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Abstract—In the present work the radiation of sound from a
bifurcated circular waveguide formed by a semi-infinite rigid duct
inserted axially into a larger infinite tube with discontinuous wall
impedance is reconsidered through an alternative approach which
consists of using the mode matching technique in conjunction with the
Wiener-Hopf method. By expressing the total field in the appropriate
waveguide region in terms of normal modes and using the Fourier
transform technique elsewhere, we end up with a single modified
Wiener-Hopf equation whose solution involves an infinite system of
algebraic equations. This system is solved numerically and the
influence of some parameters on the radiation phenomenon is shown
graphically. The equivalence of the direct method described in [1] and
the present mixed method are shown numerically.

1. INTRODUCTION

In a previous work by the authors [1], the radiation of sound from
a bifurcated circular waveguide formed by a semi-infinite rigid duct
inserted axially into a larger infinite tube with discontinuous wall
impedance (see Fig. 1) has been analyzed by using the Fourier
transform technique. The related boundary value problem is then
formulated as a matrix Wiener-Hopf equation and solved rigorously
through the “weak factorization” [2], or “pole removal” [3, 4] method.
When the Neumann boundary condition satisfied on the inner semi-
infinite cylinder is replaced by a more general one, such as the
impedance type boundary condition, the resulting matrix Wiener-Hopf
equation becomes very complicated. Therefore, a hybrid method of
formulation consisting of expressing the field in the region a < ρ < b,
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z < 0 in terms of normal waveguide modes and using the Fourier
transform technique elsewhere may be adopted. The use of this
hybrid method results in a single modified Wiener-Hopf equation
involving infinitely many unknown expansion coefficients satisfying
an infinite system of linear algebraic equations [7]. An alternative
approach would be the very well known mode matching technique.
The advantage of the mixed method used in this paper over the pure
mode-matching technique is that the edge conditions are incorporated
rigorously in the analysis through Wiener-Hopf procedure, while the
mode matching requires a proper application of edge conditions by
checking the convergence rate of the modal amplitudes. Indeed, by
using the hybrid method we end-up with a single set of infinitely many
expansion coefficients satisfying an infinite system of linear algebraic
equations which can be solved by numerical methods.

Figure 1. Geometry of the problem for mixed formulation.

2. MIXED METHOD OF FORMULATION

We now express the total field as

uT (ρ, z) =

{
eikz + u1(ρ, z), 0 < ρ < a

u
(1)
2 (ρ, z)H(−z) + u(2)

2 (ρ, z)H(z), a < ρ < b
(1)

where H(z) denotes the unit step function.
u

(1)
2 (ρ, z) which satisfies the Helmholtz equation and the following
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boundary conditions

∂

∂ρ
u

(1)
2 (a, z) = 0, (2a)

η1u
(1)
2 (b, z) − 1

ik

∂

∂ρ
u

(1)
2 (b, z) = 0 (2b)

can be expressed in terms of normal waveguide modes as:

u
(1)
2 (ρ, z)=

∞∑
m=0

Am[J0(γmρ)Y1(γma)−J1 (γma)Y0 (γmρ)] e−iαmz (3a)

with

γm =
√
k2 − α2

m, Imαm > Imk (3b)

and ±αm being the symmetrical zeros of K(α)M1(η1, α). Here
Mp (ηj , α) stands for

Mp (ηj , α) = [Jp (Ka)Y (ηj , α)−Yp (Ka)J (ηj , α)] , p = 0, 1; j = 1, 2.
(4a)

with

J (ηj , α) = ηjJ0 (Kb) +
K (α)
ik

J1 (Kb) (4b)

and

Y (ηj , α) = ηjY0 (Kb) +
K (α)
ik

Y1 (Kb) (4c)

Here K(α) stands for

K(α) =
√
k2 − α2. (4d)

The square root function is defined in the complex α-plane cut along
α = k to α = k + i∞ to α = −k − i∞, such that K(0) = k. The
boundary and continuity relations are

∂

∂ρ
u1 (a, z) = 0 (5a)

∂

∂ρ
u1 (a, z) − ∂

∂ρ
u

(2)
2 (a, z) = 0, z > 0 (5b)

eikz + u1 (a, z) = u(2)
2 (a, z) , z > 0 (5c)

