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Abstract—The translational addition theorems for the spherical
scalar and vector wave functions are derived in a novel, unified way
based on the simple and well-known concepts of the radiation and
incoming wave patterns. This approach makes the derivation simpler
and more transparent compared to the previous approaches. As a
result, we also obtain alternative and partly simpler expressions for
the translation coefficients in the vector case.

1. INTRODUCTION

Spherical wave functions are basic solutions to the Maxwell’s equations
and the Helmholtz equation in the spherical system of co-ordinates
and they form the basis for the expansion of any field satisfying these
equations. Addition theorems are needed when it is necessary to
expand fields in more than one system of co-ordinates. This happens,
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for example, in the case of multiple scattering from a collection of
spheres [1], in evaluation of a field in spheres due to external sources [2]
and in antenna measurements [3]. More recently, there has been a
renewed interest in the addition theorems because of their important
role in fast multipole methods [4–7]. There are two types of addition
theorems for the spherical wave functions: rotational and translational.
This paper considers the latter for both the spherical scalar and vector
wave functions.

The translational addition theorems for the spherical scalar wave
functions were derived first by Friedman and Russek [8] and later by
Danos and Maximon [9]. The first derivations of the translational
addition theorems for the spherical vector wave functions were due
to Stein [10] and Cruzan [11]. They derived the theorems starting
from the scalar theorems and through tedious algebraic manipulations
obtained the vector theorems. Later, Borghese et al. [12] and Felderhof
and Jones [13] presented more compact derivations making use of a
so-called irreducible spherical tensor familiar in quantum mechanics.
Wittmann [14] presented an interesting approach based on differential
operator representations of the wave functions. Chew [15] derived the
theorems quite similarly as in [10] and [11]; Chew and Wang [16] also
presented recurrence formulas. Kim [17] derived the theorems as well
as recurrence formulas by applying similar spherical tensor technique
as in [12] and [13]. He also discussed the symmetry relations of the
coefficients of both the scalar and vector theorems in [18] and presented
more efficient recurrence procedure for the coefficients of the scalar
theorem in [19]. Quite recently, Chew presented a new derivation of
the vector theorems [20], which is similar to his derivation of the scalar
theorems [15], but still relies on some peculiar integral results.

In this paper we present a unified derivation of the translational
addition theorems for the spherical scalar and vector wave functions
based on the simple and well-known concepts of radiation pattern and
incoming wave pattern. These concepts play a crucial role also in
the field of multilevel fast multipole algorithms [5–7, 21–24], where a
lot of new techniques with these wave patterns has been developed
recently. The motivation for this paper is to present a different and
simpler derivation of the theorems than has been given in the above
references. We also present alternative and partly simpler expressions
for the translation coefficients that have not, to the best knowledge of
the authors, been published elsewhere.

At the end of the paper, a note is made on an efficient calculation
of the translation coefficient applying the following idea used in the
fast multipole methods [4, 7]: an arbitrary translation is performed
more efficiently by combining the rotation of the co-ordinates and the
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translation along the z-axis, which is considerably simpler than the
general translation. It turns out that the computational cost is reduced
from ∼ N4 to ∼ N3, if N is the truncation point of the expansion.

2. DEFINITIONS AND NOTATIONS

Since the definitions and notations of the functions associated to
the topic are quite diverse in the literature, we begin by defining
the functions as they are used in this paper. We assume the time
dependence e−iωt where ω denotes the angular frequency. Moreover,
k = ω

√
µε is the wave number in a medium with the magnetic

permeability µ and the electric permittivity ε.
The spherical wave functions ψl,m satisfying the scalar Helmholtz

equation (∇2 + k2)F = 0 are defined as

ψl,m(r) = zl(kr)Yl,m(r̂) (1)

where r is the position vector, r = |r|, r̂ = r/r, l = 0, 1, . . . and
m = 0,±1, . . . ,±l. The radial function zl is the spherical Bessel
function of the first kind jl in the case of an incoming wave and
the spherical Hankel function of the first kind h

(1)
l when the wave is

outgoing; when necessary, we emphasize the type of the wave function
by writing ψin

l,m or ψout
l,m, respectively. In defining the angular function,

the spherical harmonic Yl,m, we follow Jackson [25, Sec. 3.5]:

Yl,m(r̂) =

√
2l + 1

4π
(l − m)!
(l + m)!

