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Abstract—This paper suggests parameter estimation and error
reduction scheme in a multicarrier transmission system. A multicarrier
orthogonal frequency division multiplexing (OFDM) signal by using a
time-domain spreading (TDS) coupled with a cyclic time shift enables
a pilot-less synchronization. Exploiting the modified OFDM signal
endowed with the TDS, the proposed synchronization receiver can
accurately estimate the carrier-frequency offset as well as the timing
offset of OFDM signals without the use of training symbol.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has been chosen
for several broadband wireless local area network (LAN) standards
like IEEE802.11a and European HIPERLAN/2, and personal area
network standards like ultra-wideband (UWB) WiMedia [1, 2]. Many
studies have been performed to improve the efficiency of components
and transceivers in OFDM-based wireless systems. However, it
is commonly known that OFDM systems are very sensitive to
synchronization errors, which cause inter-channel interference (ICI)
and inter-symbol interference (ISI) when the fast Fourier transform
(FFT) window timing is not provided within the ISI-free part of the
guard interval [3]. Also, frequency offset that is caused by doppler shift
or misalignment between frequency oscillators exists causing ICI which
leading the system performance deteriorating drastically [4].

Most frequency and timing estimation methods use periodic
nature of the time-domain signal by using a cyclic prefix (CP) [5–
7], or by designing the training symbol having repeated parts [8–11].
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Schemes proposed in [5–7] can estimate the frequency offset by using
CP without using training sequences and hence requires no additional
bandwidth, but the performance of the estimator depends on the length
of CP and its estimation range does not exceed half the subcarrier
spacing [6]. The Schmidl’s synchronization method uses a preamble
containing the two same halves. This method gives simple and robust
estimates for symbol timing and carrier frequency offset [10]. However,
the timing metric of Schmidl’s method has a plateau, which causes
large variance of the timing estimate. To reduce the uncertainty due
to the timing metric, Minn proposed a method as modification to
Schmidl’s [11]. The result of Minn’s preamble gives more sharp timing
metric and smaller variance than Schmidl’s.

This paper deals with a pilot-less timing and frequency
synchronization methods for OFDM systems in a multipath fading
channel. To do this, we provide a modified OFDM system using a time-
domain spreading (TDS) coupled with a cyclic time shift. In particular,
we devise or select algorithms for the sequential estimation of symbol
timing, and carrier frequency offset, which can provide benefit to the
overall system performance. The proposed synchronization receiver
is based on correlation methods that exploit repeated information-
bearing OFDM symbols, thus removing the need of training symbols.

This paper is organized as follows. Next section suggests the
OFDM system based on TDS. Section 3 deals with the pilot-less
timing and frequency offset synchronization scheme. In Section 4,
we then present simulation results illustrating the synchronization
performance, and we conclude this paper with Section 5, which
summarizes the main results.

2. OFDM SYSTEM WITH TIME-DOMAIN SPREADING

In order to remove the use of training sequences, some modifications on
the conventional OFDM system are highlighted at the transmitting and
receiving sides. In this section, OFDM system employing N subcarrier
and a cyclic prefix (CP) of length Ng is considered.

2.1. Transmitter

For the notational convenience, we express information-bearing OFDM
symbol vector during (2l+m)-th period to be composed of (N/Ng +1)
Ng-dimensional vectors denoted by x2l+m(i) for i = 0, 1, . . . , N/Ng
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and is thus given by

x̂2l+m = [x2l+m(0)︸ ︷︷ ︸
CP

x2l+m(1) x2l+m(2) · · ·x2l+m(N/Ng)︸ ︷︷ ︸
x2l+m

] (1)

where x2l+m(0) denotes a vector of CP for m = 0, 1 and becomes
x2l+m(0) = x2l+m(N/Ng).

In our approach, x2l+1 is designed to be the (N +Ng)-th (or −Ng-
th) cyclic-shifted version of x2l. Then, each component of the (2l +1)-
th OFDM data symbol x2l+1 can be easily formulated from the 2l-th
frequency-domain OFDM symbol X2l(k) including information data
and pilot symbol and reads

x2l+1(n) =
1√
N

N−1∑
k=0

X2l(k)ej2πk(n+Ng)/N (2)

where we can find

X2l+1(k) = X2l(k)ej2πkNg/N . (3)

From Eqns. (2) and (3), x̂2l+1 can be expressed as

x̂2l+1 = [x2l(1)︸ ︷︷ ︸
CP

x2l(2) x2l(3) · · ·x2l(N/Ng) x2l(1)︸ ︷︷ ︸
x2l+1

]. (4)

Using this formulation, the CP of x̂2l+1 can be viewed as a cyclic suffix
(CS) of x̂2l.