η2u
(2)
2 (b, z) − 1

ik

∂

∂ρ
u

(2)
2 (b, z) = 0, z > 0 (5d)

u
(1)
2 (ρ, 0) = u(2)

2 (ρ, 0) , a < ρ < b (5e)
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and
∂

∂z
u

(1)
2 (ρ, 0) =

∂

∂z
u

(2)
2 (ρ, 0) , a < ρ < b. (5f)

To obtain a unique solution the following edge conditions should
also be taken into account

u1 (a, z) = O(1), z → 0 (5g)
∂

∂ρ
u1 (a, z) = O

(
|z|−1/2

)
, z → 0 (5h)

Consider first the region 0 < ρ < a. By applying full range Fourier
transform to the Helmholtz equation satisfied by u1 (ρ, z), we get[

1
ρ

d

dρ

(
ρ
d

dρ

)
+K (α)

]
[F− (ρ, α) + F+ (ρ, α)] = 0 (6a)

with

F± (ρ, α) = ± 1
2π

∫ ±∞

0
u1 (ρ, z) eiαzdz (6b)

The solution of (6a) is

F− (ρ, α) + F+ (ρ, α) = A(α)J0(Kρ). (7)

Taking the derivative of (7) and using the Fourier transform of the
boundary condition in (5a), namely

∂

∂ρ
F− (ρ, α)|ρ=a = Ḟ− (a, α) = 0, (8a)

we obtain

F+ (a, α) = − J0 (Ka)
KJ1 (Ka)

Ḟ+ (a, α) − F− (a, α) (8b)

and

A(α) = − Ḟ+ (a, α)
K (α)J1 (Ka)

. (9a)

By using the edge condition in (5h) and taking into account that
K (α) ∼ i |α| , J1 (Ka) = O(|α|−1/2 ea|α|) we can show that Ḟ+ (a, α) =
O(|α|−1/2) and

A(α) = O
(
|α|−1 e−a|α|

)
, (9b)
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for |α| → ∞.
Now, consider the region a < ρ < b, z > 0. By taking the half-

range Fourier transform of the Helmholtz equation satisfied by u2 (ρ, z)
we get [

1
ρ

∂

∂ρ
(ρ
∂

∂ρ
) +K2(α)

]
G+(ρ, α) = f(ρ) − iαg(ρ). (10a)

Here G+(ρ, α) is a function regular in the upper α− plane Im(α) >
Im(−k), defined by

G+(ρ, α) =
1
2π

∞∫
0

u
(2)
2 (ρ, z)eiαzdz, (10b)

while f(ρ) and g(ρ) stand for

f(ρ) =
∂

∂z
u

(2)
2 (ρ, 0), (10c)

g(ρ) = u
(2)
2 (ρ, 0). (10d)

The solution of the non homogeneous equation in (10a) can be obtained
by using the Green’s function technique. The result is

G+(ρ, α) = − Ḟ+ (a, α)
K (α)M1 (η2, α)

[J0 (Kρ)Y (η2, α) − Y0 (Kρ)J (η2, α)]

+
1

K (α)M1 (η2, α)

b∫
a

{f(t) − iαg(t)}Q(t, ρ, α)tdt (11a)

with

Q(ρ, t, α) =
π

2




[J0 (Kt)Y (η2, α) − Y0 (Kt)J (η2, α)]
× [J0(Kρ)Y1(Ka) − J1(Ka)Y0(Kρ)]

, a ≤ ρ ≤ t

[J0 (Kρ)Y (η2, α) − Y0 (Kρ)J (η2, α)]
× [J0(Kt)Y1(Ka) − J1(Ka)Y0(Kt)]

, t ≤ ρ ≤ b
(11b)

The regularity of the right hand-side of (11a) is ensured if

Ḟ+ (a, βn) =
Kn

π

J1 (Kna)
J (η2, βn)

θn [fn − iβngn] , (12a)
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with[
fn
gn

]
=
π2

2θn

∫ b

a

[
f (t)
g (t)

]
[J0 (Knt)Y (η2, βn) − Y0 (Knt)J (η2, βn)] tdt,

(12b)

Kn = K(βn) (12c)

and

θn = − 1
k2

+
(
η2
Kn

)2

−
( J (η2, βn)
KnJ1(Kna)

)2

(12d)

In (12a)–(12d), βn denotes the zeros of K(α)M1(η2, α):

K(±βn)M1(η2,±βn) = 0, Imβn > Im k.