Pm
l (cos θ)eimφ (2)

where θ and φ are the spherical angles of r̂ and Pm
l is the associated

Legendre function defined by

Pm
l (x) =

(−1)m

2ll!
(1 − x2)

m
2

dl+m

dxl+m
(x2 − 1)l. (3)

Defined as above, the spherical harmonics are orthonormal over a unit
sphere: ∫

B
Yl,mY ∗

n,p dΩ = δl,nδm,p (4)

where B denotes the unit sphere, the asterisk the complex conjugation
and δl,n the Kronecker delta being equal to 1 when l = n and 0
otherwise.
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The solenoidal spherical vector wave functions Ml,m and Nl,m

satisfying the homogeneous vector Helmholtz equation (∇2 +k2)F = 0
are most often defined as (see, for example, [26, Sec. 7.11])

Ml,m(r) = ∇ψl,m(r) × r, (5)

Nl,m(r) =
1
k
∇× Ml,m(r); (6)

it follows that also

Ml,m(r) =
1
k
∇× Nl,m(r) (7)

since ∇ × ∇ × Ml,m = −∇2Ml,m = k2Ml,m. Borghese et al.
[12, Eq. (7)], Wittmann [14, Eq. (32)] and Kim [17, Eq. (3)], among
others, multiply these by i/

√
l(l + 1) making their wave patterns

conveniently orthonormal. We, however, adhere to above definitions
because of their prevalence in the literature. The wave functions can
be presented as

Ml,m(r) = zl(kr)Ul,m(r̂), (8)

Nl,m(r) = −iz′l(kr)Vl,m(r̂) +
zl(kr)

kr
∇Ω × Ul,m(r̂) (9)

if we define the vector spherical harmonics Ul,m and Vl,m as

Ul,m(r̂) = ∇ΩYl,m(r̂) × r̂, (10)
Vl,m(r̂) = ir̂ × Ul,m(r̂). (11)

Above,

∇Ω = θ̂
∂

∂θ
+ φ̂

1
sin θ

∂

∂φ
(12)

is the surface gradient on the unit sphere. We have not normalised the
vector harmonics because it would make them somewhat inconsistent
with the wave functions. The normalisation could be implemented
by multiplying (10) by i/

√
l(l + 1). Hence, the vector spherical

harmonics, defined as above, are orthogonal but not orthonormal:∫
B

Ul,m · U∗
n,p dΩ = l(l + 1)δl,nδm,p, (13)∫

B
Vl,m · V∗

n,p dΩ = l(l + 1)δl,nδm,p, (14)∫
B

Ul,m · V∗
n,p dΩ = 0. (15)



Progress In Electromagnetics Research B, Vol. 4, 2008 83

3. RADIATION AND INCOMING WAVE PATTERNS

In the derivation of the addition theorems we make use of the concepts
of radiation pattern and incoming wave pattern. Next we review these
consepts and explain how they are applied.

Let F be a scalar field, i.e., a solution of the scalar Helmholtz
equation (∇2 + k2)F = 0, with the sources in a sphere B centered
at the origin. Then, outside B the field can be expanded in outgoing
spherical wave functions as

F (r) =
∞∑
l=0

l∑
m=−l

al,mψout
l,m(r). (16)

In addition, in the far zone, with kr 	 1, F can be approximated as

F (r) ≈ eikr

r
F∞(r̂) (17)

where

F∞(r̂) = lim
r→∞

rF (r)
eikr

, (18)

which is called the radiation pattern of F . In particular, the radiation
pattern of an outgoing spherical wave function is given by a spherical
harmonic as

(ψout
l,m)∞(r̂) =

1
ik

(−i)lYl,m(r̂), (19)

which is easy to see from (1) by examining the large argument
behaviour of h

(1)
l . By applying (18) on both sides of (16) and using

(19), the equation (16) reduces to

F∞(r̂) =
1
ik

∞∑
l=0

l∑
m=−l

(−i)lal,mYl,m(r̂). (20)

Now, the coefficients al,m can be determined from (20) by applying
the orthogonality of the spherical harmonics (4). Another important
result, which we exploit in the derivation of the addition theorems,
is the way how the radiation pattern transforms in the translation of
the origin of the co-ordinate system. This transform is given by the
equation

G∞(r̂) = eikr̂·tF∞(r̂) (21)
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where G(r) = F (t + r) and t is the translation vector from the old
origin to the new one. This follows easily from (17) and (18), since
|t + r| ≈ r + r̂ · t when r 	 t.