2.2. Receiver

At the receiver, the useful part of the received signal including CP is
given by

y2l+m(n) =
L∑

i=0

h(i)x2l+m(n − i − τ)ej2π(n+m·Ne)∆/N + w2l+m(n) (5)

where Ne = N + Ng, h(i) denotes the channel impulse response with
maximum delay spread L, τ is the integer-valued unknown arrival time
of symbol, ∆ is the frequency offset normalized by carrier spacing,
and w2l+m(n) is the samples of zero-mean complex AWGN during
(2l + m)-th period. Frequency offset ∆ is divided into two parts, i.e.,
∆ = ∆i + ∆f with ∆i = int(∆) and ∆f ∈ [−1/2, 1/2).

Let the sample indexes of a perfectly synchronized OFDM symbol
be {−Ng,−Ng +1, . . . ,−1, 0, 1, . . . , N−1}, the timing offset be τ , and
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the maximum channel delay spread be εmax, where Ng is the length of
the CP. Then, if τ ∈ {−Ng+εmax,−Ng+εmax+1,−Ng+εmax+2 . . . 0},
the orthogonality among the subcarriers will not be destroyed and the
timing offset will only introduce a phase rotation in every subcarrier
symbol. When the timing estimate falls outside the ISI-free part of
the GI in ordinary OFDM systems, interference will be introduced [3].
This is still true for the proposed system when −Ng ≤ τ ≤ −Ng +εmax.
When τ > 0, on the other hand, since x2l+1(n) is designed to be the Ne-
th cyclic-shifted version of x2l(n) at the proposed OFDM transmitter,
the received FFT output can be given by

Y2l(k) =
1√
N

N−1−τ∑
p=0

y2l(p + τ)e−j2πpk/N

+
1√
N

N−1∑
p=N−τ

y2l+1(p + τ − Ne)e−j2πpk/N

=
1√
N

N−1∑
p=0

y2l(p + τ)e−j2πpk/N (6)

which means that the orthogonality among the subcarriers will not be
destroyed in the proposed OFDM system.

For demodulating the (2l + 1)-th OFDM symbol to combine two
repeated symbols, additionally, we can use a pre-advancement of FFT
windowing with a length of Na = Ng thanks to two-symbol repetition
coupled with a cyclic time shifting. With this provision, the right-
most term of x̂2l+1 denoted by x2l(1) is regarded as CS of x̂2l+1. Even
if the start position of the FFT window is out of GI interval, the
orthogonality among the subcarriers will not be destroyed and the
only effect suffered by the subchannel symbols is a change in phase
provided that a positive timing error is less than the length of CP. So,
the interference-free region of the FFT window over two consecutive
OFDM symbols is given by

Ξ = {−Ng + εmax,−Ng + εmax + 1, . . . 0, 1, . . . , Ng} . (7)

With this provision, we can expect that the proposed OFDM system
does not suffer from timing-error-induced interference even when 0 <
τ ≤ Ng.

3. PILOT-LESS PARAMETER SYNCHRONIZATION

In this section, we introduce suitable synchronization techniques for
the proposed OFDM system. Synchronization proceeds generally in
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the following manner: initial timing, fractional frequency offset (FFO)
estimation, integer frequency offset (IFO) estimation, and fine symbol
timing.

3.1. Estimation of Timing Offset

The proposed estimation method is based on Minn’s sliding window
method [11] and uses the correlation between the two consecutive
received information-bearing OFDM signals y2l(n) and y2l+1(n). To
avoid timing metric plateau, two correlation windows of length Ng

samples are separated by 2N samples. So, 2N is the distance between
the periodic portion of length Ng introduced by two-symbol repetition
coupled with the cyclic time shift.

