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Abstract—The effect of cold plasma beam on electromagnetic
whistler wave with perpendicular AC electric field has been studied
by using the unperturbed Lorentzian (Kappa) distribution in the
Earth’s atmosphere for relativistic plasma. The cold plasma has been
described by a simple Maxwellian distribution where as Lorentzian
(Kappa) distribution function has been derived for relativistic plasma
with temperature anisotropy in the presence of a perpendicular AC
electric field to form a hot/warm background. The dispersion relation
is obtained by using the method of characteristic solutions and kinetic
approach. An expression for the growth rate of a system with added
cold plasma injection has been calculated. Results for representative
values of parameters suited to the Earth’s magnetosphere has been
obtained. It is inferred that in addition to the other factors, the
relativistic plasma modifies the growth rate and it also shifts the wave
band significantly. The relativistic electrons by increasing the growth
rate and widening the bandwidth may explain a wide frequency range
of whistler emissions in the Earth’s magnetosphere.
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1. INTRODUCTION

Whistler mode waves have been a common feature of spectrum wave
observations at Earth’s bow shock for many years [1, 2]. It has been
shown that whistler wave can be excited through the application of
electron beams gyrophase bunches ions [3] and wave steeping [4].
Whistler waves at space craft frequency between 1 and 7 Hz have
been reported upstream of Earth [5]. While there are observations
of whistler waves propagating parallel to the inter planetary magnetic
field, most reported whistler wave observations and generation theories
involve highly oblique propagation. Whistler mode waves have also
been observed in commentary foreshocks and are thought to arise from
the same mechanisms as above [6]. It is also reported that the whistler
mode can be driven by an electron temperature anisotropy [7]. For the
whistler instability the electrons are weakly resonant but the ions are
non resonant with the waves.

Higher frequency whistler wave activity has also been observed
upstream of the Earth’s bow shock by plasma wave analysis. These
waves possess spacecraft frame frequencies from approximately 10 to
100 Hz and are generally synchronous with plasma Oscillations at the
electron plasma frequency [8–10]. Tokar and Gurnett [11] argued that
these waves, when observed with the shock ramp result from electron
beams with high thermal anisotropy and beam velocities directed
towards the magnetosheath [12]. Similar high frequency whistler waves
have been observed by ISEE 3 in the distant upstream plasma [13].
These waves are also coincident with electron plasma oscillations and
they possibly result from streaming electrons with a solar wind, rather
than a bow shok origin in accordance with the instability analysis of
Gary and Feldman [14]. Orlowski et al. [15] suggest that whistler
waves observed in planetary foreshocks may not be the result of in
situ generation, but rather these observations may simply result from
propagation away from the shock.

Many species of pickup ions, both of interstellar origin and from
an inner distributed source have been discovered using data from the
solar wind ion composition spectrometer (SWICS) on Ulysses. Velocity
distribution function of these ions were measured over heliocentric
distances between 1 and 5 AU, both at high low latitudes and in
the disturbed slow solar wind as well as the steady fast wind of
the polar coronal holes. This has given at the first glance plasma
properties of superthermal ions in various solar wind flows and has
enabled the authors to study the chemical and in case of He the
isotropic composition of the local interstellar cloud. Among the new
findings are (a) the surprisingly weak pitch angle scattering of low
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rigidity, superthermal ions tending to strongly anisotropic velocity
distributions in radial magnetic fields (b) the efficient injection and
consequent acceleration of pickup ions especially, He/Sup+/ and H+

in the turbulent solar wind and (c) the discovering of a new extended
source releasing Carbon, Oxygen, nitrogen and possibly other atoms
as well as acid molecules in the inner solar system. Pickup ion
measurements are now used to study the characteristics of the local
interstellar clouds (LIC) and in particular, to determine accurately the
abundance of atomic H, He, N, O and Ne, the isotopes of He and Ne
as well as the ionization fractions of H and He in the LIC.

Electric field measurements at magnetospheric heights and shock
region have given values of AC field along and perpendicular to Earth’s
magnetic field [16–18]. Various authors have discussed the role of
parallel DC and AC electric fields on the whistler mode instability
in the magnetosphere generally adopting plasma dispersion function
which is based on anisotropic Maxwellian distributions to describe the
resonant population [19, 20].

Recently Pandey [21] have studied effect of cold plasma injection
on whistler mode instability, and temporal evolution of whistler
instability [22] describing cold plasma by a simple Maxwellian
distribution and hot/warm background plasma in the presence of
perpendicular AC field by a generalized distribution function reducible
to bi-Maxwellian and loss-cone in the magnetosphere of Uranus.

However in the natural space environment, plasma are generally
observed to possess a non Maxwellian high-energy tail that can be well
modeled by a generalized Lorentzian (Kappa) distribution function
containing a spectral index κ. The Maxwellian and kappa distributions
differ substantially in the high energy tail but differences become less
significant as Kappa increases.