Consider next a scalar field F with the sources outside B. Then,
inside B the field can be expanded in incoming spherical wave functions
as

F (r) =
∞∑
l=0

l∑
m=−l

al,mψin
l,m(r). (22)

In addition, let us assume that the field has the form

F (r) =
∫

B
F0(k̂)eikk̂·r dΩ(k̂) (23)

where the integration is with respect to k̂ over the unit sphere B.
Then, we say that F is expanded in plane waves with the incoming
wave pattern F0. For instance,

ψin
l,m(r) = (−i)l 1

4π

∫
B

Yl,m(k̂)eikk̂·r dΩ(k̂), (24)

which is the counterpart to the well-known expansion of a plane wave
in the spherical wave functions or the spherical harmonics (see, for
example [26, Sec. 7.6] or [27, Eqs. (2.29) and (2.45)]) as

eikk̂·r = 4π
∞∑
l=0

l∑
m=−l

ilY ∗
l,m(k̂)ψin

l,m(r). (25)

Now, if we expand F0 in (23) in spherical harmonics as

F0(k̂) =
1
4π

∞∑
l=0

l∑
m=−l

(−i)lal,mYl,m(k̂), (26)

we obtain the expansion in (22) by applying (24). The reverse of
this result holds for the truncated expansion (22). Namely, if FN

is the expansion (22) truncated at l = N , then by (24) FN has a
representation of the form (23) with the incoming wave pattern being
the expansion (26) truncated at l = N . Finally, we easily see that the
incoming wave pattern F0 of the field F transforms like the radiation
pattern in the translation of the origin by a vector t. Namely, for the
incoming wave pattern G0 of the field G defined by G(r) = F (t + r)
we have:

G0(k̂) = eikk̂·tF0(k̂). (27)
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In the case of a vector field similar results can be written in
terms of the spherical vector wave functions and the vector spherical
harmonics. Namely, if F is either the electric field E or the magnetic
field H, due to the sources inside B, then outside B the vector field
F can be expanded in outgoing spherical vector wave functions as
[27, p. 174]

F(r) =
∞∑
l=1

l∑
m=−l

[Al,mMout
l,m(r) + Bl,mNout

l,m(r)]. (28)

The radiation pattern,

F∞(r̂) = lim
r→∞

rF(r)
eikr

, (29)

can be expanded in vector spherical harmonics as

F∞(r̂) =
1
ik

∞∑
l=1

l∑
m=−l

(−i)l[Al,mUl,m(r̂) + Bl,mVl,m(r̂)], (30)

because from (8) and (9), respectively, we easily get

(Mout
l,m)∞(r̂) =

1
ik

(−i)lUl,m(r̂), (31)

(Nout
l,m)∞(r̂) =

1
ik

(−i)lVl,m(r̂). (32)

The coefficients Al,m and Bl,m can now be determined from (30) by
applying the orthogonality of the vector spherical harmonics (13)–(15).
Also, we easily see that the radiation pattern F∞ transforms in the
translation of the origin just like in the scalar case.

Finally, consider a vector field F, with F being either E or H, due
to the sources outside B. Then, inside B the field can be expanded in
incoming spherical vector wave functions as

F(r) =
∞∑
l=1

l∑
m=−l

[Al,mMin
l,m(r) + Bl,mNin

l,m(r)]. (33)

Like in the scalar case, we next assume that the field also has the form

F(r) =
∫

B
F0(k̂)eikk̂·r dΩ(k̂). (34)
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If we then expand the incoming wave pattern F0 in vector spherical
harmonics as

F0(k̂) =
1
4π

∞∑
l=1

l∑
m=−l

(−i)l[Al,mUl,m(k̂) + Bl,mVl,m(k̂)], (35)

we obtain the expansion (33) by using the equations

Min
l,m(r) = (−i)l 1

4π

∫
B

Ul,m(k̂)eikk̂·r dΩ(k̂), (36)

Nin
l,m(r) = (−i)l 1

4π

∫
B

Vl,m(k̂)eikk̂·r dΩ(k̂), (37)

which can be derived by substituting (24) into the definitions (5) and
(6), respectively. They are also given, for example, in [28, Eqs. (4.17a)
and (4.17b)]. In analogy to the scalar plane wave, (36) and (37) imply
that a vector plane wave F0e

ikk̂·r with k̂ · F0 = 0 can be expanded as

F0e
ikk̂·r= 4πF0 ·

∞∑
l=1

l∑
m=−l

1
l(l+1)

il[U∗
l,m(k̂)Min

l,m(r) + V∗
l,m(k̂)Nin

l,m(r)].

(38)

We note that here (and in several equations in Sec. 5), the factor
1/[l(l + 1)] is a consequence of the unnormalised definitions of the
wave functions and the harmonics.

