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Abstract—To design less costly and time consuming Photonic Crystal
Fibers it is better to use Empirical Relations Method instead of
Scalar Effective Index Method. If we compare both empirical
relations method and scalar effective index method by accurate and
powerful methods like Full-Vector Finite Element Method, we find
that empirical relations method has less error than scalar effective
index method in calculating PCF parameters such as nfsm , neff , and the
second order dispersion. According to the investigations, we concluded,
the inherent error of scalar effective index method approximately
increases when pitch decreases. In large pitches the calculation of
dispersion by scalar effective index method reveals less error in low
wavelengths than high wavelengths and finally we calculated the third
order dispersion which is important in some applications.

1. INTRODUCTION

Optical fiber, as an important optical instrument is used for high speed
data communications, sensor technology, spectroscopy, and medicine
[1, 2]. During recent years lots of studies are done about PCFs or
holy fibers [3]. This is due to capabilities of these fibers in handling
propagation modes through themselves [4]. This aspect has turned
these devices into the most popular and applicable optical instruments
such as channel allocation in the wavelength division multiplexing
transmission system and Pressure Sensor Applications [5].

PCFs are categorized as mono-material fibers which have a central
light guiding area surrounded by rods in a triangular lattice [3]. These
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rods are filled by air and their diameters and hole pitches are almost the
same as the amount of wavelength. This novel structure of PCF makes
new properties such as wide single-mode wavelength range, unusual
chromatic dispersion and high or low non-linearity [1].

There are several methods to analyze these fibers including:
Effective Index Method, (EIM), Localized Basis Function Method,
Finite Element Method (FEM), Finite Difference Method (FDM),
Plane Wave Expansion Method (PWM) and Multi-Pole Method
[1, 4, 5].

Numerical methods are too time consuming and needs huge and
iterative computation [1]. Usually these methods are too mighty and
their broad capabilities are not required for studying PCFs. Despite of
limitations and accuracies, other analytic methods are introduced to
replace these methods [1]. In present paper two scalar effective index
method (SEIM) and empirical relations method (ERM) are studied.

In SEIM the effective cladding index of a hexagonal unit cell which
consists a Fiber rod is calculated with respect to rod diameter and pitch
(Λ), then the effective index of PCF is obtained by using the effective
cladding index [3].

In ERM, empirical relations for V parameter (Normalized
Frequency) and W parameter (Normalized Transverse Attenuation
Constant) of PCFs with respect to the basic geometrical parameters
(i.e., the air hole diameter and the hole pitch) are formed. Then V and
W are computed and used to calculate PCF’s basic parameters [1].

The obtained results of these two methods are compared and we
show that the accuracy of the methods changes by Λ and wavelength.

One of the main problems in optical fibers is calculation dispersion
[9]. We present the calculation result of the second order dispersion
of a chromatic dispersion in PCFs with well known properties. Since
some properties optical networks strongly depends on the impact of
higher order dispersion [10] we also illustrate the calculation result of
the third order dispersion. The Sellmeier relation has been used to
calculate material dispersion.

2. SCALAR EFFECTIVE INDEX METHOD

One of the analytical methods is scalar effective index method (SEIM)
which is valid for the LP01 fiber mode based on weak-guidance
approximation [4]. The core refractive index is supposed to be the
same as the refractive index of core material which is given by the
Sellmeier relation. But the cladding refractive index is determined
based on total reflection [6]. Fundamental space-filling mode (FSM) of
a PCF is considered to be the mode with the largest modal index of
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the infinite two-dimensional photonic crystal structure that surrounds
the PCF’s core [7, 8].

The wave equation in cladding area is defined as [∇2
t + ((wc )2n2 −

β2)]ψ = 0, where ∇t, w, c, n and β are transverse Laplacian operator
in cylindrical coordinates, angular frequency, the light velocity in
a vacuum, material index of cladding and propagation constant,
respectively. ψ can be either the electric or magnetic field [3]. The
hexagonal unit cell is replaced by a circular unit cell of radius R
(Fig. 1). At any point P on the boundary of unit cell, ψ must satisfy
∂ψ
∂�n = 0 and ∂ψ

∂�n is continuous at the interface of inner and outer side of
unit cell, where �n is the outward unit vector normal to the boundary
of unit cell [3].

Figure 1. The hexagonal unit cell and its circular equivalent.

We can get the following equation in the inner and outer areas of
the air hole under the assumption of weak guidance [9, 3].

K(w)
I1[K(w)a]
I0[K(w)a]

{
J0[T (w)a] − Y0[T (w)a]

J1[T (w)R]
Y1[T (w)R]

}
=

−T (w)
{
J1[T (w)a] − Y1[T (w)a]

J1[T (w)R]
Y1[T (w)R]

}
(1)

Where I, J, Y are Bessel functions, K2(w) = β2(w) − n2
air (

w
c )2 and

T 2(w) = (wc )2n2
silica(w) − β2(w).

The optimal radius for SEIM is R = Λ
2 [4].

By solving equation (1) for β(ω) we can calculate the effective
refractive index of the fundamental space-filling mode using nfsm(w) =
β(w) cw .

Once having obtained nfsm(w), one solves the characteristic
equation for the propagation constant βc(ω) of the LP01 mode of
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the approximate step-index fiber by η(w)J1[η(w)rc]
J0[η(w)rc]

= γ(w)K1[γ(w)rc]
K0[γ(w)rc]

,
where K and J are also Bessel functions, and η2(w) = (wc )2n2

c(w) −
β2
c (w), γ2(w) = β2

c (w) − (wc )2n2
eff (w), with nc(ω) being the refractive

index of the core material and rc = Λ − a being the core radius [3].
afterward by using neff (w) = βc(w) cw , the effective index of PCF is
obtained.

