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Abstract—This paper is intended to the analysis of adaptive radar
detectors for partially correlated χ2 targets. This important class of
targets is represented by the so-called moderately fluctuating Rayleigh
targets, which, when illuminated by a coherent pulse train, return a
train of correlated pulses with a correlation coefficient in the range 0 <
ρ < 1 (intermediate between SWII and SWI models). The detection
of this type of fluctuating targets is practically of great importance.
Since the CFAR detectors represent an attractive class of schemes that
can be used to overcome the problem of clutter by adaptively setting
their threshold based on local information of total noise power, they
are commonly used to decide the presence or absence of the radar
target of interest, which is of partially correlated χ2 type. In addition,
the OS based algorithms are chosen to carry out this task owing to
their immunity to outlying targets which may be present amongst the
contents of the reference window. Moreover, since the large processing
time of the single-window OS detector limits its practical applications,
our scope here is to analyze the performance of OS modified versions for
moderately fluctuating Rayleigh targets in nonideal situations. This
analysis includes the single-window as well as the double-window OS
detection schemes for the case where the radar receiver postdetection
integrates M square-law detected pulses and the signal fluctuation
obeys χ2 statistics with two degrees of freedom. These detectors
include the mean-level (ML-), the maximum (MX-) and the minimum
(MN-) OS algorithms. Exact formulas for their detection probabilities
are derived, in the absence as well as in the presence of spurious
targets. The primary and the secondary interfering targets are assumed
to be of the moderately fluctuating Rayleigh targets. Swerling’s well
known cases I and II represent the cases where the signal is completely
correlated and completely decorrelated, respectively, from pulse to
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pulse. Under the multiple-target operations, the ML-OS detector has
the best homogeneous performance, the MN processor has the best
multitarget performance when a cluster of radar targets appears in the
reference window, while the MX scheme doesn’t offer any excessive
merits, neither in the absence nor in the presence of outlying targets,
as expected.

1. INTRODUCTION

The returned signal from radar target is usually buried in thermal
noise and clutter. Since neither the clutter power nor the noise
power is known at any given location, a fixed threshold detection
processor cannot be applied if the false alarm rate is desired to
be controlled. Therefore, it is necessary for automatic detection
radars to be adaptive to variations in background clutter in order
to achieve the CFAR property. The CFAR detector is one of the
most important parts of modern radar signal processing. It can be
used to avoid computer overloading, which is caused by radar clutter
fluctuation, and obtain high detection performance. This detector
employs an adaptive threshold in order to maintain a constant rate
of false alarm, irrespective to clutter power, and to maximize the
detection performance [1–3]. The CFAR system makes use of the
fact that the amplitude variation of weather and sea clutter has a
Rayleigh distribution, and is capable of reducing the clutter output
to about the same level as the receiver noise level. There are three
general CFAR processing approaches: the adaptive threshold CFAR
processor, the nonparametric CFAR processor, and the nonlinear
receiver. The adaptive threshold CFAR assumes that the probability
density of the interference is known except for a few unknown
parameters. The unknown parameters are estimated on a cell-by-
cell basis by examining reference cells surrounding the cell under test.
The resulting probability density function is then used in each cell
to obtain a threshold setting that provides the desired false alarm
rate. The nonparametric processor, on the other hand, provides CFAR
performance for a wide class of input noise distributions [4]. This
processor assumes that the statistics of the interference are unknown
and transforms this unknown density into a known density where
a fixed threshold produces the CFAR action. The nonparametric
processors generally exhibit a substantial CFAR loss. Moreover,
although nonparametric methods have advantages of implementation,
they result in a detector performance that is inferior to that of
optimum parametric detectors that have been designed to operate
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under conditions in which the signal and noise statistics are known.
Nonlinear receivers attempt to control the processor gain as a function
of the interference level to provide the desired CFAR action. In general,
nonlinear receivers exhibit a large CFAR loss.

The most conventional CFAR schemes are of the mean-level
type such as the cell-averaging (CA) and its modified versions [1–
3, 7, 15, 16]. The CA-CFAR detector uses the maximum likelihood
estimate of the noise power to set the threshold adaptively on the
assumption that the underlying noise distribution is exponential and
the noise samples are independent and identically distributed (IID).
Unfortunately, its detection performance degrades considerably in
nonhomogeneous situations caused by multiple targets and clutter
edges. The CA processor turns out to perform very poorly in these
situations, and if some resilience against interferers and/or clutter
edges is to be gained, alternative schemes, must be adopted.

Greater robustness has been obtained with the data censoring
algorithms. These systems rely on ordering or ranking the samples in
the reference window and take an appropriate reference cell to estimate
the background clutter power level. This allows censoring of a certain
number of outliers, and consequently the censoring schemes perform
creditably as long as the number of interfering targets does not exceed
the number of top ranked censored samples. The ordered-statistic
(OS) detector has small additional detection loss over the CA-CFAR
detector in uniform noise background and can resolve closely spaced
targets [5, 7]. However, the large processing time required by this
technique limits its practical use. To reduce this processing time in
half, the modified versions of this processor have been suggested. They
have been proposed by Elias-Fuste [8], and analyzed by You [10], and El
Mashade [11] for their performance evaluation in the single sweep case.
Noncoherent integration analysis of these processors is carried out in
[9] for their performance evaluation in homogeneous background, and
their nonhomogeneous performance has been analyzed by El Mashade
[14]. Finally, El Mashade [13] analyzed their M-correlated sweeps in
nonhomogeneous situations.