4. SCALAR ADDITION THEOREMS

Assume that we have expanded a scalar field F in spherical wave
functions as

F (r) =
∞∑
l=0

l∑
m=−l

bl,mψl,m(r) (39)

and that we then want to translate the origin by the vector t and
expand F (t + r) around the new origin as

F (t + r) =
∞∑

n=0

n∑
p=−n

cn,pψn,p(r). (40)

To accomplish that we need to find cn,p in terms of bl,m, i.e., we wish
to find out how the coefficients bl,m transform in the translation. It is
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obvious that we only need to find the so-called translation coefficients
al,m;n,p for the expansion

ψl,m(t + r) =
∞∑

n=0

n∑
p=−n

al,m;n,p(t)ψn,p(r), (41)

since by substituting (41) into (39), changing the order of summation
and comparing the result to (40) we find the wanted coefficients as

cn,p =
∞∑
l=0

l∑
m=−l

al,m;n,p(t)bl,m. (42)

It is customary to call (41) the addition theorem of the spherical scalar
wave functions.

There are three kinds of translations, and consequently addition
theorems, depending on the types of the initial and translated wave
functions. We refer them as out-to-out, in-to-in and out-to-in
translations.

Consider first the out-to-out translation, in which case the wave
functions on both sides of (41) are of an outgoing type and t < r.
Then, by taking far field limits on both sides according to (18) and
using (19), as explained in Sec. 3, the equation (41) reduces to

(−i)lYl,m(r̂)eikr̂·t =
∞∑

n=0

n∑
p=−n

(−i)naout-out
l,m;n,p(t)Yn,p(r̂) (43)

where the exponent factor on the left-hand-side is due to the translation
of the origin by t. Owing to the orthogonality of the spherical
harmonics (4) we then obtain

aout-out
l,m;n,p(t) = (−i)l−n

∫
B

Yl,m(r̂)Y ∗
n,p(r̂)e

ikr̂·t dΩ(r̂). (44)

The coefficients could already be calculated from the above expression
by using the standard numerical integration rule over the unit sphere.
An explicit expression, however, can be obtained as follows. By
making use of (25) and changing the order of the integration and the
summation, (44) becomes

aout-out
l,m;n,p(t) = 4π

∞∑
q=0

q∑
s=−q

(−i)l−n−qψin
q,s(t)

∫
B

Yl,mY ∗
n,pY

∗
q,s dΩ. (45)
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Note that in the above integral in the spherical co-ordinates over the
unit sphere B, the integrand Yl,mY ∗

n,pY
∗
q,s contains the factor ei(m−p−s)φ,

and so the integral vanishes unless m − p − s = 0. This reduces the
summation in s to a single value s = m− p. Note also that Yl,mY ∗

n,p is
a spherical harmonic polynomial of order l + n, and similarly, Yl,mY ∗

q,s
and Y ∗

n,pY
∗
q,s are spherical harmonic polynomials of order l+q and n+q,

respectively. So, due to the orthogonality of the spherical harmonics,
the integral of Yl,mY ∗

n,pY
∗
q,s over B vanishes unless q ≤ l + n, n ≤ l + q

and l ≤ n + q, or equivalently, |l − n| ≤ q ≤ l + n. Moreover, since
m− p− s = 0, due to the form of the spherical harmonics, Yl,mY ∗

n,pY
∗
q,s

is a polynomial of cos θ of order l + n + q, and so, if this order is odd,
the polynomial is odd and the integral vanishes. These facts taken
together imply that (45) can be simplified to

aout-out
l,m;n,p(t) = 4π

l+n∑
q=|l−n|

l + n + q even

(−i)l−n−qψin
q,m−p(t)

∫
B

Yl,mY ∗
n,pY

∗
q,m−p dΩ,

(46)

which is the usual form for the coefficients of the out-to-out translation.
The integration of the three spherical harmonics can also be expressed
in terms of Clebsch-Gordan coefficients or Wigner 3-j symbol; see, for
example, [29, Sec. 27.9] or [6, Sec. 3.2.1.3].

The procedure for deriving the in-to-in translation is similar. In
this case, the wave functions on both sides of (41) are of an incoming
type. Then, by following the steps through (22) to (26), as explained
in Sec. 3, the equation (41) can be reduced to a form identical to (43).
Consequently, the coefficients of the in-to-in translation are the same
as those of the out-to-out translation:

ain-in
l,m;n,p(t) = aout-out

l,m;n,p(t). (47)

The out-to-in translation can be determined at once from the out-
to-out translation. Namely, by inserting (45) into (41), when the wave
functions on both sides are of an outgoing type and t < r, we have

ψout
l,m(t + r)

= 4π
∞∑

n=0

n∑
p=−n

∞∑
q=0

q∑
s=−q

(−i)l−n−qψin
q,s(t)ψ

out
n,p (r)

∫
B

Yl,mY ∗
n,pY

∗
q,s dΩ.

