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Abstract—The electromagnetic scattering from a conducting object
coated with metamaterials, which have both negative permittivity and
permeability is derived rigorously by using finite difference frequency
domain (FDFD). A formulation for the FDFD method is presented.
The scattering from circular and multilayers elliptic cylinder coated
by metamaterial are investigated. Also, the scattering from dielectric
and metamaterial sphere is depicted. Numerical results are compared
with the available data in the literature.

1. INTRODUCTION

Metamaterials are materials with negative permittivity and permeabil-
ity within certain frequency range. Moreover, the advent of metamate-
rials, i.e. engineered materials synthesized by including suitable parti-
cles in a host medium that lead to exciting electromagnetic properties
otherwise not easily available in nature, have opened new possibilities
to researchers and designers working on the enhancement of component
performances, usually limited by some physical constraints when stan-
dard materials are employed [1]. Metamaterials, with simultaneously
negative permittivity and permeability have received intensive inter-
ests, which exhibit a lot of exotic properties as reversal Doppler shift
and negative refraction index. The concepts of critical and Brewster
angles are well established in electromagnetic theory. Yet, the recent
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advent of a new class of metamaterials exhibiting negative constitutive
parameters reveals that these fundamental concepts should be revis-
ited since media now exist wherein waves are totally reflected when
propagating at angles below the critical angle, and transmitted when
propagating at angles above the critical angle. In addition, within the
region of transmission, a Brewster angle might exist in some cases,
yielding an inversion of critical angle and Brewster angle, namely the
Brewster angle appears beyond the critical angle, and not below like
it is currently well-accepted [2–4].

Scattering of electromagnetic waves by complex-shaped metama-
terial objects is an interesting research subject to develop potential
application of this artificial material. The electromagnetic scatter-
ing from single and array of cylinders coated by metamaterials, which
have both negative permittivity and permeability, for both normal and
oblique incidence had been studied in [5–8]. Only two-dimensional
cases are considered.

In this paper, the electromagnetic scattering from objects coated
by metamaterials is investigated. Two- and three-dimensional objects
are considered. The Finite-Difference Frequency-Domain (FDFD)
method is formulated for the objects coated with metamaterial
and used to calculate the scattering from different objects and
compared with the available published results. The FDFD is simplest
in formulation and most flexible in modeling arbitrarily shaped
inhomogeneously filled and anisotropic scatterers [9–12].

2. THEORETICAL BACKGROUND

Finite-Difference Frequency-Domain Technique for Metama-
terials:

Considering a region of space that is source free, but may have
materials that absorb electric or magnetic field energy, then Maxwell’s
curl equations in frequency domain are

∇xEtotal = −jωµHtotal − σ∗Htotal = −jnkoη

(
1 +

σ∗

jnkoη

)
Htotal,

(1a)

and

∇xHtotal = (jωε + σ)Etotal = j
nko

η

(
1 +

σ

j nko
η

)
(1b)
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The wave number and intrinsic impedance for the object are:

k = nko

n = +
√
µrεr for dielectric object,

n = −√
µrεr for Metamaterial object

Define the total fields as sum of incident and scattered fields:

Etotal = E
inc + E

scat
, and Htotal = H

inc + H
scat (2)

where E
inc, and E

scat are the incident and the scattered field
respectively. The incident field is the field which propagates in
computation domain when no scatters exist. If the background of the
computation domain is free space, then Maxwell’s curl equations can
be rewritten as:

∇xE
scat+jnkoη

(
1+

σ∗

jnkoη

)
H

scat =
[
jkoηo−jnkoη

(
1+

σ∗

jnkoη

)
H

inc
]
(3)

∇xH
scat−j

nko

η

(
1+

σ

j nko
η

)
E

scat =

[
−j

ko

ηo
+ j

nko

η

(
1 +

σ

j nko
η

)]
E

inc

(4)

Maxwell’s equations can be reduced to two sets of scalar equations
(i.e., TMz and TEz) in two dimensional case.

Using the central difference algorithm to solve for the space
derivatives, Yee introduced his algorithm [13], in 1966 to solve
Maxwell’s partial differential equations. Yee discretized the space
of the problem to small cubical cells (rectangular cells in 2D case)
and for each cell he locates the six field components to match the
curl equations. Discrete equations given below are obtained by
replacing derivatives in these equations with their finite-difference
approximations. At the boundaries of the computational domain, the
perfectly matched layer boundary condition (PML) is used to absorb
all the outgoing radiation. The derivation of the PML is discussed in
details by Berenger [14].

