the grating to the eigen-modes inside the
grating. Using this approach, we accurately describe the influence of
the excitation of the guided mode as well as the SPP on the total
transmission through the grating.
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2. MODAL EXPANSION IN DIFFERENT REGIONS

Figure 1 shows a periodic array of slits in a metallic layer suspended
in air. The array is illuminated by a plane wave propagating in region
I The fields in the air regions (regions I and III) can be expressed as
a Rayleigh expansion. In the grating region (region II), to obtain
the eigen-modes, Maxwell’s equations are solved with appropriate
periodic boundary conditions. For this structure, two uncoupled TMz

(Transverse Magnetic to the z direction) and TEz (Transverse Electric
to the z direction) polarizations exist. For the TMz polarization,
there always exists a guided mode, but for the TEz polarization when
the width of the slits is less than λo/2, where λo is the free-space
wavelength, all the modes are below cut-off. Since TMz polarization
shows extraordinary transmission effect in subwavelength periodic
arrays, we will mainly examine this polarization, by determining the
only nonzero field components (Hx, Ey, Ez).
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Figure 1. Grating structure excited by a plane wave.

The magnetic field for the eigen-modes of region II in Fig. 1 is
expressed by
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Here, n is the mode index (n = 1, 2, 3, . . . ) and un =
√

k2
0 − k2

zn,
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vn =
√

εrmk2
0 − k2

zn where εrm is the complex permittivity of the metal
at the wavelength of operation. Derivation of other field components
from Maxwell’s equations is straightforward. The tangential field
components (H(n)

x , E
(n)
z ) are matched on the vertical boundary of metal

and dielectric which is assumed to be air. The continuity of the
tangential field components together with the Bloch condition of the
periodic structure, i.e.,
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yields a linear system of four equations. From this system, we can
obtain the matrix equation for the unknown coefficients of (1) as:
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0

vn

εr
un sin(una) −un cos (una)

cos(vn(d − a)) sin(vn(d − a)) −e−j(k0 sin α)d 0

−vn

εr
sin(vn(d−a))

vn

εr
cos(vn(d − a)) 0 −e−j(k0 sin α)dun







A′
n

B′
n

C ′
n

D′
n


 = 0. (3)

Existence of a nontrivial solution of the system of equations requires
that the determinant of the matrix be zero which results in

unvn
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Equation (4) together with the relations for vn and un can be
solved for kzn. When the incidence is normal, i.e., α = 0, because of
some symmetry, Equation (4) reduces to
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In the two homogeneous regions, the Hx components can be expressed
as a summation of the Rayleigh modes, i.e.,

HI
x =

M∑
m=−M

(
Ame−jkymye−jk̃zmz + Bme−jkymyejk̃zmz

)
, (6)

HIII
x =

M∑
m=−M

A′′
me−jkymye−jk̃zmz, (7)

where k2
ym + k̃2

zm = k2
o , kym =

2mπ

d
+ ko sinα. From these waves and

Maxwell’s equations, we can determine other field components. The
obtained Hx and Ey field components in the three regions are then used
for mode matching on the input and output interfaces of the metallic
grating. Before doing so, we examine the modes inside the metallic
grating region.

3. MODAL ANALYSIS IN THE METALLIC GRATING

Equation (4) or Equation (5) is solved for the complex propagation
constant kzn. The obtained propagation constants are normalized to
ko. Throughout this paper, we have assumed e+jωt as time dependence.
Under this assumption, we choose those roots of the transcendental
equation which have a negative imaginary part. We will assume the
form kzn = β−jα, so α is positive while β can assume both positive and
negative values. Fig. 2 illustrates the loci of the propagation constant
kzn for various modes of region II. Figs. 2(a) and (b) are plotted for two
different slit widths a/λo = 0.5 and a/λo = 0.1, respectively. In these
figures, as we expected for the TMz polarization, there is at least one
propagating mode, i.e., a mode with a vanishing attenuation constant.
Note that as the slit width reaches half a wavelength, the number of
propagating modes increases to two. This number increases further by
the normalized width of the slits.

As can be seen in Fig. 2, there are many eigen-modes in the
structure with non-zero attenuation constants. These modes cannot
contribute to considerable power transmission for thick gratings. One
type of these modes is the nearly pure evanescent modes that have
small phase constants and thus their loci are close to the imaginary
axis. In the calculated roots of Fig. 2, these evanescent modes are
indicated using dashed-line circles. At a given wavelength, the number
of such roots increases by the slit width a. This is shown in Fig. 2 for
two different slit widths.
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(a)

(b)

Figure 2. Calculated roots of the characteristic equation for two
different slit widths at λo = 1µm for d/λo = 0.96 and εr = −48.8 −
j3.16 for silver [19], (a) the slit width is a/λo = 0.5 (b) the slit width
is a/λo = 0.1.