In our work, the correlation function denoted by PA(d) and the
received energy denoted by RA(d) are respectively computed as

PA(d) =
Ng−1∑
i=0

y2l(d + i) · y∗2l+1 (d + i + N − Ng) (8)

and

RA(d) =
1
2

1∑
m=0

Ng−1∑
i=0

|y2l+m(d + i + m(N − Ng))|2. (9)

The timing metric function is defined as

MA(d) =
1

Ng + 1

0∑
k=−Ng

|PA(d + k)|2
(RA(d + k))2

. (10)

The complexity of the proposed method in Eqns. (8)–(10) is
between those of Minn’s sliding window method and Minn’s training
symbol method [11], which will be validated in the following section,
if a sliding window of length Ng = N/4 is used. Here, we propose
another low-complexity method, which is quite similar to Schmidl’s
method [10]. In this case, two windows of length 2Ng samples are
separated by 2N samples. With this provision, we define PB(d) and
RB(d) as follows

PB(d) =
Ng−1∑
i=−Ng

y2l(d + i) · y∗2l+1(d + i + N − Ng) (11)
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and

RB(d) =
Ng−1∑
i=−Ng

|y2l(d + i)|2. (12)

Plugging Eqns. (11)–(12) into |PB(d)|2/(RB(d))2 yields a timing metric
for this approach.

3.2. Estimation of Fractional Frequency Offset

The estimation of the fractional part has been investigated in [7–10];
many of the techniques do not require the knowledge of the integer
part of the carrier frequency offset. Considering the structure of the
proposed OFDM signal, estimation of FFO is achieved by calculating
the phase difference between two consecutive OFDM signals. Using the
proposed timing metric, symbol timing offset d̂ is estimated. Then, the
FFO estimator is obtained from the argument of a correlation result
as follows

∆̂f =
1
2π

arg
{

P∆f
(d̂)

}
(13)

where

P∆f

(
d̂
)

=
N−1∑
i=0

y2l

(
d̂ + i

)
y∗2l+1

(
d̂ + i − Ng

)
. (14)

The proposed FFO estimation method is quite similar to Schmidl’s
estimation method, which uses a training symbol containing two
identical halves and results in a frequency acquisition range of ±1
subcarrier spacing [10]. On the other hand, since the distance of the
repeated signal parts is N as shown in Eqn. (14), which in turn allows
a reduced-variance frequency offset estimation, a maximum frequency
acquisition range of the proposed estimator is only ±1/2 subcarrier
spacing as like Moose’s methods [5]. Therefore, the estimate suffers
from the subcarrier ambiguity when |∆f | > 0.5.

3.3. Estimation of Integer Frequency Offset

The problem of subcarrier ambiguity for |∆f | > 0.5 can be solved by
using a pre-advancement of FFT windowing with a length of Na < Ng

at the (2l+1)-th OFDM symbol. It is assumed that the symbol timing
is known, and that the FFO is estimated and corrected. The retrieved
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blocks of two consecutive OFDM symbols at the receiver are in the
forms of

Y2l(k) = H2l(k − ∆i)X2l(k − ∆i) + Z2l(k) (15)

and

Y2l+1(k) = ej2π∆iNg/Ne−j2π(k−∆i)(Na−Ng)/NH2l+1(k − ∆i)
·X2l+1(k − ∆i) + Z2l+1(k) (16)

where H2l+m(k) is the channel’s frequency response and Z2l+m(k) is a
zero-mean complex Gaussian noise term.

In an analogy to Morelli and Mengali estimator (MME) developed
in [12], the likelihood function has the form of

Λ(p) =
∑
k∈Sc

Y ∗
2l(k + p)Y2l+1(k + p)e(p, k) (17)

with

e(p, k) = e−j2πpNg/Ne−j2π(k−p)Ng/N (18)

where a notation of p denotes a trial value of ∆i and Sc is the
set of subcarrier indices used for correlation. In this paper, let the
number of elements in Sc be Nc and the correlation is done over
Nc subcarriers spaced at a distance �N/Nc� form each other, when
�x� = first integer < x.