For the TM Case:

The FDFD iterative equations are

Hscat
x (i, j) =

1

jn(i, j)koηxy(i, j)
(
1 + σ∗

xy(i,j)

jn(i,j)koηxy(i,j)

) Escat
z (i, j) − Escat

z (i, j + 1)
∆y

+
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ηo − n(i, j)ηxi(i, j)

(
1 + σ∗

xi(i,j)
jn(i,j)koηxi(i,j)

))
n(i, j)ηxi(i, j)

(
1 + σ∗

xi(i,j)
jn(i,j)koηxi(i,j)

) H inc
x (i, j) (5)

Hscat
y (i, j) =

1

jn(i, j)koηyx(i, j)
(
1 + σ∗

yx(i,j)

jn(i,j)koηyx(i,j)

) Escat
z (i + 1, j) − Escat

z (i, j)
∆x

+

(
ηo − n(i, j)ηyi(i, j)

(
1 +

σ∗
yi(i,j)

jn(i,j)koηyi(i,j)

))
n(i, j)ηyi(i, j)

(
1 +

σ∗
yi(i,j)

jn(i,j)koηyi(i,j)

) H inc
y (i, j) (6)

Escat
z (i, j) +

Hscat
y (i− 1, j) −Hscat

y (i, j)

j n(i,j)ko

ηzx(i,j)

(
1 + σzx(i,j)

j
n(i,j)ko
ηzx(i,j)

)
ωεzx(i, j)∆x

+
Hscat

x (i, j) −Hscat
x (i, j − 1)

j n(i,j)ko

ηzy(i,j)

(
1 + σzy(i,j)

j
n(i,j)ko
ηzy(i,j)

)
ωεzx(i, j)∆y

=

[
ηzi − n(i, j)ηo(i, j)

(
1 + σzi(i,j)

j
n(i,j)ko
ηzi(i,j)

)]

n(i, j)ηo(i, j)
(

1 + σzi(i,j)

j
n(i,j)ko
ηzi(i,j)

) Einc
z (i, j) (7)

then

a(i, j)Escat
z (i + 1, j) + b(i, j)Escat

z (i− 1, j) + c(i, j)Escat
z (i, j + 1)

+d(i, j)Escat
z (i, j − 1) + e(i, j)Escat

z (i, j) = f(i, j) (8)

where

a(i, j) =
ηzx(i, j)

(ko∆xn(i, j))2ηyx(i, j)
(

1 + σzx(i,j)

j
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)

b(i, j) =
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)(
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c(i, j)=
ηzy(i, j)

(ko∆y)2n(i, j)n(i, j)ηxy(i, j)
(
1+ σzy(i,j)

j
n(i,j)ko
ηzy(i,j)

)(
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e(i, j) = 1 − a(i, j) − b(i, j) − c(i, j) − d(i, j),

and

f(i, j) =
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Out of the PML Region:

ηxy = ηx, σ∗
xy = σ∗

x, ηxi = ηx, σ∗
xi = σ∗

x, ηyx = ηy, σ∗
yx = σ∗

y , ηyi = ηy,

σ∗
yi =σ∗

y , ηzx =ηz, σzx =σz, ηzy =ηz, σzy =σz, ηzi =ηz, and σzi =σz

and in PML Region:

ηxy = ηo, σ
∗
xy = σm

y , ηxi =
ηo

n
, σ∗

xi = 0, ηyx = ηo, σ∗
yx = σm

x , ηyi =
ηo

n
,
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σ∗
yi = 0, ηzx = ηo, σzx = σe

x, ηzy = ηo, σzy = σe
y, ηzi = nηo, and σzi =0

σe, σm: are electric and magnetic conductivity distributions in PML
layer respectively, σe

ε = σm

µ for perfect matching between free space
and the PML region, and

σe,m(h) = σmax

(
h

δPML

)n+1

where σmax = − εoc(n+1) ln[R(0)]
2δPML

, σmax: is the maximum conductivity,
δPML is the thickness of the PML layer, h is the distance from the
inner boundary of PML, R(0) is the theoretical reflection factor at
normal incidence, and n is the type of the conductivity distribution.
n = 2 for parabolic conductivity.

The above procedure is followed in the case of the three
dimensional case. Six components for the electric and magnetic
fields are derived and Equations (3) and (4) can be reduced to three
equations, in terms of the three scattered electric field components
by eliminating the scattered magnetic field terms, which can then
construct a linear set of equations. These final equations are used
to construct a system of linear equations which can be written in the
form Ax = y. A is a coefficient matrix, y is a vector related to the
incident fields and x is the vector of unknown electric fields [10]. The
number of cells in the 3D component domain is N = NxxNyxNy. The
matrix A is a sparse matrix of size (3N × 3N) and x is a vector of size
(3N × 1). Biconjugate gradients method is used to solve Ax = y.

3. NUMERICAL RESULTS

In this section, sample numerical results are presented to proof the
validity of the developed formulation for computing the radar cross
section (RCS) of a single cylinder coated with metamaterial, a linear
array of coated cylinders are calculated and compared with the
available data in the literature.

