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Abstract—The paper reports on investigations into new schemes
for dimensional scaling of the elements of a microstrip reflectarray
to obtain a slower slope of the reflected wave phase characteristic.
First, the phase response as a function of various shape elements
is investigated when only one of their dimensions is varied. Next
investigations concern the case when two dimensions or features of
the element are scaled in a certain manner simultaneously. In the
latter case, it is shown that phase responses of lower slopes with
a minimal range reduction can be obtained. The feasibility of this
concept is illustrated for dipoles, rectangular patches, and square and
circular rings. Comparisons of the obtained results show that two-
dimensionally scaled square and circular rings offer much better phase
responses than those observed for dipoles and patches.

1. INTRODUCTION

A microstrip reflectarray antenna [1, 2], being the mixture of a reflector
antenna and a planar phased array antenna, uses a suitable phasing
scheme for its elements to convert a spherical wave produced by its
feed into a plane wave. One of the very popular phasing schemes
involves varying dimensions of the elements such as printed dipoles or
patches around their resonant size [2–4]. The phasing characteristics
are obtained by determining the phase of the reflection coefficient of
a plane wave of given polarization which is incident on a periodic
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array of identical elements. The assumption of perfect periodicity
allows for reducing the phase determination task to the equivalent
unit cell problem. In the equivalent unit cell problem, the phasing
element is assumed to be positioned inside a short-circuited-at-one-end
rectangular waveguide with an appropriate type side walls. The choice
of walls depends on the type and angle of incidence of a plane wave.
For the case of normal incidence of vertically polarized plane wave, the
top and bottom walls of the equivalent waveguide are perfect electric
conductors while its side walls are perfect magnetic conductors. Using
this approach, the required phase is determined as the phase of the
reflection coefficient of a TEM wave travelling inside the waveguide.
The solution acquired for the normal wave incidence provides a good
approximation for the case of TE and TM waves for an angle of
incidence up to 30◦ from the reflectarray boresight direction.

Using the obtained phasing characteristics, the sizes of the
individual elements in the reflectarray are adjusted to compensate
for phase differences of the feed’s spherical wave, which is incident
upon them. To accomplish this task in an appropriate manner, the
elements have to provide 360◦ phasing range at a given frequency. The
requirement of 360◦ phasing range can be approximately fulfilled by
dipoles or rectangular patches printed on a thin dielectric substrate.
However, this is achieved at an expense of a sharply varying phase as
a function of the phasing element size. As a result, the use of a thin
substrate results in a narrow operational bandwidth of the reflectarray
and a smaller tolerance to dimensional errors during the manufacturing
process. An attempt to slow the phase slope by employing a thicker
substrate results in the elements phasing range to be considerably
smaller than 360◦. This reduced phasing range leads to phasing errors
of the reflectarray and thus to its reduced gain.

Because of the two opposite trends, of an increased phasing range
and a lower phasing slope observed for printed dipoles and patches,
the designers have shown a considerable interest in new types of
phasing elements and methods, which could overcome this fundamental
problem.

One method to increase the phasing range and to reduce the
phase slope is based on the use of stacked patches and multi-layer
dielectric substrates [5–7]. For moderately thick two-layer two-stacked
patch structure, this method offers the phasing range of about 450◦
accompanied by a gentle phase slope as a function of the patches size.
However, one undesired feature of this method is a more complicated
manufacturing process. Individual patch layers need to be etched
separately and then properly assembled to avoid adverse effects of
misalignment. Because of these difficulties, many of new works in the
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field of microstrip reflectarray have returned to single layer structures
involving new shapes of phasing elements. Examples include printed
rectangular and square rings [8, 9] and advanced elements shapes such
as a windmill ring [10] and Malta cross [11] and compound-cross-loop
[12]. The goal of this activity is to achieve a wide phase range and
a slow phase variation (slope) as a function of the element’s variable
size.

The present paper reports on investigations into new schemes for
dimensional scaling of the elements shape in order to obtain more
favourable characteristics of the phase response. These investigations
commence with the phase response as a function of various shape
elements when only one of their dimensions is varied. Next, the case
when two dimensions or features of the element are changed in a
certain manner simultaneously is considered. The goal is to have slower
variations and thus smaller slopes for the phase response, with small
reductions in the phase range. The investigations are focused on the
equivalent unit cell with a vertically polarized TEM wave incidence.