The growth (or damping) rate of a particular wave mode in a
generalized Lorentzian plasma can be significantly different from that
in a Maxwellian plasma. Particularly when the resonant particles that
give rise to the growth or damping of the wave may have speeds that
greatly exceeds the thermal speed.

Tripathi and Misra [23] have discussed cold plasma injection on
background hot anisotropic bi-Lorentzian Kappa in the presence of
perpendicular A.C. electric field. In their treatment They have not
considered velocity of background plasma in the order of velocity of
light. In the present paper the velocity of background plasma has been
considered in the order of velocity of light, so the relativistic approach
of mass changing with velocity has been taken in account. Thus
the mathematical treatment of Tripathi and Misra [23] has changed
from velocity to momentum form. At the same time they have not
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in corporated the analytical study in detail. In the present paper
giving the analytical treatment in detail the effect of cold plasma
beam on electromagnetic whistler wave with perpendicular AC electric
field has been studied by using the unperturbed Lorentzian (Kappa)
distribution in the Earth’s atmosphere for relativistic plasma. The
cold plasma has been described by a simple Maxwellian distribution
where as Lorentzian (Kappa) distribution function has been derived
for relativistic plasma with temperature anisotropy in the presence of
a perpendicular AC electric field to form a hot/warm background. The
dispersion relation is obtained by using the method of characteristic
solutions and kinetic approach. An expression for the growth rate
of a system with added cold plasma injection has been calculated.
Results for representative values of parameters suited to the Earth’s
magnetosphere has been obtained. The salient features of the Analysis
and the results obtained have been discussed.

2. DISPERSION RELATION AND GROWTH RATE

A homogeneous anisotropic collision less plasma in the presence of
an external magnetic field B0 = (B0ez) and an electric field Eox =
Eo sin vtex is assumed. In interaction zone in homogeneity is assumed
to be small. In order to obtain the particle trajectories. Perturbed
distribution function and dispersion relation, the linearised Vlasov-
Maxwell equations are used. Separating the equilibrium and non
equilibrium parts, neglecting the higher order terms and following the
techniques of Pandey et al. [24] the linearized Vlasov equations are
given as:
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where ν is AC frequency, and the dispersion relation is defined as
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where s denotes the type of electrons. Subscript ‘0’ denotes
the equilibrium values. The perturbed distribution function f1 is
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determined by using the method of characteristic, which is

f1(r, v, t) =
∞∫
0

S
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r0 (r, v, t,) , v0 (r, v, t)), t− t′

}
dt

we have transformed the phase space coordinate system for (r, v, t) to
(r0, v0t− t′).

The relativistic particle trajectories that have been obtained by
solving Equation (3) for given external field configuration are
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P⊥ and Pz denote momenta perpendicular and parallel to the magnetic
field. Using Equations (5), (6) and the Bessel identity and performing
the time integration, following the technique and method of Misra and
Pandey [13], the perturbed distribution function is found after some
lengthy algebraic simplifications as:
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Due to the phase factor the solution is possible when m = n. Here.
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By using these in the Maxwell’s equations we get the dielectric tensor,
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For parallel propagating whistler mode instability, the general
dispersion relation reduces to
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The dispersion relation for relativistic case with perpendicular AC
electric field for g = o, p = 1, n = 1 is written as:
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The bi-Lorentzian Kappa distribution function is given as
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where θ⊥ and θ|| are perpendicular and parallel moment a for a
temperature T . The plasma frequency
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Substituting and using Equations (9), (10) and doing integration by
parts the dispersion relation is found as,
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Doing some lengthy integrals the general dispersion relation becomes
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Using the dispersion relation for cold electron plasma, the total
dispersion relation becomes.
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For |ξ| → ∞.
The expression for growth rate for real frequency ωr in

dimensionless form is found to be
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when the relativistic factor is not considered, that is when the velocity
of plasma does not approach velocity of light, Then ms = me and the
expressions for Growth rate and real frequency reduce to Tripathi and
Misra [23].

3. RESULTS AND DISCUSSION

For numerical evaluation of normalized growth rate and real frequency
of relativistic whistler mode in the presence of perpendicular AC
electric field has been analyzed for Kappa distribution function of
electron density in the magnetosphere for a system with added cold
plasma injection using Equations (15) and (16) respectively. Following
plasma parameters have been considered. nc/nw = 10, 20, 30,
B0 = 8 × 10−9T , AT = [(T⊥/T||) − 1] = 0.25, 0.5, 0.75, κ = 2, 3,
4, relativistic factor b1 = v/c = 0.3, 0.6, 0.9, E0 = 20 mV/m. AC field
frequency v varies from zero to 400 Hz. According to this choice of
plasmaparameters, the explanations and details of results are given as
follows.