The evanescent roots with non-zero phase constants form another
set of modes. In the metallic gratings, the non-zero imaginary part of
the dielectric constant makes some of the roots, which otherwise were
purely evanescent roots for a lossless structure, have a non-zero phase
constant. These modes may have positive or negative phase constants.

As an example, for the parameters of Fig. 2(b), the normalized
propagation constants along the y-axis in the metallic (vn = v′n + jv′′n)
and air (un = u′

n + ju′′) regions are demonstrated in Figs. 3(a) and
(b), respectively.

The modes are enumerated according to their attenuation
constants in the z-direction. They are illustrated in Fig. 2(b), where
the modes with smaller attenuation are of the lower orders.
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(a)

(b)

Figure 3. Normalized propagation constants along y-axis at λo =
1 µm, d/λo = 0.96 and a/λo = 0.1, (a) in the metallic region (vn), (b)
in the air region (un).

Considering the propagation constants along the grating vector
(the y-axis) in Fig. 3, we realize that for nearly pure evanescent modes
e.g., mode 2 in Fig. 2(b) the propagation coefficient in the metallic
region (vn) has a large imaginary part, so these modes only slightly
penetrate into the metal. But in the air region their propagation
coefficient (un), is nearly real. This means that these modes have
a standing wave nature in the slits. The Hx field distribution of this
nearly pure evanescent root, i.e., mode 2 of Fig. 2(b), is demonstrated
in Fig. 4(a).

For the evanescent modes with positive phase constants on the
branch, like mode 3 and 4, we have v′′n/v′n � 1 in the metallic region,
so they form standing waves in the metal. In the air region, their
attenuation in the y-direction is defined by the ratio u′′

n/u′
n. Field
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distribution of one mode of this kind, mode 3, is demonstrated in
Fig. 4(b). For the evanescent modes with negative phase constants,
such as mode 15, we have u′′

n/u′
n � 1 which means that they are

comprised of standing waves in the air region, and depending on their
v′′n/v′n, they may be attenuated in the metallic region. For any of
the modes with negative phase constant, there is a related mode with
positive phase constant of equal attenuation constant. For instance,
the field distributions of mode 15 and its related mode, that is mode 16,
are illustrated in Figs. 4(c) and (d), respectively. These two modes are
related to the transverse resonances in the slits; the periodic occurrence
of such roots that is related to the ratio of a/λo proves this. For
instance, the spacing of the left-hand-sided modes in Fig. 2(a) is smaller
than the corresponding spacing in Fig. 2(b). This is because a/λo is
larger in Fig. 2(a) than Fig. 2(b). The periodicity in kz-loci is defined
by λo/2a which is a result of the periodicity of these roots around the
real axis in the un plane, as Fig. 3(b) suggests.

4. TRANSMISSION ANALYSIS

Using the modes determined in the previous section, we apply the
method of mode matching to evaluate the power transmission through
the slit array. For this purpose, the Rayleigh expansions in the
homogeneous regions I and III are matched to a linear combination
of the obtained modes within region II. The coefficients of this linear
combination and those of the Rayleigh expansions are determined by
equaling the tangential field components at the interface of region I
and II, as well as region II and III. Note that the modes computed
in region II are not orthogonal [20], which results in full matrices in
matching of tangential fields.

Using this method, we can obtain the transmission and the
power loss in the metallic parts at λo = 1µm for a/λo = 0.1 and
h/λo = 0.15. The dielectric constant of silver is εr = −48.8 − j3.16
at this wavelength [19]. Figs. 5(a) and (b) illustrate the computed
transmission and normalized power loss as a function of the normalized
period d/λo, respectively.