(48)

Now, the expressions on both sides of the equation are symmetrical
with respect to t and r apart from the types of the wave functions
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on the right-hand-side. Thus, we have a possibility to interchange the
roles of t and r (and consequently require t > r) and identify

aout-in
l,m;n,p(t) = 4π

l+n∑
q=|l−n|

l + n + q even

(−i)l−n−qψout
q,m−p(t)

∫
B

Yl,mY ∗
n,pY

∗
q,m−p dΩ,

(49)

which is the equation for the coefficients of the out-to-in translation.
We note that the only difference compared to the coefficients of the
out-to-out and in-to-in translations is the type of the wave function in
the sum, which is now outgoing instead of incoming.

The above reasoning, however, does not work in the vector case
treated in the next section. So, for the sake of completeness and as an
introduction to the vector case, let us derive (49) anew starting from
(41) when the wave function on the left-hand-side is outgoing and the
ones on the right-hand-side incoming, and t > r. We assume that
aout-in

l,m;n,p has a far field limit according to (18) and a radiation pattern
denoted by (aout-in

l,m;n,p)∞. Then, by taking the limits on both sides, now
with respect to t instead of r, we obtain

1
ik

(−i)lYl,m(t̂)eikt̂·r =
∞∑

n=0

n∑
p=−n

(aout-in
l,m;n,p)∞(t̂)ψin

n,p(r). (50)

By comparing (50) to (25) with k̂ = t̂, it can be identified that

(
aout-in

l,m;n,p

)
∞ (t̂) =

1
ik

(−i)l−n4πYl,m(t̂)Y ∗
n,p(t̂). (51)

The right-hand-side of (51) can be expanded in spherical harmonics
yielding

(aout-in
l,m;n,p)∞(t̂) =

1
ik

4π
∞∑

q=0

q∑
s=−q

(−i)l−nYq,s(t̂)
∫

B
Yl,mY ∗

n,pY
∗
q,s dΩ. (52)

Since the coefficients of the expansion of an outgoing field in the
spherical wave functions are equal to the coefficients of the expansion
of the corresponding radiation pattern in the spherical harmonics, as
explained in Sec. 3, the equation (49) follows directly from (52).
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5. VECTOR ADDITION THEOREMS

In this section we derive the addition theorems for the spherical vector
wave functions, which are formulated as

Ml,m(t + r) =
∞∑

n=1

n∑
p=−n

[Al,m;n,p(t)Mn,p(r) + Bl,m;n,p(t)Nn,p(r)], (53)

Nl,m(t + r) =
∞∑

n=1

n∑
p=−n

[Bl,m;n,p(t)Mn,p(r) + Al,m;n,p(t)Nn,p(r)] (54)

where Al,m;n,p and Bl,m;n,p are the translation coefficients to be
determined. Notice that the same coefficients with an interchanged
order appear in both equations (53) and (54) due to (6) and (7).

In the first subsection we present a derivation completely
analogous to the derivation of the scalar addition theorem in the
previous section. For comparison, in the latter subsection we briefly
review a derivation similar to the traditional derivation presented, for
example, in [10, 11, 15].

5.1. Derivation by Means of Wave Patterns

As in the scalar case, let us begin with the out-to-out translation when
the wave functions on both sides of (53) are of an outgoing type and
t < r. Note that the translation coefficients could be derived starting
from (54) as well. Then, by taking far field limits on both sides
according to (29), and using (31) and (32), as explained in Sec. 3,
the equation (53) can be reduced to

(−i)lUl,m(r̂)eikr̂·t

=
∞∑

n=1

n∑
p=−n

(−i)n[Aout-out
l,m;n,p(t)Un,p(r̂) + Bout-out

l,m;n,p (t)Vn,p(r̂)] (55)

where the exponent factor on the left-hand-side is due to the translation
of the origin by t. Owing to the orthogonality of the vector spherical
harmonics (13)–(15) we then obtain

Aout-out
l,m;n,p(t) =

1
n(n + 1)

(−i)l−n

∫
B

Ul,m(r̂) · U∗
n,p(r̂)e

ikr̂·t dΩ(r̂), (56)

Bout-out
l,m;n,p (t) =

1
n(n + 1)