By using the Fourier transform of the continuity relation in (5c)

F+ (a, α) = G+ (a, α) +
1

2πi
1

α+ k
(13)

and the following eigenfunction expansion[
f (t)
g (t)

]
=

∞∑
m=1

[
fm
gm

]
[J0 (Kmt)Y (η2, βm) − Y0 (Kmt)J (η2, βm)] (14)

we end up with the following modified Wiener-Hopf equation

2
πa

L (α)
k2 − α2

Ḟ+ (a, α) + F− (a, α) =

2
πa

∞∑
m=1

J (η2, βm)
KmJ1(Kma)

fm − iαgm
α2 − β2

m

− 1
2πi

1
α+ k

, (15)

whose solution reads

Ḟ+ (a, α) = −ak
2i

1
L+ (α)L+ (k)

+

1
2k
k + α
L+ (α)

∞∑
m=1

(k + βm)J (η2, βm)
KmL+ (βm)J1(Kma)

fm + iβmgm
βm (α+ βm)

. (16)

Here L+ (α) is a function regular and free of zeros in the upper
half plane Imα > −Imk resulting from the Wiener-Hopf factorization
of

L (α) =
J (η2, α)

J1 (Ka)M1 (η2, α)
. (17a)
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as

L (α) = L+ (α)L− (α) (17b)

with

L− (α) = L+ (−α) (17c)

The explicit expression of L+ (α) is [1]:

L+ (α) =
{ J (η2, 0)
J1(ka) [J1 (ka)Y (η2, 0) − Y1 (ka)J (η2, 0)]

}1/2

e−αT

×
∞∏

m=1

(1 + α/ξm)
(1 + α/χm) (1 + α/βm)

(18a)

where T stands for

T =
i

π
[b ln b− a ln a− (b− a) ln (b− a)] (18b)

and ξm and χm are the roots of the following equations:√
k2 − (χm)2J1

(
a

√
k2 − (χm)2

)
= 0 (18c)

ikη2J0

(
b

√
k2−(ξm)2

)
+

√
k2−(ξm)2J1

(
b

√
k2−(ξm)2

)
= 0. (18d)

The unknown coefficients Am and fm , gm appearing in (3a) and
(12a), respectively are to be determined trough the regularity condition
(12a) and the following matching conditions derived from (5e), (5f):

−i
∞∑

m=1

Amαm [J0 (γmρ)Y1 (γma) − Y0 (γmρ)J1 (γma)] =

∞∑
m=1

fm [J0 (Kmρ)Y (η2, βm) − Y0 (Kmρ)J (η2, βm)] (19a)

∞∑
m=1

Am [J0 (γmρ)Y1 (γma) − Y0 (γmρ)J1 (γma)] =

∞∑
m=1

gm [J0 (Kmρ)Y (η2, βm) − Y0 (Kmρ)J (η2, βm)] (19b)
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Multiplying both sides of (19a,b) by

ρ [J0 (Kmρ)Y (η2, βm) − Y0 (Kmρ)J (η2, βm)] (20)

and integrating from a to b, we get

fm − iαgm = − π
2i

2θm

∞∑
j=1

(α+ αj) ∆jmAj (21)

where ∆jm stands for:

∆jm =
2
π

1
α2

j − β2
m

{η2 [Y1(γja)J0 (γjb) − J1(γja)Y0 (γjb)] +

γj

ik
[Y1(γja)J1 (γjb) − J1(γja)Y1 (γjb)]

}
(22)

Substituting (21) in (12a), and using (16) we get a single
infinite system of linear algebraic equations for the modal expansion
coefficients Aj which are solved numerically.

KrJ1 (Kra)
J (η2, βr)

∞∑
j=1

(βr + αj) ∆jrAj +

π

2k
k + βr

L+ (βr)

∞∑
m=1

(k + βm)J (η2, βm)
KmL+ (βm)J1(Kma)

1
βm (βr + βm) θm

∞∑
j=1

(βm − αj) ∆jmAj = −ak
π

1
L+ (βr)L+ (k)

. (23)

To solve this system we assume that the convergence of the infinite
series involved is rapid enough to allow truncation at n = N . The value
of N is increased until the transmission coefficient does not change in
a given number of decimal place. It was seen that the convergence is
very fast and the truncation number may be chosen as N = 3 [1].