2. ANALYSIS

The analysis is carried out for a microstrip reflectarray operating in
the X-band with the centre frequency of 10 GHz. The reflectarray
is assumed to be formed by identical elements arranged in a square
lattice with periodicity of 15 mm, which is equivalent to 0.5 wavelengths
at 10 GHz. The elements are assumed to be printed on a 1.57 mm
thick substrate of dielectric constant εr = 3.2, which is backed by a
conducting ground plane.

In order to work out the phasing characteristics, the case of a
vertically polarized (in Y-direction) TEM plane wave that is normally
incident on an infinite periodic array of identical elements is assumed.
The elements dimensions are varied linearly along the same direction.
The equivalent waveguide side walls are formed by a perfect magnetic
conductor while its bottom and top walls are composed of a perfect
electric conductor. The element is positioned on the dielectric
substrate that is backed by the waveguide short circuit. Using the
unit cell approach, the phase of the reflected wave is determined as
the phase of the scattering parameter S11 for the equivalent waveguide
one-port. The structure is modelled using the commercial full-wave
electromagnetic software CST Microwave Studio.

The investigations proceed as follows. First, fixed size square and
elliptical patches with a variable size slot are considered. In this case,
the slot size is changed to obtain variations of the reflected wave phase.
Next, the behaviour of printed dipoles is investigated. Here, the phase
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changes as a function of length and width of the dipole are studied.
The remaining investigation concerns the effect of variations in slot
and outer size of rectangular and circular rings on the reflected wave
phase behaviour. Two dimensions of these elements are scaled in an
opposite manner so that the conflicting effects on the phase range and
slope are appropriately tackled.

2.1. Variation of the Slot Size in Square and Elliptical
Patches

Here, the effect of varying the slot dimension in a fixed size square
patch is investigated. This phasing scheme preserves the distances
between adjacent elements of the reflect array, and gives more freedom
in selecting the separation between the array elements, or equivalently
the unit cell size. Figure 1 shows the obtained phase responses for the
family of slotted square patches. The considered square patch sizes are
given by L = 6.0, 6.5, 7.0 and 7.5 mm. The phase variations are due to
the variable size of the square slot inside the patch. It can be seen that
a considerable reduction in the phase slope is obtained for the largest
patch of 7.5 mm. However, this result is accompanied by reductions
in the phase range. The extent of reductions in the slope and phase
range depends on the outer size of the patch. Patch sizes that are
not close to the resonant size offer smaller phase ranges and slopes.
Note that for the chosen frequency of 10 GHz, the resonant size of the
patch is 7.15 mm. As observed in Figure 1, the scheme with the slot
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Figure 1. Phase response of fixed-size (L) square patches against slot
size (X).
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variation results in response curves with slopes ranging between 226
and 35 ◦/mm and ranges between 303◦ and 118◦ respectively. It has to
be noted that the variable size square patch that resonates at the size
of 7.15 mm offers the phase range of 303◦ with a slope of 266◦/mm.
Note that the slope is calculated here at the working size, which is
defined here as the size of the patch corresponding to the centre of the
phase response.
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Figure 2. Phase response of fixed-size elliptical patches against slot
radius Rxi, (Dy/Dx = 0.8).

A similar trend can be observed for the elliptical patch when the
size of an elliptical slot is varied. Figure 2 shows the results obtained for
an elliptical patch of minor/major axes ratio (Dy/Dx = 0.8), when its
major axis is oriented perpendicular to the electric field of the incident
wave. The phase response is plotted here against slot major radius Rxi

for the shown values of patch major radii’s Rxo. As observed in Figure
2, the scheme of slot variation results in response curves with slopes
ranging between 174 and 33◦/mm and ranges between 312◦ and 152◦
respectively. An elliptical patch of variable size and without the slot
developed on the same substrate offers the phase response with a slope
of 138◦/mm, and range of 303◦.