It is often assumed that the Swerling cases bracket the behavior of
fluctuating targets of practical interest. However, recent investigations
of target cross section fluctuation statistics indicate that some targets
may have probability of detection curves which lie considerably outside
the range of cases which are satisfactorily bracketed by the Swerling
cases. An important class of targets is represented by the so-called
moderately fluctuating Rayleigh targets, which, when illuminated by
a coherent pulse train, return a train of correlated pulses with a
correlation coefficient in the range 0 < ρ < 1 (intermediate between
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SWII & SWI models). The detection of this type of fluctuating
targets is of great importance. In order that our previous work [14] be
sufficiently general to be applicable to a variety of cases, our goal in the
present paper is to analyze the performance of the OS based detectors
for partially correlated χ2 targets with two degrees of freedom in the
absence as well as in the presence of spurious targets. The χ2 target
model includes the well known SWI and SWII models as special cases.
In section II, we formulate the problem and compute the moment
generating function of the postdetection integrator output for the
case where the signal fluctuation obeys χ2 statistics with two degrees
of freedom that is considered for the study of the signal processing
algorithms. The performance of the schemes under consideration is
analyzed in Section 3 and their performance is assessed in Section 4.
In Section 5, we present a brief discussion along with our conclusions.

2. BACKGROUND AND PROBLEM FORMULATION

The block diagram of typical CFAR processor with postdetection
integration of M pulses is shown in Fig. 1. Here, we consider a
radar system in which time diversity transmission is employed and
assume that M pulses hit the target. Suppose that the receiver
model is the familiar one [7] with white receiver noise, independent
from pulse to pulse; a normalized square-law envelope detector; and
uniform integration of M detector outputs followed by an adaptive
CFAR detection scheme. The received IF signal is applied to a matched
filter, which is specifically designed to maximize the output signal-to-
noise ratio. The output of the matched filter is then passed through a
square-law device to extract the baseband signal. This signal is then
sampled and the sampling rate is assumed to be such that the samples
are statistically independent. The square-law detected video range
samples are sent serially into a shift register of N + 1 resolution cells
resulting in a matrix of M × (N + 1) observations which are denoted
by qij . The M observations from the cell under test, which is the one
in the middle of the processing window, are represented by Y . The
center bin (test cell) is tested on whether it contains the target or
not. The detection procedures involve the comparison of the received
signal with a certain threshold. When the background noise power
fluctuates, it is difficult to maintain a constant rate for the false alarm
if the detection threshold is fixed. Thus, the CFAR schemes set this
threshold adaptively according to local information on the background
noise power. The estimation of the mean power of the local clutter (Z)
is usually based on the N neighboring bins. The name of the specific
CFAR detector is determined according to the kind of operation used
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Figure 1. Architecture of OS structure of CFAR detectors with
postdetection integration.

to estimate the unknown noise power level. In this manuscript, we
are concerned with the CFAR processors in which the ordered-statistic
(OS) technique is implemented. The detection problem consists of
testing the hypothesis H0 (absence of signal) versus the alternative H1

(presence of signal). Precisely, we have

y(t) =

{
n(t) under H0

s(t) + n(t) under H1
t ∈ [0, T0] (1)
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[0, T0] represents the observation interval, s(t) and n(t) denote the
baseband equivalents of received waveform and noise, respectively.

In order to analyze the detection performance of a CFAR
processor, let the input to the square-law detector consists of M pulses,
each composed of a steady signal component and Gaussian noise.
Denote the in phase and quadrature components of the signal over
the M pulses by the M × 1 vectors Si and Sq, respectively, and denote
the in phase and quadrature components of the noise by M ×1 vectors
Ni and Nq, respectively. Then, the integrated output of the square-law
detector is

Y ∆− |Si +Ni|2 + |Sq +Nq|2 (2)

The moment generating function (MGF) associated with the random
variable (RV) Y is defined as

MY (ω) ∆−

∞∫
−∞

fY (x) exp(−ωx) dx (3)

In the above expression, fY (.) denotes the probability density function
(PDF) of Y . Substituting Eq. (2) for the random variable Y , Eq. (3)
takes the form

MY (ω) =
∞∫

−∞

∞∫
−∞

f(Ni, Nq) exp
(
−ω

(
|Si +Ni|2+|Sq +Nq|2

))
dNidNq

(4)
If Ni and Nq are Gaussian and IID random vectors, one may write

f(Ni, Nq) =
(

1
2πσ2

)M

exp

(
−|Ni|2 + |Nq|2

2σ2

)
(5)

The substitution of Eq. (5) into Eq. (4) yields

MY (ω) =
(

1
2πσ2

)M
∞∫

−∞

∞∫
−∞

exp

(
−|Ni|2 + 2ωσ2 |Si +Ni|2

2σ2

)

× exp

(
−|Nq|2 + 2ωσ2 |Sq +Nq|2

2σ2

)
dNidNq (6)

Completing the squares in Ni and Nq and integrating over Ni and Nq,
one obtains

MY (ω) =
(

1
1 + 2ωσ2

)M

exp

(
−ω

(
|Si|2 + |Sq|2

)
1 + 2ωσ2

)
(7)
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If the signal component fluctuates, then the MGF of the square-law
detector is a weighted average, accounting for the PDF of the in phase
and quadrature components of the signal. Hence, for a fluctuating
target, the MGF of the detector output is [6]

MY (ω) =
∞∫

−∞

∞∫
−∞

MY (ω)fSi(Si)fSq(Sq) dSidSq (8)

Assuming that Si and Sq are IID with PDF S(x), we have

MY (ω) =
(

1
1 + 2ωσ2

)M



∞∫
−∞

fS(X) exp

(
− ω|X|2

1 + 2ωσ2

)
dX




2

(9)

Using Eq. (9), one may compute the MGF for any target PDF.

2.1. Correlated χ2 Signal Model

Most radar targets are complex objects and produce a wide variety
of reflections. Different targets often require different models to
characterize the varied statistical nature of these responses. A radar
target whose return varies up and down in amplitude as a function of
time is known as fluctuating target. The fluctuation rate may vary
from essentially independent return amplitudes from pulse-to-pulse to
significant variation only on a scan-to-scan basis. The χ2 family is one
of the most radar cross-section fluctuation models. The χ2 distribution
with 2K degrees of freedom has a PDF given by

fS(σ) =
1

Γ(K)

(
K

σ

)K

σK−1 exp
(
−K

σ
σ

)
U(σ) (10)

In the above expression, σ is the average cross section over all target
fluctuations and U(.) denotes the unit step function. When K = 1,
the PDF of Eq. (10) reduces to the exponential or Rayleigh power
distribution that applies to the Swerling cases I and II.

