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Abstract—The electromagnetic scattering problem of a short-pulse
plane wave by a perfectly-conducting circular cylinder, buried in a
dielectric half-space, is solved by means of a cylindrical-wave approach
(CWA). The incident plane wave may have a rather general shape
in the time domain. The technique is applicable for arbitrary
polarization, for any cylinder size and burial depth, and it gives
results both in the near- and in the far-field regions. In this work, an
application of the technique to a basic but practical detection problem
is presented, showing good results.

1. INTRODUCTION

The two-dimensional electromagnetic scattering problem by buried
circular cylinders has been discussed by many authors, both from a
theoretical and a numerical point of view, due to its application to
remote sensing of the earth’s subsurface, to the detection of landmines,
pipes, conduits, or to communication through the earth [1–6].

An effective tool for the detection and identification of buried
objects, with civilian and military applications, is Ground Penetrating
Radar (GPR) [7–9]. It uses electromagnetic-wave propagation
and scattering to image, locate and quantitatively identify changes
in electrical and magnetic properties in the ground. It has
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the highest resolution in subsurface imaging in comparison to
any geophysical method, approaching centimeters under the right
conditions. Depending on material properties, the depth of
investigation varies from less than a meter to several meters.
Processing and interpretation acquired GPR data, it is possible to
extract information such as depth, orientation, size and shape of buried
objects, density and water content of soils, and much more [10–13].
The frequencies used in the applications above are chosen to achieve
good ground penetration, which necessitates relatively low operating
frequencies for typical soils (< 1 GHz). The bandwidth has to be as
large as possible to obtain sufficient temporal and spatial resolution.
For these reasons, ultrawideband short-pulse systems are commonly
employed: many of them operate in the time domain and have an
instantaneous frequency spectrum of approximately 0.1–1.0 GHz [7].

In [6], the plane-wave scattering problem by a finite set of
perfectly-conducting cylinders buried in a dielectric half-space was
considered. We developed a Cylindrical-Wave Approach (CWA), in
which the field scattered by the cylinders is decomposed in cylindrical
waves. The reflection and transmission properties of such waves in the
presence of plane interfaces have been discussed in [14] and [15], by
introducing suitable reflected and transmitted cylindrical functions and
the relevant spectral integrals. Such integrals have been numerically
solved employing suitable adaptive integration techniques of Gaussian
type, together with convergence-acceleration algorithms [16, 17]. Our
spectral-domain method may deal with both TM and TE polarization
cases, and yields results in both the near- and the far-field zones. All
the multiple reflections between the cylinders and the interface are
taken into account. It is noted that the CWA can be employed to
characterize two-dimensional obstacles of arbitrary shape simulated
by a suitable array of circular cylinders [6, 18].

In [2], the method was extended to study the scattering, from
buried perfectly-conducting cylinders, of a pulsed plane wave with a
rather general time-shape. To solve such time-domain problem, we
performed a sampling of the incident-field spectrum, we worked out the
solution for any sample in the frequency domain by using the CWA,
and we calculated the solution in the time domain by means of the
inverse transform.

In this paper, attention is paid to an application of the technique
presented in [2] to a practical, basic, detection problem. The curves of
the field, scattered by a buried cylinder and transmitted back to the
air, can be interpreted as if they were plotted from GPR data acquired
in an unknown scenario, in order to extract geometrical information
about the buried object, as for example its depth and size.
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2. THE SCATTERING PROBLEM

The geometry of the scattering problem is shown in Fig. 1:
a perfectly-conducting circular cylinders is buried in a linear
isotropic homogeneous dielectric lossless half-space (medium 1, with
permittivity ε1 = ε0εr1 = ε0n2

1, where n1 is the refractive index). The
cylinder is parallel to the y axis and is assumed to be infinite along y
direction, therefore the problem is two-dimensional.

Figure 1. Geometry of the scattering problem.

A pulsed plane wave, with y-directed electric/magnetic field
g(τ ; r) (for TM(y)/TE(y) polarization, respectively) , has a propagation
direction lying in the xz plane and impinges at an angle ϕi from
medium 0 (a vacuum) on the planar interface with medium 1. The
time variable τ = ω0t is normalized with respect to ω0 = k0c0, where
k0 is the vacuum wavenumber, and c0 is the light velocity in a vacuum;
moreover, r = (x, z).

We introduce a reference frame (O, ξ, ζ), with normalized
frequency-depending coordinates ξ = k0x and ζ = k0z; ρ = (ξ, ζ) =
k0r. The cylinder, with normalized radius α = k0a, has axis located
in (χ, η), with χ = k0h and η = k0d.

The function g(τ ;ρ) can be expressed as

g (τ ;ρ) =
ω0

4π2

+∞∫
−∞

+∞∫
−∞

γ
(
ψ, ξ, n‖

)
ei(n‖ζ−ψτ)dψdn‖ (1)
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iξ(ψ2−n2

‖)
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+ G−(ψ, n‖)e
−iξ(ψ2−n2

‖)
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2

is
the Fourier transform along τ and ζ of g (τ ;ρ); moreover, ψ = ω/ω0 =
k/k0, being ω the angular frequency and k the wavenumber. The
pulse g (τ ;ρ) propagates from infinite to the planar interface, then it
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has to be G−
(
ψ, n‖

)
≡ 0. Since we consider a single plane wave,
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(
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)
= 2πG (ψ) δ

(
n‖ − ψ sinϕi

)
. Therefore

g (τ ;ρ) =
ωo
2π

+∞∫
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G (ψ) eiψ(ξ cosϕi+ζ sinϕi−τ)dψ (2)

with ni = (cosϕi, sinϕi), and g (τ ;ρ) = g
(
τ − ni · ρ

)
.