2.2. Variation of Length and Width of a Printed Dipole

Typically when printed dipoles are used to form a reflectarray, their
width is fixed and thus only their length is varied. Here we present
investigations that concern the changes in phase response when both
the length and the width of a printed dipole are made variable. Figure 3
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Figure 3. Phase response of dipoles for various fixed widths (W ).
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Figure 4. Phase response of various fixed-length (L) dipoles against
the width (W ).

shows a family of phase responses when lengths of various width
dipoles are changed. The curves are obtained for the dipole width
of w = 0.5, 1, 2 and 4 mm. As observed in Figure 3, dipoles with larger
widths have phase responses, with respect to the varying length, shifted
to the left (smaller lengths). This means that at a fixed dipole length,
the increase of width results in reducing the phase of the reflected wave.
This is confirmed by results illustrated in Figure 4, which shows phase
responses when the dipole width is varied while keeping the length
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constant. Although much smaller slopes are achieved in this way, they
are obtained at the expense of a very large phase range reduction.
When the dipole fixed length L is away from resonance (as for L = 9),
then there is a very small variation in the phase. Consequently, around
the resonance condition, the increase in the length and that in the
width have similar effects on the phase response. This finding can lead
to devising a phasing scheme offering a lower phase slope.

The new scheme would simply rely on increasing one parameter
while decreasing the other one at the same time, so that the net effect
would be the reduction of phase changes. The scheme could start
with wide and short (thick) dipole and then by reducing the width as
the length is increased one would move towards thinner dipoles. The
decrease in width would reduce the effect on phase due to increasing
the length resulting in slower slope. This is illustrated by the results
shown in Figure 5, which demonstrates various dimensional scaling
schemes suggested for varying the dipole width and length according
to the given relation (W = f(L)). The three schemes shown here are
of fixed, ascending and descending widths as the length is increased.
The last two schemes produce lower slopes as compared to the fixed
width scheme. When the width is varied according to the relation
(W = 19 mm − 2L), the slope is down to about 40% of its value for
the relation (W = 0.1L). The latter relation is for normal scaling of
shape, where both dimensions of the dipole are changed in a similar
manner.
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Figure 5. Phase response for a dipole of length (L) for various schemes
of width (W ) variation.
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2.3. Variation of Width and Length of a Rectangular Patch

The above considerations concerning the dipole can be extended to
the rectangular patch. The only difference is that the width of this
structure is comparable with its length. For the dipole, the usual
assumption is that its length is much greater than its width. Figure 6
shows a family of phase characteristics for the rectangular patch where
the patch X-dimension perpendicular to the electric field is increased
while its Y-dimension is decreased according to the shown relations
(Y = f(X)). In all of the presented dimensional scaling schemes, the
size along the electric field of the incident wave is decreasing and this
is responsible for the increasing phase response. Thus starting with a
rectangular patch normal to the electric field, then moving to a square
patch, one finally ends with another rectangular patch aligned with the
electric field. In Figure 6 the intersection point for various schemes
of dimensional scaling represents the case of a square patch having
a working size of 7.15 × 7.15 mm2. The phase response of a square
patch is also shown for comparison. It can be seen that by scaling the
two dimensions of the rectangular patch in opposite manner, phase
responses of much lower slopes are achieved. The shown slopes range
between 194◦/mm and 38◦/mm. The reduction in the phase range is
moderate here as it varied between 315◦ and 205◦ as compared to 303◦
for the square patch. The overall phasing trend for the rectangular
patch is similar to that of the dipole, but with larger reductions in the
slopes and less sacrifices in the phase range.
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Figure 6. Phase response for square patches against dimension
perpendicular to the electric field for the various schemes of length
variations.
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2.4. Variation of Inner and Outer Size of Square and
Circular Rings

The previously considered elements are suitable for phasing of a
vertically polarized wave. In many applications, a reflectarray is
required to operate with waves of dual (vertical and horizontal)
polarization. In this case, phasing elements having dual symmetry
such as square patches or rings are the preferable choice for forming a
reflectarray. The difference between the patches and the rings is that
the latter ones offer two degrees of freedom with respect to the change
of their dimensions. These are their overall size (Lo) and arm width
(w), or equivalently the surrounded slot size (Li). Here we investigate
phasing characteristics of square and circular shaped rings.