The above formula represents the PDF of the sum of the squares
of 2K real Gaussian RV’s or the sum of the squared magnitudes of K
complex Gaussian RV’s. Therefore, if K = 1, then σ may be generated
as σ = x2

1 + x2
2, where xi, i = 1, 2, are IID Gaussian RV’s, each with

zero mean and σ/2 variance. The magnitude of the in phase component
is u = x1. If α = σ/2, we can write the PDF of u as

fu(x1) =
1√
2πα

exp

(
− x2

1

2α

)
(11)
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To accommodate an M × 1 vector of correlated χ2 RV’s with two
degrees of freedom, we introduce the PDF of the M -dimensional vector
X1

fX1(X) =
(

1
2πα

)M
2 1√

|Λ|
exp

(
−XTΛ−1X

2α

)
(12)

In the above expression, Λ represents the correlation matrix of
x11, x12, . . . , x1M and T denotes the vector transpose. The substitution
of Eq. (12) into Eq. (9) yields

MY (ω) =
(

1
1 + 2ωσ2

)M




∞∫
−∞

(
1

2πα

)M
2 1√

|Λ|
exp

(
− 1

2α
XT

(
Λ−1+

2ωα
1 + 2ωσ2

I

)
X

)
dX




2

(13)

I denotes the identity matrix. Carrying the above integration leads to

MY (ω) =
1

|(1 + 2ωσ2)I + 2ωαΛ| (14)

Expressing the determinant in terms of the nonnegative eigenvalues
λ1, λ2, . . . , λM of Λ, Eq. (14) takes the form

MY (ω) =
M∏
i=1

1
1 + 2ω(σ2 + αλi)

=
M∏
i=1

1
1 + ψ(1 +Aλi)ω

(15)

ψ = 2σ2 represents the noise power and A = 2α/ψ is the average
signal-to-noise ratio (SNR). It is important to note that MY (ω) is
the Laplace transformation of the PDF of the sum of M square-law
detected pulses of a χ2 (K = 1) signal in Gaussian noise.

The Swerling case I (slow fluctuation) model is represented by
choosing λ1 = M, λi = 0 for 2 ≤ i ≤ M . Thus, for SWI, we have

MY (ω) =
1

1 + ψ(1 +MA)ω

(
1

1 + ψω

)M−1

for SWI model (16)

which agrees with Swerling’s result [12]. The fast fluctuation (SWII),
on the other hand, can be represented by choosing λi = 1 for 1 ≤ i ≤
M , which yields

MY (ω) =
(

1
1 + ψ(1 +A)ω

)M

for SWI model (17)
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In view of Eq. (15), the solution for the partially correlated case
requires computation of the eigenvalues of the correlation matrix Λ.
It is assumed here that: i) The statistics of the signal are stationary,
and ii) The signal can be represented by a first order Markov process.
Under these assumptions, Λ is a Toeplitz nonnegative definite matrix
of the following general form:

Λ =




1 ρ ρ2 · · · ρM−2 ρM−1

ρ 1 ρ · · · ρM−3 ρM−2

ρ2 ρ 1 · · · ρM−4 ρM−3

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

ρM−2 ρM−3 ρM−4 · · · 1 ρ

ρM−1 ρM−2 ρM−3 · · · ρ 1




0 ≤ ρ ≤ 1

(18)
Eqs. (15)–(18) are the basic formulas of our analysis in this paper.

The PDF of the output of the ith test tap is given by the Laplace
inverse of Eq. (15) after making some minor modifications. If the ith
test tap contains noise alone, we let A = 0, that is the average noise
power at the receiver input is ψ. If the ith range cell contains a return
from the primary target, it rests as it is without any modifications,
where A represents the strength of the target return at the receiver
input. On the other hand, if the ith test observation is corrupted by
interfering target return, A must be replaced by I, where I denotes
the interference-to-noise (INR) at the receiver input.

3. PROCESSOR PERFORMANCE EVALUATION IN
MULTITARGET SITUATIONS

CFAR procedures were originally developed using a statistical model of
uniform background noise. However, this is not representative of real
situations. It is impossible to describe all radar working conditions
by a single model, yet consideration of a larger number of different
situations might be confusing. For these reasons, three different signal
situations are selected: uniform clutter, clutter edges and multiple
targets. Each one of these situations is represented by a distinct signal
model. The different CFAR schemes are investigated and compared
on the background of these three signal cases. A uniform clutter
model describes the classical situation with stationary noise in the
reference window. Clutter edges, on the other hand, are used to
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describe transition areas between regions with very different noise
characteristics. Multiple target situations occur occasionally in radar
signal processing when two or more targets are at a very similar
range. The consequent masking of one target by the others is called
suppression. These interferers can arise from either real object returns
or pulsed noise jamming. From a statistical point of view, this implies
that the reference samples, although still independent of one another,
are no longer identically distributed. In our analysis and study of
the nonhomogeneous background for which the reference cells don’t
follow a single common PDF, we are concerned only with increases in
the value of ψ for some isolated reference cells due to the presence of
secondary targets. The amplitudes of all the targets present amongst
the candidates of the reference window are assumed to be of the same
strength and to fluctuate in accordance with the partially correlated χ2

fluctuation model with correlation coefficient ρi. The interference-to-
noise ratio (INR) for each of the spurious targets is taken as a common
parameter and is denoted by I. Thus, for reference cells containing
extraneous target returns, the total background noise power is ψ(1+I),
while the remaining reference cells have identical noise power of ψ
value.