For a simple description, we assume that H2l(k) = H2l+1(k) and
SNR → ∞. Recalling from Eqn. (3) that X2l+1(k) = X2l(k)ej2πkNg/N ,
Λ(p) takes form

Λ(p) = e−j2π(p−∆i)(Ng−Na)/N
∑
k∈Sc

|X2l(k + p − ∆i)|2 (19)

where X2l(k+p−∆i) = X2l(k+p−∆i)H2l(k+p−∆i). The argument
of Eqn. (19) is given by

arg {Λ(p)} =
2π

K
(p − ∆i) (20)

where K = N/(Ng −Na) and the argument becomes zero when p = ∆i

because this term has only real term.
With this provision, the proposed IFO estimator becomes

∆̂i = min
|p|≤M

{|arg {Λ(p)}|} (21)
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where M denotes the largest expected value of |p| depending on the
frequency stability of the transmitter and receiver oscillators. In pilot-
aided IFO estimators discussed in [10, 12], its estimation range for
frequency ambiguity is not limited, while estimation range of our
approach depends on the parameters Na and Ng because a complex
plane is divided into K regions as shown in Eq. (20). So, our frequency
estimation range is limited by M = K/2 − 1, which is due to the fact
that the pattern of phase rotation is repeated every K/2 subcarrier.

4. SIMULATION RESULTS AND DISCUSSIONS

In this section, to verify the effectiveness of the proposed estimators,
OFDM system with N = 128 and Ng = N/4 is considered. Here, we
assume that the channel has an exponentially decaying power-delay
intensity profile with L = 32 paths.

Figure 1 presents the bit error rate (BER) performance of both
ordinary system and proposed systems when the values of SNR are 15
and 25 dB, respectively. In this example, we assume perfect channel
equalization. When τ < 0, the proposed OFDM system with 16-
QAM and the ordinary OFDM system with QPSK show a same BER
performance without decreasing transmission efficiency. On the other
hand, the proposed system shows a better performance rather than
the ordinary OFDM system when 0 < τ ≤ Ng with the aid of cyclic
shifting.

Figure 2 shows the means and variances for the timing
synchronization receivers. Here, we assume that frequency offset ∆ =
0.2. The performance of the timing estimators has been investigated
by computer simulation for four cases: 1) Schmidl’s method with 90%
maximum points averaging [10], 2) Minn’s sliding window method
(Minn A) [11], 3) Minn’s training symbol method (Minn B) [11], 4)
proposed method A with Eqn. (8), and 5) proposed method B with
Eqn. (11). We can see that the mean value of Schmidl’s method is
shifted to CP range, while the mean of other methods is at roughly
the correct timing point. The mean square error (MSE) of the proposed
method B is lower than that of Schmidl’s and Minn B methods with
approximately same complexity because Ng = N/4 is used. When
compared to Minn’s algorithms, the proposed method A gives a better
or equivalent MSE performance without the need of training symbols.

Figure 3 depicts the MSE of FFO estimator. In this example,
we assume perfect timing synchronization and |∆f | < 0.5. We can
see that the proposed FFO estimator gives very accurate estimation
of frequency offset compared to Schmidl’s estimator [10] without any
training sequence.
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Figure 1. BER performance of both ordinary and proposed OFDM
systems versus timing error.

Figure 4 illustrates the probability of failure, Pr
{

∆̂i �= ∆i

}
of

IFO estimators. In this example, the estimation range of the proposed
IFO estimator is limited by M = 3 and M = 7 when Na = 16
and Na = 24, respectively, and the same range is applied to MME.
As can be seen from the figure, the proposed method has smaller
probability of error estimation than MME regardless of value of Na.
If the allowable frequency tolerance of the system is relatively small,
the proposed estimator is designed to have more improved performance
when Na = 16. Since the number of possible phases introduced by both
cyclic time shift and length of CP is reduced by factor-of-two against
Na = 24, which is analogous to reduction of the range M , further
performance improvement over the MME is observed at the sacrifice
of estimation range (i.e., |p| ≤ 3). Considering trade-offs between the
performance accuracy and estimation range depending on the system
parameters N and Ng, the design parameter Na should be carefully
chosen.
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Figure 4. Probability of failure of IFO estimators (SNR = 4 dB).

5. CONCLUSION

In order to resolve the time and frequency uncertainty in multicarrier
transmission systems, a synchronization receiver which do not require
the transmission of training symbols has been suggested in this
paper. From the simulation results, it was observed that the proposed
synchronization receiver gives very accurate estimates of the time and
frequency error without additional training sequence. In addition,
the proposed OFDM system provides a robustness against a positive
OFDM timing error provided that it is less than the length of the CP.
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