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Abstract—This paper considers the influence of interchannel crosstalk
on pulse timing shift and optical power due to the propagation of
optical pulse through a nonlinear dispersive fiber. The numerical
results are shown. An influencing parameter of the pulse distortion
through the fiber is the eye opening penalty.

1. INTRODUCTION

In the modern times in telecommunications systems, the usage
of optical fibers is a good transmission medium [1–20]. The
optical wavelength-division-system (WDM) consists of a transmitter,
transmission medium and a receiver and almost every component in
the entire system introduces crosstalk. Optical crosstalk has a great
influence on transmission quality and it may occur due to reflections,
fiber and amplifier nonlinearities, add-drop components, multiplexers
and de-multiplexers in WDM etc. There are numerous reasons for the
crosstalk. One reason is the imperfection of the transmitter and a
system of mirrors that are reflecting the beam into the optical fiber
which leads to the possibility of interference of unwanted pulse at a
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different frequency that interact with the useful signal. Another reason
for crosstalk is induced by leakage or insufficient insulation.

In this paper, the influence of interchannel crosstalk timing shift
and optical power on the propagation of the optical solitons through a
single mode nonlinear dispersive optical fiber is considered. Both the
crosstalk and the useful signal are Gaussian shape but with different
wavelengths. The pulse distortion through the fiber for different
crosstalk optical powers and crosstalk timing shifts.

2. DETERMINATION OF USEFUL SIGNAL
INFLUENCED BY CROSS-TALK SIGNAL

The propagation of short optical pulses in nonlinear dispersive medium
is considered. The cross-talk pulses being at different wavelengths than
useful signal, so called interchannel cross-talk distort the useful pulses.
It is assumed that the cross-talk occur at the transmitter output (fiber
input). The useful signal is modeled as

s1(z, T ) = A1(0, T ) cos (ω1T ) (1)

while the interchannel cross-talk signals is considered to be given by

s2(z, T ) = A2(0, T ) cos (ω2T ) (2)

where ω1 is the central frequency of a desired channel and ω2 represents
the central frequency of interchannel cross-talk.

In this paper, the input optical pulse envelope is assumed to be
unchirped whose shape is given by

A1(0, T ) =
√

P1f

(
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2T 2
0

)
(3)

The envelope of the interchannel cross-talk pulse is assumed to be given
by

A2(0, T ) =
√

P2f

{
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2

2T 2
0

}
(4)

where P1 and P2 are the peak powers of useful optical pulse and
interchannel cross-talk, respectively and Ts is the interchannel cross-
talk time shift. Also f represents the pulse shape. It could be Gaussian,
super-Gaussian, sech or super-sech as the case may be. It is assumed
that −Tb/2 ≤ Ts ≤ Tb/2 as in this paper the interest is confined to one
bit period Tb.
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The useful optical pulse and the above modeled interchannel
cross-talk will co-propagate simultaneously through the optical fiber.
This propagation is governed by the set of two coupled nonlinear
Schrödinger’s equation which, in the dimensionless form, is given by
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where γj = n2ωj/cAeff and β2j = −Dλ2
j/2πc for j = 1, 2 are

the coefficients of dispersion and nonlinear terms respectively and
T = t − z/vg is the normalization factor. Also Aeff = πw2 is the
effective core area. It needs to be noted that Aeff is typically 10−20 µm2

in the visible region but it can be in the range of 50–80µm2 in the
1.55µm region, so that γ can vary over the range 2–30 W−1km−1

depending on n2 and frequency. Also it is assumed that the fiber
losses are small and therefore neglected.

The coupled equations in (5) and (6) is a nonlinear partial
differential equation. This system is solved by using the split-step
Fourier method that is extensively used in solving pulse propagation
problem in a nonlinear dispersive medium. In a lot of cases this
method shows high accuracy. Although, in general, the dispersion and
nonlinearity act together along the fiber, the split-step Fourier method
gives an approximate solution by assuming that in the propagation of
optical field over a small distance h one can pretend that dispersive
and nonlinear effects act independently. Hence, propagation from z to
z + h is carried out in two steps. In the first step, nonlinearity acts
alone while in the second step dispersion acts alone. Thus the name
split-step method. Although the method is relatively straightforward
to implement, it should be noted that it requires the step size h along z
and time discretization to be selected carefully to maintain the required
accuracy.