(−i)l−n

∫
B

Ul,m(r̂) · V∗
n,p(r̂)e

ikr̂·t dΩ(r̂). (57)

The coefficients could already be calculated from the above expressions
by numerical integration. An explicit expressions can be obtained by
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substituting (25) into (56) and (57) and changing the order of the
integration and the summation:

Aout-out
l,m;n,p(t)

=
1

n(n + 1)
4π

∞∑
q=0

q∑
s=−q

(−i)l−n−qψin
q,s(t)

∫
B

Ul,m · U∗
n,pY

∗
q,s dΩ, (58)

Bout-out
l,m;n,p (t)

=
1

n(n + 1)
4π

∞∑
q=0

q∑
s=−q

(−i)l−n−qψin
q,s(t)

∫
B

Ul,m · V∗
n,pY

∗
q,s dΩ. (59)

In the formulas above, most of the terms in the summation in s are zero,
just like in the scalar case, but this time the non-zero terms are not that
easy to identify. However, we do not care for that, because at the end
of this subsection, after deriving the expressions for the coefficients for
the remaining translations, we write formulas for evaluating the vector
translation coefficients by using the corresponding scalar coefficients.
By doing so the zero terms are automatically dropped out.

The procedure for deriving the in-to-in translation is similar. In
this case, the wave functions on both sides of (53) are of an incoming
type. Then, by following the steps through (33) to (35), as explained
in Sec. 3, the equation (53) can be reduced to a form identical to (55).
Consequently, the coefficients of the in-to-in translation are the same
as the coefficients of the out-to-out translation:

Ain-in
l,m;n,p(t) = Aout-out

l,m;n,p(t), (60)

Bin-in
l,m;n,p(t) = Bout-out

l,m;n,p (t). (61)

Consider next the out-to-in translation when the wave function on
the left-hand-side of (53) is outgoing and those on the right-hand-side
are incoming, and t > r. We assume that Aout-in

l,m;n,p and Bout-in
l,m;n,p have

far field limits according to (29) and radiation patterns denoted by
(Aout-in

l,m;n,p)∞ and (Bout-in
l,m;n,p)∞. Then, by taking the limits on both sides

according to (29), now with respect to t instead of r, we obtain

1
ik

(−i)lUl,m(t̂)eikt̂·r

=
∞∑

n=1

n∑
p=−n

[(Aout-in
l,m;n,p)∞(t̂)Min

n,p(r) + (Bout-in
l,m;n,p)∞(t̂)Nin

n,p(r)]. (62)
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By comparing (62) to (38) it can be identified that

(Aout-in
l,m;n,p)∞(t̂) =

1
n(n + 1)

1
ik

(−i)l−n4πUl,m(t̂) · U∗
n,p(t̂). (63)

This can be expanded in spherical harmonics as

(Aout-in
l,m;n,p)∞(t̂)

=
1

n(n + 1)
1
ik

4π
∞∑

q=0

q∑
s=−q

(−i)l−nYq,s(t̂)
∫

B
Ul,m · U∗

n,pY
∗
q,s dΩ,(64)

and, since the coefficients of the expansions of an outgoing field in
the spherical wave functions and the radiation pattern in the spherical
harmonics are related, as explained in Sec. 3, this readily yields

Aout-in
l,m;n,p(t)

=
1

n(n + 1)
4π

∞∑
q=0

q∑
s=−q

(−i)l−n−qψout
q,s (t)

∫
B

Ul,m · U∗
n,pY

∗
q,s dΩ. (65)

The procedure for obtaining Bout-in
l,m;n,p is similar, giving as a result

Bout-in
l,m;n,p(t)

=
1

n(n + 1)
4π

∞∑
q=0

q∑
s=−q

(−i)l−n−qψout
q,s (t)

∫
B

Ul,m · V∗
n,pY

∗
q,s dΩ. (66)

To conclude this subsection, we establish formulas by which the
vector translation coefficients can be evaluated by taking advantage
of the corresponding scalar coefficients. By comparing the above
expressions for the coefficients of the different translations, we find
that, just like in the scalar case, the only difference between them is
the type of the wave functions in the summations. Hence, the following
formulas can be written for the three translations once and for all.
Therefore, in the following, we only consider the out-to-out translation.
By expanding the dot product in (58) with aid of (A1) and (A2) in
Appendix A and identifying the terms similar to the scalar translation
(45), we find that

Al,m;n,p

=
1

n(n + 1)

[
1
2

√
(l − m)(l + m + 1)(n − p)(n + p + 1)al,m+1;n,p+1
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+
1
2

√
(l + m)(l − m + 1)(n + p)(n − p + 1)al,m−1;n,p−1 + mpal,m;n,p

]
.