3. EMPIRICAL RELATIONS METHOD

In this method, the refractive index of silica is constant and supposed
to be ncore = 1.45. The effective core radius is defined aeff = Λ/

√
3

[1].
Recently, it has been claimed that the triangular PCFs can be

well parameterized in terms of the V parameter [10] that is given by

V =
2π
λ
aeff

(
n2

core − n2
fsm

)0.5
= (U2 +W 2)0.5 (2)

where U = 2π
λ aeff (n2

core − n2
fsm)0.5 and

W =
2π
λ
aeff

(
n2

eff − n2
fsm

)0.5
(3)

First by using Table 1 from [1], we calculate V by using V ( λΛ ,
d
Λ) =

A1 + A2
1+A3 exp(A4λ/Λ) [1], where

Ai = ai0 + ai1

(
d

Λ

)bi1
+ ai2

(
d

Λ

)bi2
+ ai3

(
d

Λ

)bi3
.

Afterward, the effective cladding index nfsm is obtained by (2). Then
by using Table 2 from [1] and W ( λΛ ,

d
Λ) = B1 + B2

1+B3 exp(B4λ/Λ) [1],
where

Bi = ci0 + ci1

(
d

Λ

)di1

+ ci2

(
d

Λ

)di2

+ ci3

(
d

Λ

)di3

,

we calculate W .
Finally by using (3) for given W and nfsm , neff can be obtained.

4. RESULTS

Several interesting results are illustrated in Figs. 2, 3 and 4 that
compare nfsm , neff and the second order dispersion for Λ = 0.8, 1.0, 2.0
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Figure 2. Comparison of the nfsm obtained by ERM and SEIM. The
solid line is obtained by ERM for d/Λ = 0.3, the dashed-dotted line by
SEIM for d/Λ = 0.3, the dashed line by ERM for d/Λ = 0.6 and the
dotted line by SEIM for d/Λ = 0.6: (a) Λ = 0.8µm, (b) Λ = 1.0µm,
(c) Λ = 2.0µm, and (d) Λ = 5.0µm.

and 5.0µm by using ERM and SEIM. The results are for wavelength in
range 0.6 to 2.0µm. It is realized that the results obtained by ERM are
more accurate than those obtained by SEIM, because they are closer
to an accurate method like FVFEM [11].

As one can see, for Λ = 0.8, 1.0, ERM does not answer for all
wavelength in range of 0.6 to 2.0µm. It is because of restrictions which
are mentioned in [11]. So we conclude that ERM performs better that
SEIM at calculating nfsm , neff and the second order dispersion.

We compared the third order dispersion by ERM with the third
order dispersion by SEIM (Fig. 5).

To observe the difference between the methods, we calculate the
relative error of nfsm and neff (Figs. 6, 7). These figures prove that
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Figure 3. Comparison of the neff obtained by ERM and SEIM. The
solid line is obtained by ERM for d/Λ = 0.3, the dashed-dotted line by
SEIM for d/Λ = 0.3, the dashed line by ERM for d/Λ = 0.6 and the
dotted line by SEIM for d/Λ = 0.6: (a) Λ = 0.8µm, (b) Λ = 1.0µm,
(c) Λ = 2.0µm, and (d) Λ = 5.0µm.
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Figure 4. Comparison of the second order dispersion obtained by
ERM and SEIM. The solid line is obtained by ERM for d/Λ = 0.3, the
dashed-dotted line by SEIM for d/Λ = 0.3, the dashed line by ERM for
d/Λ = 0.6 and the dotted line by SEIM for d/Λ = 0.6: (a) Λ = 0.8µm,
(b) Λ = 1.0µm, (c) Λ = 2.0µm, and (d) Λ = 5.0µm.
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Figure 5. Comparison of the third order dispersion obtained by ERM
and SEIM. The solid line is obtained by ERM for d/Λ = 0.3, the
dashed-dotted line by SEIM for d/Λ = 0.3, the dashed line by ERM for
d/Λ = 0.6 and the dotted line by SEIM for d/Λ = 0.6: (a) Λ = 0.8µm,
(b) Λ = 1.0µm, (c) Λ = 2.0µm, and (d) Λ = 5.0µm.
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Figure 6. Relative difference between nfsm obtained by ERM and
SEIM: (a) d

λ = 0.3, and (b) d
λ = 0.6.
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Figure 7. Relative difference between neff obtained by ERM and
SEIM: (a) d

λ = 0.3, and (b) d
λ = 0.6.

the error of SEIM for small Λs is huge.
The current approximation of mutual effects of each rod to other

rods and the core, can be a reason. Because as Λ increases (the distance
between rods increases), this mutual effects lowers and the error obeys
a fixed pattern.

5. CONCLUSIONS

Studying the results of two methods proves that scalar effective index
method is less accurate and slower than empirical relations method.
Empirical relations method is found to give more accurate results than
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scalar effective index method for large pitches. The disadvantages of
empirical relations method appears for small air filling fractions and
small pitches, when it does not answer for all range of wavelengths.
After all we can say that calculating the parameters of photonic crystal
fibers by empirical relations method and scalar effective index method
for small pitches is not recommended.
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