We start the investigation with a square ring of outer dimensions
or size Lo × Lo and inner dimensions (slot size) Li × Li. Next,
the slot size Li, is scaled in the way that is not similar to that for
scaling the outer dimensions Lo. In such scaling the shape of slotted
patch remains, but the ratio Li/Lo of slot to the patch dimension is
changed as the patch size is scaled up. The obtained results of the
phase response against the outer dimension Lo of the patch for various
schemes of varying the slot size (Li = f(Lo)) are shown in Figure 7.
Three schemes for the slot size or ring width variation are considered
here:

- the constant width W = 0.5 mm, or increasing slot size Li =
Lo − 0.5.

- the proportional width W = 0.025Lo, or increasing slot size
Li = 0.95Lo, and

- the case of increasing width for the increasing ring size, or
decreasing slot size for increasing patch size.

The phase response of a square patch is also plotted for comparison. It
can be seen in Figure 7 that the obtained phase responses have working
sizes and slopes that are different for the three schemes. The schemes
of fixed and proportional width (W = 0.025L) have the largest slopes
and range since they represent thin rings. When the arm width is
increased while the outer dimension is increased (or the slot size is
decreased as the outer size is increased), then the phase response has a
smaller slope. The scheme of (W = Lo − 5 mm) has a minimum slope
of 111◦/mm, and its range is reduced to 236◦. Moreover, most of this
range is of linear shape. Compared to the square patch, the slope is
reduced by 51% with range reduction of 22%.

The same trend is also observed for circular rings when various
schemes of scaling the inner radius as a function of outer radius
are adopted. Figure 8 shows the obtained results, along with the
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Figure 7. Phase response for square rings against outer size (L) for
various schemes of varying the width W .
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Figure 8. Phase response for circular rings against outer radius (Ro)
for various schemes of varying the slot size.

response of a circular patch for comparison. The slopes of the phase
responses for the fixed arm width and that for (W = 0.05Ro) are high
because they represent thin rings. The scheme of (Ri = 6 mm − Ro)
and (Ri = 5.8 mm − Ro), where the widths are (2Ro − 6 mm) and
(2Ro−5.8 mm) respectively have considerably lower slopes of 106◦/mm
and 105◦/mm. The respective ranges are 268◦ and 231◦. In these
schemes the width increases by twice the rate of increasing the outer
radius. The rings become thicker as they grow larger. Compared to
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the circular patch, the slope is reduced by 37% with range reduction
of 14%. The introduction of a slot in the square and circular patches
and the proposed scheme of scaling offer a reduced phase slopes. These
are accomplished at the expense of moderate reduction in the phase
range. One can observe that changing outer size and slot size have
similar effect on the phase response. When one of these dimensions is
scaled up while the other is scaled down, their net effect is the reduction
in the phase variation or the slope value.

By closely inspecting these results it can be noticed that when
varying the outer and inner dimensions of each of the square and
circular rings in opposite manner there is a minimum value of slope
that is reached at a certain relation between the two dimensions. These
relations are (W = Lo −5 mm) for the square ring and (2Ro −5.8 mm)
for the circular ring. No such minima can be found for the dipole or
rectangular patch when their length and width are varied. Also from
the comparison between circular shape patches and rings to dipoles
and rectangular patches one can find that the circular shapes give lower
values for the slope. This may be attributed to the gentler variation
of their dimension parallel to the applied electric field.

3. CONCLUSION

Conventional schemes for phasing of fixed-beam reflectarrays rely on
scaling only one dimension of their elements. In the work presented
in this paper, it has been shown that an alternative multi-dimensional
scaling can provide better phase responses. For example, varying two
dimensions of a given element can yield phase responses of lower slopes
with minimal reduction of the phase range. The feasibility of this
concept has been illustrated for dipoles, rectangular patches and square
and circular rings. From comparisons of the obtained results, it has
been found that two-dimensionally scaled square and circular rings can
offer much better phase responses than those observed for dipoles and
patches.
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