The interchannel cross-talk level is defined by signal-to-
interference ratio (SIR) i.e., the ratio of useful signal optical power
to cross-talk to cross-talk signal optical power. It is defined as

SIR = 20 log
P1

P2
(7)

3. NUMERICAL SIMULATION OF PULSE EVOLUTION

Pulse evolution pictures and dependences of useful optical pulse
distortion from timing shifts (Ts) and SIR are considered in this section.
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In the propagation of optical pulses, the following factors are taken into
consideration TFWHM = 12.5 ps, λ1 = 1550 nm, bit rate R = 20 Gb/s,
P − 1 = 50 mW through the SMF in the regime of normal dispersion
(D = 0.2 ps/nm-km) with parameter Aeff = 50 µm2. The interchannel
cross-talk wavelength is taken to be λ2 = 1551.5 nm. The fiber length
is taken to be 60 km in all the simulations.

The contour plot is used as a very illustrative way to show
variations of power and distortion of pulse during propagation through
the nonlinear dispersive SMF. In the worst case SIR = 0 dB, i.e., the
useful signal has an equal magnitude to cross-talk signal, is considered.
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Figure 1. Pulse evolution picture and corresponding contour plot
(Gaussian pulse).
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Figure 2. Pulse evolution picture and corresponding contour plot
(super-Gaussian pulse).
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Figure 3. Pulse evolution picture and corresponding contour plot
(sech pulse).
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Figure 4. Pulse evolution picture and corresponding contour plot
(super-sech pulse).

These figures are respectively due to Gaussian, super-Gaussian,
sech and super-sech pulses.

4. EYE OPENING PENALTY

The influence of crosstalk occurring at the input of transmission
link is obtained by estimating the eye opening penalty (EOP). The
EOP is a performance measure considering the dynamic propagation
effects, such as the dispersion, nonlinearities and other such nonlinear
influences that distort the pulse shape. The EOP is especially useful
for noise-free system evaluations, as it gives an useful measure of
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deterministic pulse distortion effects. EOP is defined as a ratio of
an initial eye opening (EObefore) to the eye opening after transmission
(EOafter ). The initial eye opening is the eye opening that is measured
at the fiber input.

The analysis of the influence of interchannel crosstalk occurring
at the fiber input for a different useful signal optical powers and for
the worst case when SIR = 0 dB by estimating the EOP and changing
Ts. The influence of interchannel cross-talk by estimating EOP and
changing SIR is also analysed in Figures 5–8, for various types of pulses.
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Figure 5. EOP vs Ts for Gaus-
sian optical pulse and different
SIR.
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Figure 6. EOP vs Ts for
super-Gaussian optical pulse and
different SIR.
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Figure 7. EOP vs Ts for sech
optical pulse and different SIR.
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Figure 8. EOP vs Ts for
for super-sech optical pulse and
different SIR.
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It is be seen that interchannel cross-talk occurring at the fiber
input greatly reduce eye opening by increasing the useful signal optical
power. The 3-D plots of Figures 1–4 illustrate this. The very same
conclusion can be drawn from Figures 5–8. The eye opening is rising
with the increase of SIR and decreases with the increase of the useful
signal optical power.

5. CONCLUSIONS

Although the interchannel cross-talk can be filtered if it occurs at
the fiber input, it not uncommon that this cross-talk can be induced
somewhere, rather anywhere, in the transmission link. In this paper,
the investigation of the interchannel cross-talk was investigated that
occurs at the fiber input. The analysis is performed for the interchannel
cross-talk model where the interchannel cross-talk position relative to
the useful signal position is considered and it was concluded that
Ts influences EOP. It can be seen that the interchannel cross-talk
position at the center of the useful signal Ts = 0 has the greatest
influence. As the position of the cross talk pulse is changed left or
right (0 ≤ |Ts| ≤ Tb/2), the useful signal pulse becomes additionally
distorted but the influence on the EOP becomes smaller as observed
in Figures 5–8. The SIR level is also changed from 0–20 dB and
numerically simulated EOP and it is seen that for SIR = 0 dB, one
has the greatest influence on optical pulse propagation. This means
that when interchannel cross-talk optical power is equal to the signal
optical power, it gives rise to nonlinear effects that additionally distorts
the pulse shape. A thorough analysis is very useful for improving the
existing transmission links or designing the new ones. It is also very
useful in designing wavelength-division-multiplexed (WDM) systems
as this type of cross-talk is pretty common. So, in the case of WDM
system two or even four nearest wavelengths (channels) should be taken
into consideration. It needs to be noted that EOP gives an useful
information for bit-error-rate evaluation.
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