The ordered-statistic (OS) CFAR detector uses the Kth smallest
sample to estimate the total noise power. We will denote by OS(K)
the OS scheme with parameter K. The value of K is generally
chosen so that the detection probability (in homogeneous background)
is maximized. The large processing time taken by this detector in
ordering the candidates of the reference window limits its practical
uses. Modified versions of this processor have been proposed to solve
this problem [8]. Such detectors are specifically tailored to provide
good estimates of the noise power as the conventional OS detector. In
this section, we analyze the conventional OS scheme as well as three
of its modified versions, namely ML-, MX-, and MN-OS schemes, for
their performance evaluation in multitarget environment and obtain
closed form expression for their detection performances.

3.1. Single-Window OS Detector

The amplitude values taken from the reference window, of size N , are
first rank-ordered according to increasing magnitude. The sequence
thus achieved is

q(1) ≤ q(2) ≤ q(3) ≤ . . . ≤ q(K) ≤ . . . ≤ q(N) (19)

The indices in parentheses indicate the rank-order number. q(1) denotes
the minimum and q(N) the maximum value. The sequence given in
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Eq. (19) is called an ordered-statistic. The central idea of an ordered
statistic CFAR processor is to select one certain value from the above
sequence and to use it as an estimate Z for the average clutter power
as observed in the reference window. Thus,

ZOS = q(K), K ∈ {1, 2, 3, . . . , N} (20)

In the CFAR system, target decision is commonly performed by
multiplying this estimation ZOS by a scaling factor T , which is
dependent on the applied estimation technique and the required rate
of false alarm. The resulting product ZOST is directly used as the
threshold value with which the content of the cell under test Y is
compared to decide whether the target is present or absent. A target is
declared to be present if Y exceeds the threshold TZOS . The threshold
coefficient T is used to achieve a desired false alarm rate for a given
window size N when the total background noise is homogeneous. Since
the unknown noise power level estimate Z is a random variable, the
processor performance is determined by calculating the average values
of false alarm and detection probabilities. The false alarm probability
Pfa is defined as

Pfa ∆− Ez{P (Y 〉ZT |H0)} = 1 − Ez{FY (ZT )} (21)

In the above expression, EZ(.) denotes the expectation operator and
FY (.) represents the cumulative distribution function (CDF) of the
random variable Y . When the background clutter is homogeneous, Y
has a MGF given by Eq. (15) after setting A equals to zero.

MY (ω) =
(

1
1 + ψω

)M

(22)

The Laplace inverse of Eq. (22) gives the PDF of Y under the null
hypothesis (H0). Thus,

fY (y|H0) =
(

1
ψ

)M 1
Γ(M)

yM−1 exp
(
− y

ψ

)
U(y) (23)

Once the PDF of Y is obtained, we can calculate its associated CDF,
which is in turn used to compute the probability of false alarm. Finally,
Pfa takes the form

Pfa =
M−1∑
j=0

(
T

ψ

)j (−1)j

Γ(j + 1)
dj

dωj
{Mz(ω)}ω=T

ψ
(24)
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In the above formula, MZ(.) denotes the MGF of the noise level
estimate Z. For a CFAR scheme, MZ(T/ψ) must be independent of
ψ. This is indeed true for all the detection schemes considered here.
Under the signal present hypothesis H1, the statistic Y has a MGF
given by Eq. (15) which can be put in another simplified form

MY (ω) =
M∏
j=1

aj
ω + aj

with aj Λ−
1

ψ(1 +Aλj)
(25)

By using the technique of partial fraction method, the PDF of the cell
under test variate Y becomes

fY (y|H1) =
M∑
i=1

Di exp(−aiy)U(y) (26)

The constants Di’s are defined as

Di ∆= ai

M∏
j=1
j �=1

aj
aj − ai

(27)

Once the PDF of the cell under test variate Y is calculated, the
execution of its associated CDF is straightforward. Finally, the
processor detection performance takes the following analytical form

Pd =
M∑
i=1

Di

ai
{Mz(ω)}ω= T

ψ(1+Aλi)
(28)

In order to analyze the processor performance when the reference
window no longer contains radar returns from a homogeneous
background, the assumption of statistical independence of the reference
cells is retained. Consider the situation where the reference window
contains r interfering target returns, each with power level ψ(1 + I),
and the remaining N−r samples having thermal noise only with power
level ψ. Under these assumptions, the Kth ordered sample, which
represents the noise power level estimate in the OS detector, has a
CDF given by [14]

FK(z;N, r) =
N∑
i=K

min(i,N−r)∑
j=max(0,i−r)

(
N − r

j

) (
r

i− j

)

×[1 − Ft(z)]N−r−j{Ft(z)}j [1 − Fs(z)]r−i+j{Fs(z)}i−j
(29)
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The CDF of the reference cell that contains a spurious target return
can be obtained from

Fs(z) = L−1

{
1
ω

M∏
�=1

1
1 + ψ(1 + Iλ�)ω

}
= 1 −

M∑
�=1

b�e
−c�z (30)

where L−1 denotes the Laplace inverse operator and

b� ∆−
M∏
k=1
k �=�

1 + Iλ�
I(λ� − λk)

and c� ∆−
1

ψ(1 + Iλ�)
(31)

Ft(.) represents the CDF of the reference cell that contains thermal
noise only of background power ψ. This CDF is associated with a
PDF of a similar form as that given by Eq. (23), which by integrating
it we obtain the desired CDF. Thus,

Ft(z) = 1 −
M−1∑
j=0

(
z

ψ

)j 1
Γ(j + 1)

exp
(
− z

ψ

)
U(z) (32)

The substitution of Eqs. (30) and (32) into Eq. (29) yields

FK(z;N, r) =
N∑
i=K

min(i,N−r)∑
j=max(0,i−r)

(
N − r

j

) (
r

i− j

)

×
j∑

k=0

i−j∑
�=0

(
j

k

) (
i− j

0

)
(−1)i−k−�

×



M−1∑
m=0

(
z

ψ

)m

Γ(m+ 1)
e
− z
ψ




N−r−k

∗
{

M∑
n=1

bne
−cnz

}r−�

(33)