Figure 1 depicts the variation of normalized growth rate and
real frequency with respect to normalized k for various values of
temperature anisotropy for kappa distribution index κ = 2. At this
location the growth rate as well as the bandwidth increases with the
increase of the temperature anisotropy and maxima is shifted towards
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the higher k values. It is clear from the figure that the temperature
anisotropy is the main source of energy to drive the excitation of
the wave. Lorentzian (Kappa) plasma series expansion brings change
in perpendicular thermal velocity θ⊥. Therefore any change in θ⊥
shall affect marginally T⊥, affecting temperature anisotropy terms.
Temperature anisotropy being the primary source of instability gets
further modified by Lorentzian (Kappa) distribution function, giving
rise to further increase in growth rate. recently it was found that
superthermal electron in Kappa distribution modifies the intensity
and Doppler frequency of electron plasma lines. The inclusion of
temperature anisotropy in Lorentzian (Kappa) plasma can explain the
observed higher frequencies spectrum of whistler waves [25].

Figure 1. Variation of growth rate and real frequency with respect
to k for various values of temperature anisotropy AT for Lorentzian
Kappa distribution at spectral index κ = 2 at other fixed plasma
parameters.

Figure 2 shows variation of normalized growth rate and real
frequency versus k for various values of AC electric field frequency
for other fixed plasma parameters. The growth rate increases with
increase of the value of a.c. frequency, maxima shifts to lower values of
k. it means that the a.c. frequency modifies resonance frequency. The
increase of AC frequency increases the growth rate due to the negative
exponential of Landau damping. The perpendicular electric field
which modifies the perpendicular velocity contributing to the energy
exchange contributes significantly to the emission of VLF signals and
can explain the low frequency side of the spectrum. The energy
exchange between electrons, the components of the wave electric field
and the impressed AC field perpendicular to the magnetic field mainly
contributes to the cyclotron growth or the damping of the waves.
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Figure 2. Variation of growth rate and real frequency with respect
to k for various values of AC electric field frequency for other fixed
plasma parameters.

Thus the frequency of the perpendicular AC electric field brings
the maxima to different k as if the resonant charged particles were
oscillating at different cyclotron frequencies and absorbing energy and
thus growing.

Figure 3 exhibits variation of normalized growth rate and real
frequency versus k for various values of the ratio nc/nw number
density of cold and warm electrons at other fixed plasma parameters.
The dispersive properties of the whistler waves are known to depend
sensitively on this ratio of plasma density. It is clear as the growth
rate as well as the band width increases with nc/nw. The maxima
also shifts towards the higher value of k with increase of this ratio. In
the absence of an AC field the growth rate increases with the increase
of nc/nw [20]. The result is the same for the lower values of the AC
frequency. This shows that at lower AC frequencies, as the density of
the cold plasma increases, more and more energy is transmitted by the
cold plasma particles to the wave during their interaction as such the
wave grows.

Figure 4 shows the variation of normalized growth rate and real
frequency with k for variation of the relativistic factor b1 = (v/c). With
the increase of the relativistic factor the growth rate increases and
the band width widens. This shows that the velocity of the energetic
electrons have triggering effect on the growth of the wave.

Figure 5 shows the variation of normalized growth rate and
real frequency with k for various values of spectral index κ. As
κ increases the value of maximum growth rate increases and band
width shrinks towards higher wave number. For κ → ∞ the
value of normalized growth rate approaches the value of growth
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Figure 3. Variation of growth rate and real frequency with respect
to k for various values of the ratio nc/nw at other fixed plasma
parameters.

Figure 4. Variation of growth rate and real frequency with respect
to k for various values of relativistic factor b1 at other fixed plasma
parameters.

rate for Maxwellian distribution function. Although the temperature
anisotropy is the main source to drive instability. This effect remains
basically applicable to the Lorentzian (Kappa) plasma also, except that
the limit of temperature anisotropy in this case is little higher because
of series solution involving κ.
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Figure 5. Variation of growth rate and real frequency with respect
to k for various values of spectral index Kappa at other fixed plasma
parameters.

4. CONCLUSIONS

The velocity of background plasma has been considered in the order
of velocity of light, so the relativistic approach of mass changing with
velocity has been taken in account. Thus changing the mathematical
treatment from velocity to momentum form in detail, an expression
for the growth rate of the system has been calculated and the
results for representative values of the parameters suited to Earth’s
magnetosphere has been obtained. It is inferred that A.C. field
frequency modifies the resonance criteria which influences the growth
rate. Also the growth rate increases by increasing the number density
of cold plasma and Temperature anisotropy. Plasma particles having
higher Kappa spectral index provide additional source of energy. In
addition to the other factors the relativistic plasma modifies the growth
rate and also shifts the wave band significantly. The relativistic
electrons by increasing the growth rate and widening the band width
may explain a wide frequency range of whistler emissions in the Earth’s
magnetosphere.
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