For 2D problems the radar cross section is given by [1]

σ = lim
ρ→∞

2πρ

∣∣Ēscat
∣∣2∣∣Ēinc
∣∣2 for TMz case (9)

and

σ = lim
ρ→∞

2πρ

∣∣H̄scat
∣∣2∣∣H̄ inc
∣∣2 for TEz case (10)
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Figure 1. Geometry of 2D case.

the geometry of the problem considered in 2D case is shown in Fig. 1.
The metamaterial parameters used in this paper are selectively

used to provide confirmation of the validity of the new formulation by
comparison of special cases with published results.

Figures 2, 3 show the computation of the RCS (TM and TE
incidence) per unit length in case of a PEC (perfect electric conductor)
cylinder coated by a DPS (Double Positive) or a DNG (Double
Negative) layer, which is illuminated by a unit plane wave polarized
along z-axis and propagating along x-axis (incidence angle is θi = π)
where a1 = 0.05 m, and a2 = 0.10 m. The operating frequency is 1 GHz.
The dielectric parameters are given by: ε2 = 9.8εo, and µ2 = µo, for
the DPS case, and ε2 = −9.8εo, and µ2 = −µo, for the DNG case. It
is observed that the RCS of TM incidence are of similar behavior: the
both have large forward scattering. However, as shown in Fig. 2 for TE
incidence, a cylinder coated with a conventional material has smaller
forward scattering compared to a cylinder coated with a metamaterial.
The results are in very good agreement with those obtained by Li and
Shen [6].

Figure 4 shows the RCS of two layer dielectric (ε2 = 9.8εo, and
µ2 = µo) and metamaterial (ε2 = −9.8εo, and µ2 = −µo) circular
cylinder (a1 = 0.05 m, a2 = 0.10 m) illuminated by a TM plane wave
at f = 300 MHz and θ = π compared with Matteo [15] and good
agreement between those two results.

Figure 5 shows the radar cross section of a four layer superquadric
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Figure 2. Bistatic RCS for a coated PEC circular cylinder (a1 =
0.05 m, a2 = 0.10 m) illuminated by a TM plane wave at f = 1 GHz;
θ = π and material properties (DPS case: (ε2 = 9.8εo and µ2 = µo);
DNG case: (ε2 = −9.8εo and µ2 = −µo)).
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Figure 3. Bistatic RCS for a coated PEC circular cylinder (a1 =
0.05 m, a2 = 0.10 m) illuminated by a TE plane wave at f = 1 GHz;
θ = π and material properties (DPS case: (ε2 = 9.8εo and µ2 = µo);
DNG case: (ε2 = −9.8εo and µ2 = −µo)).
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Figure 4. Bistatic RCS for two layer dielectric (ε2 = 9.8εo m and
µ2 = µo) and metamaterial (ε2 = −9.8εo m and µ2 = −µo) circular
cylinder (a1 = 0.05 m, a2 = 0.10 m) illuminated by a TM plane wave
at f = 300 GHz and θ = π.
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Figure 5. Radar cross section pattern of a four-layered cylinder
(a1 = 0.3λ, a2 = 0.25λ, a3 = 0.2λ, a4 = 0.15λ), and bi = ai/2,
(i = 1 : 4), TMz and TEz plane wave for conventional and metamaterial
(θ = 0◦, φ = 0◦).
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Figure 6. Bistatic RCS for dielectric and metamaterial sphere (εr =
±4, radius = 0.5 m) at f = 100 MHz.

cylinder with a1 = 0.3λ, a2 = 0.25λ, a3 = 0.2λ, a4 = 0.15λ,
bi = ai/2, (i = 1 : 4), γ = 2, εr1 = 8, εr2 = 6, εr3 = 4, and εr4 = 2 for
either TMz or TEz incident plane wave and for metamaterial [9].

Figure 6 compares the bistatic RCS for a dielectric sphere (εr =
4.5, µr = 1, r = 0.5 m), and for a metamaterial sphere (εr = −4.5,
µr = −1, r = 0.5 m) in the x-z plane with the resonance frequency is
100 MHz. The angle of incidences (θi = 0◦ and ϕi = 0◦).

4. CONCLUSIONS

The electromagnetic scattering from two- and three-dimensional
objects coated with metamaterial are investigated. The FDFD method
is used to formulate the problem. The radar cross sections from circular
cylinder and multilayer elliptical cylinder, including DPS and DNG
layers, have been considered. The scattering from the dielectric and
metamaterial sphere are calculated. The results are compared with the
available data in the literature. The scattering from the conducting and
metamaterial sphere are depicted. The numerical results show that the
level of the scattered field from these kinds of objects depends on the
polarization of the incident wave and also on the operating frequency.
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