The Laplace transformation of the above equation gives

ΦFK (ω;N, r) =
N∑
i=K

min(i,N−r)∑
j=max(0,i−r)

(
N − r

j

) (
r

i− j

)

×
j∑

k=0

i−j∑
�=0

(
j

k

) (
i− j

0

)
(−1)i−k−�

N−r−k∑
θ0=0

N−r−k∑
θ1=0
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· · ·
N−r−k∑
θM−1=0

Ω(N − r − k; θ0, . . . , θM−1)
M−1∏
v=0

[Γ(v + 1)]θv

(
1
ψ

)M−1∑
η=0

ηθη

×
r−�∑
ϑ1=0

r−�∑
ϑ2=0

· · ·
r−�∑
ϑM=0

Ω(r − 0;ϑ1, . . . , ϑM )
M∏
ξ=1

(bξ)ϑξ

×
Γ


M−1∑

γ=0

γθγ + 1





ω +

N − r − k

ψ
+

M∑
ζ+1

ϑζcζ



M−1∑
γ=0

γθγ+1

(34)

where

Ω(N−i−1; j0, . . . , jM−1) ∆−




Γ(N − i)
M−1∏
�=0

Γ(j� + 1)

for
M−1∑
k=0

jk = N − i− 1

0 for
M−1∑
k=0

jk �= N − i− 1

(35)
Once the Laplace transformation of the CDF of noise power level
estimate is computed, the MGF of the final noise power level is
calculated as [11]

Mz(ω) ∆= ωΦFz(ω) (36)

and consequently, the processor detection performance can be easily
evaluated (see Eq. (28)).

Again, the OS-CFAR processor performance is highly dependent
upon the value of K. For example, if a single extraneous target appears
in the reference window of appreciable magnitude, it occupies the
highest ranked cell with high probability. If K is chosen to be N ,
the estimate will almost always set the threshold based on the value of
interfering target. This increases the overall threshold and may lead
to a target miss. If, on the other hand, K is chosen to be less than the
maximum value, the OS-CFAR scheme will be influenced only slightly
for up to N -K spurious targets.
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3.2. Double-Window OS Detector

Although the OS-CFAR detector has some advantages over the cell-
averaging detector [7–11], the large processing time taken by this
technique in sorting the reference cells limits its practical applications.
To alleviate this problem, the double-windows OS procedure has been
proposed [8]. Employing two simultaneously specialized processors,
one for each set of neighboring cells, it is possible to reduce by half the
single-window processing time without altering the estimation of the
clutter statistics. On the other hand, if the leading and lagging set of
cells are independently ordered and subsequently compared under the
maximum or minimum criterion, we will obtain a new random variable
with differing statistics from the representative cell of the OS-CFAR
algorithm.

Three modified versions of the OS-CFAR technique are analyzed
in this subsection: the mean-level (ML-), the maximum (MX-) and
the minimum (MN-) ordered statistic procedures. Each one of these
modified versions can reduce the single-window OS processing time
in half and has the same advantages as the OS detector with only a
negligible increment to the CFAR loss.

In addition to aiming at reducing the number of excessive false
alarms at clutter edges, the modified ordered-statistic processors may
also be used in multiple target situations. Here, we examine the effects
of outlying targets on detectability of the cell under test. When the
number of these targets is within their allowable range, the effect of
spurious targets is manifested in a change in the underlying statistical
assumptions. This implies that the candidates of the reference sets,
although still independent of one another, are no longer identically
distributed.

3.2.1. Mean-Level (ML) OS Detector

Referring to Fig. 1, reference cells are equally partitioned into leading
and lagging windows Z1 and Z2. The generic operation of the two-
windows family of CFAR detectors is to process the cells of each
local window separately, and then combining the resulting estimates
through a mean-level (ML) operation to obtain the final estimate of
the unknown noise power level. The candidates of each local window
(of size N/2) are separately ordered from smallest to largest and then
the K1th order statistic from the leading subset and the K2th order
statistic from the trailing subset are taken to represent the unknown
noise power level estimate of each local window.

Zi = q(ki), ki ∈
{

1, 2, 3, . . . ,
N

2

}
, i = 1 & 2 (37)
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In ML-OS detector, the total noise power is estimated by combining the
local noise level estimates through the mean operation. The combiner
puts out the noise level estimate ZML as

ZML = mean(Z1, Z2) (38)

The rationale for the mean family of CFAR schemes is that by choosing
the mean, the optimum CFAR detector in a homogeneous background
when the reference cells contain IID observations is achieved. In
addition, as the size of the reference window increases, the detection
probability approaches that of the optimum detector, which is based
on a fixed threshold.

Since the total noise power is estimated by averaging the local
estimates of the noise power levels, the MGF of ZML is simply given
by the product of the MGF’s of Z1 and Z2 [4]. Therefore,

MZML
(ω) = MZ1(ω)MZ2(ω) (39)

where

MZ1(ω) = ωΦFK1
(ω;N1, r1) and MZ2(ω) = ωΦFK2

(ω;N2, r2) (40)

The MGF’s of the noise level estimates are given as a function of the
Laplace transformation of their CDF’s. These CDF’s have the same
expression as that given by Eq. (34) after replacing N and r by N1 and
r1 for the statistic Z1 and by N2 and r2 for the statistic Z2, respectively.
Here, r1 and r2 represent the number of interfering target returns
amongst the contents of the leading and trailing reference windows,
respectively, and N1 = N2 = N/2. Since the MGF of the final
noise power level estimate ZML is the backbone of the processor false
alarm and detection performances, the behavior of the scheme under
consideration, in multiple target environments, can be easily obtained.