(67)

Similarly, by expanding the dot product in (59) with aid of (A1)–(A4)
and identifying the terms similar to the scalar translation, we get

Bl,m;n,p = −1
2

√
(l − m)(l + m + 1)

·
[

1
n + 1

√
(n + p + 1)(n + p + 2)

(2n + 1)(2n + 3)
al,m+1;n+1,p+1

+
1
n

√
(n − p − 1)(n − p)
(2n − 1)(2n + 1)

al,m+1;n−1,p+1

]

+
1
2

√
(l + m)(l − m + 1)

·
[

1
n + 1

√
(n − p + 1)(n − p + 2)

(2n + 1)(2n + 3)
al,m−1;n+1,p−1

+
1
n

√
(n + p − 1)(n + p)
(2n − 1)(2n + 1)

al,m−1;n−1,p−1

]

+ m

[
1

n + 1

√
(n + p + 1)(n − p + 1)

(2n + 1)(2n + 3)
al,m;n+1,p

− 1
n

√
(n + p)(n − p)

(2n − 1)(2n + 1)
al,m;n−1,p

]
.

(68)

The above formulas, to the best knowledge of the authors, are new.
In the next subsection we derive the formulas used traditionally. By
comparing them to above ones, we notice that our formula for Al,m;n,p

is simpler while the one for Bl,m;n,p is more complicated.

5.2. Traditional Derivation

The traditional procedure for deriving the vector addition theorems
starts by invoking the scalar addition theorem (41) in the
definition (5) and noting that the gradient operator is invariant
under translation; see, for example, [10, Eq. (12)], [11, Eq. (8)],
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[15, Eq. (D.19)], [16, Eq. (5)] or [17, Eq. (10)]:

Ml,m(t + r) = ∇ψl,m(t + r) × (t + r)

=
∞∑

n=1

n∑
p=−n

al,m;n,p(t)[∇ψn,p(r) × t + Mn,p(r)].
(69)

It then remains to find the coefficients of the expansion

∇ψn,p(r) × t =
∞∑

q=0

q∑
s=−q

[cn,p;q,s(t)Mq,s(r) + dn,p;q,s(t)Nq,s(r)]. (70)

These coefficients too can be found by reducing the wave functions
on both sides of the equation into the corresponding harmonics as
explained in Sec. 3. By doing so we get

ikr̂(−i)nYn,p(r̂) × t

=
∞∑

q=0

q∑
s=−q

(−i)q[cn,p;q,s(t)Uq,s(r̂) + dn,p;q,s(t)Vq,s(r̂)]. (71)

The coefficients are then obtained by the orthogonality:

cn,p;q,s(t) =
1

q(q + 1)
(−i)n−q

∫
B

Yn,pkt · V∗
q,s dΩ, (72)

dn,p;q,s(t) =
1

q(q + 1)
(−i)n−q

∫
B

Yn,pkt · U∗
q,s dΩ. (73)

The above integrals can be evaluated by applying (A1)–(A4) in
Appendix A and the orthogonality once more. Then, insertion of (70)
into (69) and re-arrangement of terms yields

Al,m;n,p = al,m;n,p

−1
2
k(tx + ity)

[
1

n + 1

√
(n + p + 1)(n + p + 2)

(2n + 1)(2n + 3)
al,m;n+1,p+1

− 1
n

√
(n − p − 1)(n − p)
(2n − 1)(2n + 1)

al,m;n−1,p+1

]

+
1
2
k(tx − ity)

[
1

n + 1

√
(n − p + 1)(n − p + 2)

(2n + 1)(2n + 3)
al,m;n+1,p−1
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− 1
n

√
(n + p − 1)(n + p)
(2n − 1)(2n + 1)

al,m;n−1,p−1

]

+ktz

[
1

n + 1

√
(n + p + 1)(n − p + 1)

(2n + 1)(2n + 3)
al,m;n+1,p

+
1
n

√
(n + p)(n − p)

(2n − 1)(2n + 1)
al,m;n−1,p

]
, (74)

Bl,m;n,p =
i

n(n + 1)

[
1
2
k(tx + ity)

√
(n − p)(n + p + 1)al,m;n,p+1

+
1
2
k(tx − ity)

√
(n+p)(n−p+1)al,m;n,p−1 + ktzpal,m;n,p

]
,

(75)

where tx, ty and tz are the Cartesian components of t. The formulas
above are the same as, for example, in [16, Eqs. (12a) and (12b)].