The radiated field is obtained by evaluating the following integral

u1(ρ, z) = −
∫
L

Ḟ+ (a, α)
J0(Kρ)

K(α)J1(Ka)
e−iαzdα (24)

The transmission coefficient T of the fundamental mode is
defined as the complex coefficient multiplying the travelling wave term



Progress In Electromagnetics Research B, Vol. 6, 2008 303

exp (iξ1z) and is computed from the contribution of the first pole at
α = −ξ1. The result is

T = π

[
i

k
(k−ξ1)

∞∑
m=1

(k + βm)J (η2, βm)
KmL+ (βm)J1(Kma)

fm + iβmgm
βm (−ξ1 + βm)

− ka

L+ (k)

]

×L+ (ξ1)M1 (η2,−ξ1)
K(ξ1)J ′ (η2,−ξ1)

(25)

where the dash (′) denotes the derivative with respect to α.
Similarly, the reflection coefficient R of the fundamental mode

which is defined as to be the complex coefficient of exp(−ikz) is
computed as contribution from the pole at α = k, which is

R = π

[
2i

kaL+ (k)

∞∑
m=1

J (η2, βm) [fm + iβmgm]
βmKmL+ (βm) J1(Kma)

−
(

1
L+ (k)

)2
]

(26)

3. COMPUTATIONAL RESULTS

In this section some graphical results showing the effects of the
geometrical and physical parameters on reflection coefficient given in
(26) are presented.

Figure 2. Modulus of the reflection coefficient |R| versus frequency f
for different values of inner duct radius a.

Figure 2 shows the variation of the reflection coefficient versus the
frequency for different values of the inner cylinder radius. It is seen
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that the amplitude of the reflection coefficient decreases with increasing
values of the inner cylinder radius.

Figure 3. Modulus of the Reflection Coefficient |R| versus frequency
f for different values of ζ2.

Figure 3 shows the variation of the reflection coefficient versus the
frequency for different values of the surface impedance ζ2 = 1/η2 of
the part z > 0 while the impedance ζ1 = 1/η1 of the part z < 0 is
kept constant. It is observed that the amplitude of the reflected field
decreases up to a certain frequency range, as the contrast |ζ2 − ζ1|
increases. Beyond this frequency range a reversed behavior is observed.

4. CONCLUSION

The direct method of formulation described in [1] is simpler, but
requires the Wiener-Hopf factorization of a kernel matrix. In some
special cases, as in the present problem, the factorization can be
accomplished rather easily

The mixed method of formulation described in this work requires
more complicated calculations but results into a single modified
Wiener-Hopf equation. The advantage of the hybrid method is that it
can be applied to more general cases.

For the present geometry, the direct method is effective only
when the inner semi-infinite duct is completely rigid or completely
soft. But it becomes very complicated when the wall of the duct
is characterized by a more general boundary condition, such as the
impedance boundary condition.
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The table below shows the amplitude of the transmission
coefficient |T | for different values of the radius of the outer cylinder,
i.e., kb which is calculated by using the direct and the mixed methods
of formulation.

ka = 1, ζ1 = 0.5 + i, ζ2 = 0.5 + 2i

kb direct method hybrid method

1.1 0.5133849698328619 0.5133845112922173

1.2 0.4209788115694715 0.4209775205339662

1.3 0.35291199842048 0.3529098482749924

1.4 0.2997297433023099 0.2997268632262918

1.5 0.2570210560706732 0.2570176495735579

1.6 0.222129699067328 0.2221260006399043

1.7 0.1932691928701588 0.1932654441155111

1.8 0.1691646981412051 0.1691611349790878

1.9 0.1488724971776491 0.1488693436665429

2 0.1316761672364317 0.1316736334944602

2.1 0.1170216347123282 0.1170199174828079

2.2 0.1044742038425272 0.1044734888820861

2.3 0.09368898884613652 0.09368945471940107

2.4 0.08438999241100219 0.0843918155695917

2.5 0.07635501295749399 0.07635837423485263

It is seen that the solutions obtained by these two different
methods coincide exactly.
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