3.2.2. Maximum (MX)-OS Detector

The comparison of the ML-OS characteristics with those of
other CFAR schemes demonstrates the superiority of its detection
performance in homogeneous background. Nonetheless, its inferior
behavior in other situations calls for another modified CFAR
processors. Excessive numbers of false alarms at clutter edges and
degradation of detection performance in the presence of a cluster of
radar targets are the prime motivations for exploring other CFAR
procedures that discriminate between the interference and the primary
targets. Two such techniques have been investigated that are
modifications of the OS technique. Each of these schemes is capable of
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overcoming only one of these problems with additional loss of detection
power. The first scheme, which is known as the maximum (MX)
procedure, is specifically aimed at reducing the number of excessive
false alarms in the presence of abrupt change in the noise power from
one level to another. The generic operation of the MX family of CFAR
schemes is to process the cells from each local window separately and
combining them through a maximum operation. The combiner puts
out the final noise level estimate

ZMX = max(Z1, Z2) (41)

The rationale for the maximum detector is that by choosing the larger
of the local noise level estimates, the increase in false alarm probability
for test cells near the edges of clutter patches is avoided. In addition,
when the OS technique is combined with the maximum operation, we
obtain a processor that is also robust to interfering targets.

The MX-OS detector uses the maximum of the two local estimates
Z1 and Z2 to estimate the background noise power level. The CDF
associated with this noise power level estimate is [14]

FZMX
(z) = FZ1(z) FZ2(z) (42)

By using the generalized formula of the CDF of the Kth ordered
statistic, out of N reference samples in the presence of r interfering
target returns (given by Eq. (33)), the above equation can be written
as

FZMX
(z) =

N1∑
i=K1

min(i,N1−r1)∑
j=max(0,i−r1)

(
N1 − r1

j

) (
r1
i− j

)

×
j∑

k=0

i−j∑
�=0

(
j

k

) (
i− j

0

)
(−1)i−k−�

×



M−1∑
m=0

(
z

ψ

)m

Γ(m+ 1)
e
− z
ψ




N1−r1−k

×
{

M∑
n=1

bne
−cnz

}r1−�

FK2(z;N2, r2) (43)

By taking the Laplace transformation for the above equation, we obtain

ΦFZMX
(ω) =

N1∑
i=K1

min(i,N1−r1)∑
j=max(0,i−r1)

(
N1 − r1

j

) (
r1
i− j

)
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×
j∑

k=0

i−j∑
�=0

(
j

k

) (
i− j

0

)
(−1)i−k−�

N1−r1−k∑
θ0=0

N1−r1−k∑
θ1=0

· · ·
N1−r1−k∑
θM−1=0

Ω(N1 − r1 − k; θ0, . . . , θM−1)
M−1∏
v=0

[Γ(v + 1)]θv

(
1
ψ
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η=0

ηθη

×
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· · ·
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(bξ)ϑξ

×(−1)
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γ=0

γθd
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ψ
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(44)

where

(−1)m
dm

dωm
{ΦFK2

(ω;N2, r2)} =
N2∑
i=K2

min(i,N2−r2)∑
j=max(0,i−r2)

(
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γ=0
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(45)

Once the Laplace transformation of the CDF of the final noise power
level estimate is calculated, the MGF and consequently the processor
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performance is completely determined. Consequently, the false alarm
and detection probabilities of the MX-OS processor can be easily
evaluated since the MGF of the noise power level estimate is the
backbone of their expressions.

3.2.3. Minimum (MN)-OS Detector

The minimum operation has been introduced to alleviate the problems
associated with closely spaced targets leading to two or more targets
appearing in the reference window. While testing for target presence
at a particular range, the processor must not be influenced by the
extraneous target echoes. It has been shown that although the MN-OS
detector exhibits greater additional detectability loss in homogeneous
environments (relative to the other modified versions), it does perform
well in multiple target environment when a cluster of radar targets
appears in the reference windows.

The MN operation is capable of resolving multiple targets in the
reference window as long as all the interferers appear either in the
leading or lagging window. However, this scheme has undesired effects
when interfering targets are located in both halves of the reference
window and their number is outside their allowable range [11].

In this type of CFAR schemes, the noise power level is estimated
by taking the minimum of the local noise level estimates Z1 and Z2 as
depicted in Fig. 1. That is

ZMN = min(Z1, Z2) (46)

In this case, the noise power level estimate has a PDF given by [7]

fZMN
(z) = fZ1(z) + fZ2(z) − fZMX

(z) (47)

The last term in the above expression is simply the PDF of ZMX for
the MX-OS. All the PDF terms in the right hand side of the above
expression are previously determined and consequently the statistic
of the noise level estimate ZMN is completely known. The Laplace
transformation of Eq. (47) yields

MZMN
(ω) = MZ1(ω) +MZ2(ω) −MZMX

(ω) (48)

The expression (48) gives a very simple relationship between the
performance of MN-OS and that of MX-OS detection performance.
Again, we state that once the MGF of the noise power level estimate
is calculated, the processor false alarm and detection performances are
fully determined. Finally, a desirable CFAR scheme would of course
be one that is insensitive to changes in the total noise power within the
reference window cells so that a constant false alarm rate is maintained.
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4. PROCESSOR PERFORMANCE ASSESSMENT