6. TRANSLATION THROUGH ROTATION

Besides using the translation formulas derived above, the translation
of a wave function can be performed through consecutive rotation,
translation along the z′-axis of the new system of co-ordinates and
inverse rotation. The advantage of this approach is that the number
of non-zero coefficients in the above three sequential operations is
one degree lower comparing to the straightforward translation. This
approach is discussed, for example, in [4, 5, Sec. 5.3.6, 30] and for
completeness it is briefly reviewed in the following. For the sake of
clarity, this is done only in the scalar case; the vector case is essentially
the same.

The rotational translation theorem for the spherical harmonics
can be formulated as (see, for example, [3, App. A2] or [10, App. A1])

Yl,m(r̂′) =
l∑

p=−l

Dl,m;p(α, β, γ)Yl,p(r̂) (76)

where α, β and γ are the three Euler angles of the rotation from r̂ to
r̂′. The coefficient can be written as

Dl,m;p(α, β, γ) = eimαdl,m;p(β)eipγ (77)
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where

dl,m;p(β) =

√
(l + p)!(l − p)!

(l + m)!(l − m)!

∑
u

(
l + m

l − p − u

)(
l − m

u

)

·(−1)l−p−u

(
cos

β

2

)m+p+2u(
sin

β

2

)2l−m−p−2u

(78)

where the summation is carried out over all u for which the arguments
of the binomials are positive. Since the order of the spherical harmonics
is preserved in the rotation, the rotation for the spherical wave function
is obtained simply by multiplying both sides of (76) by zl(r); and
further, since the gradient operator is invariant under rotation, the
rotation is found to be similar for the spherical vector wave functions
as well.

Now, the translation of the spherical wave function ψl,m by t, in
general formulated as in (41), and with t having the spherical angles
ϑ and ϕ, can be separated into the following three steps:

ψl,m(t + r) =
l∑

s=−l

Dl,m;s(−ϕ,−ϑ, 0)ψl,s(ẑ′t + r′), (79)

ψl,s(ẑ′t + r′) =
∞∑

n=0

al,s;n,s(ẑ′t)ψn,s(r′), (80)

ψn,s(r′) =
n∑

p=−n

Dn,s;p(ϕ, ϑ, 0)ψn,p(r). (81)

Going backwards from (81) to (79), we first rotate the system of co-
ordinates so that the z′-axis points in the direction of t; then we
perform the translation along the z′-axis; and finally we rotate the
system of co-ordinates into the original alignment.

Comparing to (41), we note that at every step from (81) to (79) the
coefficient has three different indices instead of four and one summation
instead of two. This suggests that the computational cost of the
translation by (79)–(81) is one degree lower (∼ N3) compared to that
of the translation by (41) (∼ N4).

7. CONCLUSION

In this paper we derived the translational addition theorems for the
spherical scalar and vector wave functions in a simple and unified
manner by applying the fundamental concepts of radiation pattern and



Progress In Electromagnetics Research B, Vol. 4, 2008 97

incoming wave pattern. In addition, we obtained alternative and partly
simpler expressions for the translation coefficients in the vector case,
which, to the best knowledge of the authors, have not been published
elsewhere.

APPENDIX A. COMPONENTS OF THE VECTOR
SPHERICAL HARMONICS

The vector spherical harmonics defined as (10) and (11) can be
decomposed by making use of the recurrence relations of the associated
Legendre functions; see, for example, [26, Sec. 7.3, Eqs. (13) and (14)].
It turns out that expressions consisting purely of spherical harmonics
can be found only for the rectangular components; in particular, the
(x̂ ± iŷ)- and ẑ-component are the simplest ones. They are

(x̂ ± iŷ) · Ul,m = −i
√

(l ∓ m)(l ± m + 1)Yl,m±1, (A1)
ẑ · Ul,m = −imYl,m, (A2)

(x̂ ± iŷ) · Vl,m = ±il

√
(l ± m + 1)(l ± m + 2)

(2l + 1)(2l + 3)
Yl+1,m±1

±i(l + 1)

√
(l ∓ m − 1)(l ∓ m)

(2l − 1)(2l + 1)
Yl−1,m±1, (A3)

ẑ · Vl,m = −il

√
(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)
Yl+1,m

+i(l + 1)

√
(l + m)(l − m)
(2l − 1)(2l + 1)

Yl−1,m. (A4)

The components of Ul,m can also be found in an irreducible
spherical tensor [12, Eq. (2)] familiar in quantum mechanics.
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