In this figure, we can recognize two transmission zeros that occur
at the periods that are multiples of surface plasmon wavelengths.
There are two maxima close to the transmission zeros. The maximum
that occurs at d/λo = 2, is due to Wood’s anomaly because d/λo

assumes an integer number. The surface plasmon wavenumber is given
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(a)

(b)

(c)
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(d)

Figure 4. Hx field distributions for different modes at λo = 1µm,
d/λo = 0.96 and a/λo = 0.1, (a) mode 2, the purely evanescent mode
of the structure, (b) mode 3, first mode on the branch, (c) mode 15,
the mode with negative phase constant, (d) mode 16, the related mode
to mode 15.

by

ksp = k0

√
εrdεrm

εrd + εrm
=

2π

λsp
(8)

therefore, surface plasmons are expected at d/λo = 0.99 ≈ λsp/λo,
where there is the first transmission zero. At that point the amplitude
of the propagating mode of the slit is very small while one of the
evanescent modes is excited mostly. The loci of the roots of the
characteristic equation and the calculated mode amplitudes at d/λo =
0.99 are demonstrated in Figs. 6(a) and (b), respectively.

In Fig. 6(a), the modes are enumerated in accordance with the
value of their attenuation constants. For d/λo = 0.99 the third mode
which has a resonant profile at the input boundary of the grating is
mostly excited. When considering the power loss of different modes in
the metallic parts of the grating it is understood that this mode absorbs
the incident power mostly. At this period, different field components
are visualized in Fig. 7.

Note that for all values of d/λo except for d/λo = 0.99
and its multiples, the excitation of the propagating mode is the
most. For higher thicknesses of the grating, the excitation of the
propagating mode can result in high transmission. This effect occurs
for those thicknesses in which the grating can support Fabry-Perot-like
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(a)

(b)

Figure 5. (a) Zero-order transmission at λo = 1µm. (b) Normalized
power loss in the metallic region at λo = 1µm.

resonances in the slits. In thin gratings with respect to the wavelength,
the Fabry-Perot condition, h = nλo/2, can not be met thus, there
should be another mechanism responsible for high transmission. At
d/λo = 0.965 with a normalized thickness of h/λo = 0.15 studied in
Figs. 5(a) and (b), both the power loss in the metallic region and the
transmission through the grating are large. Therefore, we believe that
at d/λo = 0.965, the excitation of the surface plasmons is helping
the transmission and couples the power to the propagating mode. As
the two dielectrics above and below the grating are the same, i.e.,
air, both interfaces have the same surface plasmon wavelengths so the
propagating mode couples the power to the surface plasmons of the
output face which results in high transmission. In Figs. 8(a) and (b),
the loci of the roots of the characteristic equation and the calculated
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(a)

(b)

Figure 6. (a) Loci of the roots at the first transmission zero (d/λo =
0.99 ≈ λsp/λo), (b) Mode amplitudes at the same period.

mode amplitudes at d/λo = 0.965 are demonstrated, respectively. Note
that the excited amplitude of the third mode in comparison to the
amplitude of the propagating mode is small but it is more than the
amplitude of the third mode even at d/λo = 0.99.

In Figs. 9(a) and (b), the transmission efficiency and normalized
power loss in the metallic parts are illustrated sweeping both the
grating period and thickness. For comparison with the results in
[18], we have illustrated the transmission efficiency, which is defined
as the ratio of the total power integrated over one period at the output
interface to the total power incident to the slit width a on the input
interface.
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(a) (b)

Figure 7. Field distributions at a transmission zero (d/λo = 0.99 ≈
λsp/λo), (a) Hx, (b) Ez.

(a)

(b)

Figure 8. (a) Loci of the roots at the maximum of transmission
(d/λo = 0.965), (b) Mode amplitudes at the same period.
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(a)

(b)

Figure 9. (a) Transmission efficiency at the wavelength λo = 1 µm
and a/λo = 0.1, (b) the normalized power loss in the metallic parts.

As the period decreases below the surface plasmon wavelength,
the transmission changes gradually to the Fabry-Perot type known in
thicker gratings. The power loss in the metallic parts decreases, too,
which is in agreement with the gradual changing of the transmission
mechanism. The reason is that the source of power dissipation
in metallic parts which are the excitations of the surface waves is
diminished. Using this exact modal method along with mode matching
technique enables us to consider all types of phenomenon in the
gratings, like Wood’s anomaly that are illustrated in Fig. 9, which
were not observed in a similar investigation through FDTD [18].
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5. CONCLUSIONS

In this work, we examined different modes in metallic gratings,
their characteristics, and the parameters effective on them. We
also investigated the mechanisms responsible for the transmission in
metallic gratings, the Fabry-Perot like resonances and the surface
plasmon excitation. The high transmission around the surface palsmon
wavelength is really dependant on surface plasmons and the two
phenomena cooperate in increasing the transmission. As the period
decreases, the transmission changes gradually to the Fabry-Perot type
known in thicker gratings.
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