To illustrate the performance of CFAR processors for partially
correlated χ2 fluctuating targets, the previous analytical expressions
are programmed on a digital computer for some parameter values
and the results of these programs are presented, for OSD(21), ML-
OSD(10), MX-OSD(10) and MN-OSD(10) in Figs. 2–5, respectively.
The abbreviation OSD(21) means the single-window OS detector
with ordered-statistic parameter K of 21, while the other three
abbreviations denote double-window OS detectors with symmetrical
ordered-statistic parameter values of 10 (K1 = K2 = 10). The
reference window size (N) is chosen to be 24, the design Pfa is 10-
6 and two values (2 & 4) for the number of integrated pulses are
selected. For comparison, these figures also include the single sweep
processor detection performance, relative to which we can demonstrate
the processor performance improvement for M > 1. Besides the
single sweep curve, there are another two families of curves. The
first family indicates the detection performance of the processor under
consideration for partially correlated χ2 targets (with ρs = 0, 0.5, 0.9
and 1) when the number of integrated pulses is two (M = 2). The
curves of this set are labeled in the signal correlation coefficient ρs,
including the SWII fluctuation model (ρs = 0) and the SWI model
(ρs = 1), and the number of integrated pulses M . Examining the
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Figure 2. M -sweeps homogeneous detection performance of OSD(21)
for partially correlated chi-square fluctuating targets with two-degrees
of freedom when N = 24, and Pfa = 1.0E-6.
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Figure 3. M -sweeps homogeneous detection performance of ML-
OS(10) for partially correlated chi-square fluctuating targets with two-
degrees of freedom when N = 24, and Pfa = 1.0E-6.
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Figure 4. M -sweeps homogeneous detection performance of MX-
OS(10) for partially correlated chi-square fluctuating targets with two-
degrees of freedom when N = 24, and Pfa = 1.0E-6.
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Figure 5. M -sweeps homogeneous detection performance of MN-
OS(10) for partially correlated chi-square fluctuating targets with two-
degrees of freedom when N = 24, and Pfa = 1.0E-6.

candidates of this group of curves, we observe that as ρs increases from
zero to unity, more per pulse average SNR is required to achieve the
same probability of detection. The second group includes the processor
detection performance for partially correlated χ2 targets (with the
same ρs values as above) when the number of postdetection integrated
pulses is four (M = 4). Examining the candidates of the two families,
we note that for low SNR, Pd increases monotonically with ρs, while
Pd degrades as ρs increases when the strength of the target return
(SNR) is high. In addition, for fixed SNR, the processor performance
improves with increasing M . However, the degradation in Pd increases
with increasing ρs. This is common for the four detectors considered
in this manuscript.

The nonhomogeneous performances of these processors are
evaluated for a maximum allowable number of extraneous targets
in each reference window. If K is chosen to be 21, for single-
window detector, then the processor is able to discriminate the primary
target from, at most, three outlying targets with little degradation in
detection performance. For double-window processor, on the other
hand, the ordered-statistic parameter K is chosen to be 10. As
a result of this, the processor is able to discriminate the primary
target from two extraneous targets. Therefore, the double-window
processor detection performance is evaluated for r1 = N1−K1 = 2 and
r2 = N2 − K2 = 2. Our results are obtained for a possible practical
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situation where the primary and the secondary interfering targets
fluctuate in accordance with the χ2 fluctuation model with the same
correlation coefficient (ρs = ρi) and of equal target return strength
(INR=SNR). Figs. 6–9 illustrate the multiple-target performance of
OSD(21), ML-OSD(10), MX-OSD(10) and MN-OSD(10), respectively.
As in homogeneous case, the reference window size (N) is chosen to
be 24, the design Pfa is 10−6 and two values (2 & 4) for the number
of integrated pulses are selected. For comparison, these figures also
include the single sweep processor detection performance, relative to
which we can demonstrate the processor performance improvement
for M > 1. Besides the monopulse curve, there are another two
families of curves. These families indicate the detection performance
of the considered algorithm for partially correlated χ2 targets (with
ρs = 0, 0.5, 0.9 and 1) when the number of integrated pulses is 2
and 4, respectively. Their curves are labeled in the signal correlation
coefficient ρs, including the SWII fluctuation model (ρs = 0) and
the SWI model (ρs = 1), and the number of integrated pulses M .
Examining the curves of this category, leads us to conclude that
the behavior of the processor under consideration in the presence of
extraneous targets is the same as its behavior in the absence of them
with only minor degradation. In addition, as ρs increases from zero
to unity, more per pulse average SNR is required to achieve the same
probability of detection.
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Figure 6. M -sweeps multitarget detection performance of OSD(21)
scheme for partially correlated chi-square fluctuating targets with two-
degrees of freedom when N = 24, R = 3, and Pfa = 1.0E-6.
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Figure 7. M -sweeps multitarget detection performance of ML-OS(10)
scheme for partially correlated chi-square fluctuating targets with two-
degrees of freedom when N = 24, R1 = R2 = 2, and Pfa = 1.0E-6.
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Figure 8. M -sweeps multitarget detection performance of MX-OS(10)
scheme for partially correlated chi-square fluctuating targets w ith two-
degrees of freedom when N = 24, R1 = R2 = 2, and Pfa = 1.0E-6.
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Figure 9. M -sweeps multitarget detection performance of MN-OS(10)
scheme for partially correlated chi-square fluctuating targets with two-
degrees of freedom when N = 24, R1 = R2 = 2, and Pfa = 1.0E-6.

In order to demonstrate the ability of the MN-OSD in resolving
multiple targets, we have assumed that all the extraneous targets are
located in the lagging window only (r1 = 0, r2 = 4). Fig. 10 shows
the detection performance of different OS schemes under this condition
for SWI & SWII fluctuation models. The curves of these figures are
labeled in the detector under consideration and the fluctuation model
when M = 3. From these results, we observe that intolerable masking
of the primary target occurs in the case of OS(21), ML- and MX-
OSD(10), and the masking effect is greater in the MX than in the
ML scheme. The MN is the only scheme that is capable of resolving
multiple targets in the reference window as long as all the interferers
appear in either one of the local windows.

The variation of the false alarm rate with the strength of the
interfering targets, when these targets are located in only one of the
local windows, is shown in Fig. 11 for M = 3. This figure illustrates the
superiority of the MN scheme in maintaining a constant rate of false
alarm when it is operated in multiple-target environments when the
extraneous targets fluctuate following either SWI or SWII model. The
next processor is the single-window scheme then comes the modified
version ML and finally the MX operation has the worst performance in
maintaining a constant rate of false alarm in multtarget environment.
In addition, the false alarm rate performance of these detectors is
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Figure 10. Multitarget detection performance of OS family of CFAR
schemes for chi-square fluctuating targets with two-degrees of freedom
when N = 24, M = 3, R = 4, R1 = 0, R2 = 4, and Pfa = 1.0E-6.
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Figure 11. False alarm rate performance of OS based detectors
for chi-square fluctuating targets with two-degrees of freedom when
N = 24, M = 3, R = 4, R1 = 0, R2 = 4, and design Pfa = 1.0E-6.
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Figure 12. Multitarget false alarm rate performance of OS family of
CFAR schemes for partially correlated chi-square fluctuating targets
when N = 24, M = 3, INR = 10 dB, and design Pfa = 1.0E-6.

higher for SWI fluctuation model than their performance when the
outlying targets fluctuate following SWII model. Fig. 12 depict the
false alarm rate performance of the OS based detectors as a function
of consecutive sweeps correlation coefficient for an interfering target
strength of 10 dB and M = 3, when the spurious target returns
are contained in both reference windows (r1 = r2 = 2) and in
the case where only one of the reference windows is contaminated
interfering target returns (r1 = 0 & r2 = 4). The results of this
figure demonstrate our previous conclusion. In addition, the false
alarm rate behavior of the OS modified versions in the case where
both reference windows contaminated with interfering target returns
is higher than their performance when only one of these windows is
contaminated with these undesired returns. The MN-OS technique
is the only one which don’t follow this rule in its reaction against
outlying target returns if the desired false alarm rate is required to
be constant. Moreover, the processor performance improves as the
correlation coefficient among consecutive sweeps increases. Fig. 13
illustrates the required SNR for the OS based detectors to achieve an
operating point of (10−6, Pd), as a function of the detection probability
Pd, when the radar receiver operates in homogeneous and multiple-
target environments. As a reference of comparison, this figure depicts
also the same behavior for the optimum detector. From the results of
this figure, we observe that the ML-OS requires the lowest, relative to
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Figure 13. Homogeneous and multitarget required SNR to achieve an
operating point (Pfa, Pd) of OS based schemes for fluctuating targets
of SWII model when N = 24, M = 3, and Pfa = 1.0E-6.

other candidates in its category, SNR to achieve a specified value for Pd
and the MN-OS needs the largest value of SNR to attain the same value
of Pd. As a conformation of this statement, Fig. 14 shows the required
SNR to attain a given operating point of (10−6, 0.9) as a function of
the ranking-order parameter K, for the OS based detectors, along with
the fixed threshold processor, when the radar receiver operates in an
ideal environment and integrates 3 consecutive sweeps in its signal
processing. Finally, the required SNR, in homogeneous as well as
in multiple-target environments, against the correlation coefficient is
drawn in Fig. 15) for the OS based algorithms along with the optimum
scheme when the radar receiver postdetection integrates 3-pulses. The
curves of this figure are labeled in the CFAR scheme, r1 and r2. The
numerical results of this figure are given for a maximum allowable
number of extraneous targets in each case. This figure illustrates
that the processor detection performance degrades with ρ and that
the processor performance for SWII is higher than its performance for
SWI target fluctuation models. The ML scheme has the best detection
performance either in the absence or in the presence of spurious targets
given that their number is within the allowable range.
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5. CONCLUSIONS

The problem of detecting radar targets against a background of
unwanted clutter and noise is studied. We have derived exact detection
probabilities for CFAR processors based, in their local noise power level
estimation, on the ordered-statistic technique for partially correlated
χ2 targets. These processors include the conventional OS detector
along with its modified versions which include ML-, MX- and MN-
OS algorithms for their performance evaluation in the absence as well
as in the presence of spurious targets. The primary and secondary
interfering targets are assumed to be fluctuating in accordance with
the χ2 fluctuation model with two degrees of freedom. At the
limiting correlation coefficients ρ = 1 and ρ = 0, the analysis yields,
respectively, the well known SWI and SWII models. The results
are given in a closed form expressions with especially simple form
for a SW II fluctuation model. The analytical results have been
used to develop a complete set of performance curves including the
detection probability in homogeneous and multiple target situations,
the variation of false alarm rate with the strength of interfering targets
that may exist amongst the contents of the estimation set, and the
required SNR to achieve a prescribed operating point (Pfa, Pd), as a
function of the ordered-statistic parameter and correlation coefficient.
As expected, lower threshold values and consequently higher detection
performance is obtained as the number of postdetection integrated
pulses increases. On the other hand, as the signal correlation increases
from zero to unity, more per pulse SNR is required to achieve a
prescribed probability of detection. In addition, the false alarm rate
increases with the signal correlation and the MN-OS scheme is the only
processor that is capable of maintaining a constant rate of false alarm,
irrespective to the interference level, in the case where the spurious
targets are located in either one of the reference windows.

The tradeoffs to be compromised, concerning selection of the
appropriate type of processor and an adequate choice of the reference
window size, are manifold and highly dependent on the specific clutter
and interference models assumed, in particular in a nonhomogeneous
environment. Therefore, an optimal and general purpose CFAR
detector can almost never be devised. When the size of the reference
window is increased, the CFAR loss in a stationary noise background
monotonically decreases to zero, together with an increased hardware
complexity, and an inevitable violation of the inherent assumption that
the noise samples are identically distributed over the reference cells and
properly represent the noise level in the detection cell. Therefore, in a
nonhomogeneous environment, the CFAR penalty sometimes increases
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with increasing the reference window size. In addition, the likelihood
that an interfering target or a spiky clutter return has entered the
reference window is obviously larger for larger number of reference
cells. On the other hand, once the window has been captured by an
interfering target, the primary target is less suppressed when the size
of the reference window is large.

When the target signal fluctuates obeying χ2 statistics, the signal
components are correlated from pulse to pulse and this correlation
degrades the processor performance. A common and accepted practice
in radar system design to mitigate the effect of target fluctuation is
to provide frequency diversity to decorrelate the signal from pulse to
pulse. While this technique is effective, it requires additional system
complexity and cost.
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