In this paper, we assume that

g(τ ;ρ) = g (τ − n · ρ) = g0e−
(τ−n·ρ)

2

[
e

1
2 cos (τ − n · ρ) − 1

]
(3)

where n = n⊥ξ̂ + n‖ζ̂ is the unit vector parallel to the wavevector k
of the incident plane wave, and g0 is an amplitude coefficient. It is
plotted in Fig. 2(a), as a function of τ , when n · ρ = 0. Its maximum
value is obviously for τ = 0 and is gMAX = g0(e

1
2 − 1) ∼= 0.6487g0. In

τ = 4, g(4) ∼= −6 × 10−4g(0), that is, |g(4)| < 0.01gMAX. Since |g(τ)|
decreases as τ increases, we can consider approximately the short pulse
as of finite duration, vanishing for τ ≥ ∆τ with ∆τ = 4. This waveform
is consistent with many pulsed current sources [19–21].

Figure 2. Incident time-domain short pulse used in the numerical
calculation (a) and its spectrum (b). (c) Reconstruction of the incident
pulse by means of 2440 spectrum samples (the dots reported in (b)),
as a function of τ .

The analytical expression of the incident-field spectrum is given
by

H(ψ,ρ) = G (ψ) eiψ(ξ cosϕi+ζ sinϕi) = g0

√
2π
ω0
e−

ψ2

2 [cosh (ψ) − 1] eiψni·ρ

(4)
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It is plotted in Fig. 2(b), as a function of ψ, when ni·ρ= 0; its maximum
value GMAX

∼= 1.32 × 109 g0 ω
−1
0 is in ψ ∼= 1.5411 (ω ∼= 1.5411ω0). In

ψ = 6, G(6) ∼= 9.18 × 103 g0 ω
−1
0 , i.e., G(6) < 7 × 10−6GMAX: then,

we can say that the spectrum does not contain normalized frequencies
greater than ψ ≥ ∆ψ with ∆ψ = 6.

Since the time duration of the pulse is finite, its spectrum can be
reconstructed by means of the sampling theorem [22]:

Hs (ψ,ρ) = ω0∆ψs
+∞∑
p=−∞

H (p∆ψs,ρ ) δ (ψ − p∆ψs) (5)

where ∆ψs is the constant frequency pitch.
In order to avoid aliasing phenomena and to recover all the

information contained in the continuous spectrum from the sampled
one, the well-known Nyquist condition has to be satisfied: ∆ψs ≤ 1

2∆τ ,
being 2∆τ the time duration of the incident pulse. Since ∆τ = 4, it
has to be ∆ψs ≤ 1

8 . Then, being the bandwidth of our signal spectrum
limited to 2∆ψ = 12, the number of samples can be finite and, in
particular, equal to

⌊
12

∆ψs

⌋
+1. The sampled spectrum can be rewritten

as
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The inverse Fourier transform of (6) is given by
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with period 2π
2∆ψs

, that is a superposition of replicas of the incident
field separated by π

∆ψs
− 8.

In Fig. 2(b), the samples of the incident spectrum are represented
by dots; in Fig. 2(c), the reconstruction of the incident pulse by means
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of 2440 spectrum samples is reported. The approximation reveals to
be good, the relative error is ≤ 10−4.

The solution of the scattering problem is carried out in the spectral
domain by using the full-wave CWA presented in [6]. The above-
described sampling procedure is applied also to the spectra of the
various field terms involved: the fields reflected and transmitted by
the planar interface, the field scattered by the cylinder, and the fields
scattered-reflected and scattered-transmitted by the planar interface.
By means of an inverse transform, the solution in the time domain is
finally calculated. This procedure is described in detail in [2].

3. A DETECTION PROCEDURE

In this Section we apply the technique presented in [2] to a practical,
although basic, detection problem. In particular, we outline a
procedure to single out the position and radius of a perfectly-
conducting circular cylinder buried in a soil of known refractive index.
An observation point (ξop, ζop) is fixed in medium 0 and close to the
interface, the time origin is chosen as coincident with the incident-pulse
first maximum in such point.

We concentrate on the early-time response of the structure: we
consider the field scattered by the cylinder and transmitted back to
the air Vst [2] over a time interval which is of the order of the incident-
pulse duration, and its propagation from the observation point to the
target. The transient regime is very useful for detection, because it
contains the bulk of the scattered energy and the information about
location and size of buried objects.

The first step of the procedure consists in shifting the observation
point along a straight line parallel to the planar interface between air
and soil: from the corresponding set of Vst(t) curves, it is possible to
determine η. A typical example is given in Fig. 3: each curve of the set
corresponds to a particular value of ζop, and the vertical-axis scale is
not significant since a vertical translation is performed, as is customary
in GPR output [23]. The delay time of the response is minimum when
the observation point lies on the ζop = η straight line (i.e., it is aligned
with the cylinder center).

In the following, the observation point is always placed aligned
with the already-detected cylinder center.

In the second step of the procedure, the instant on which the
higher peak in a |Vst| curve is centered can be used to calculate the
quantity χ

k0
−a. We found out in our simulations that such t = t0 value

corresponds to the absolute minimum of Vst for TM(y) polarization, to
the absolute maximum in the TE(y) case. We have found and tested
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Figure 3. Typical sets of Vst(t) curves, as the observation point is
translated along ζ, useful for target detection. The vertical-axis scale
is not significant.

Figure 4. (a) Vst vs. t when −n·r
c0

= 1 ns, n1 = 1.5, a = 2 cm, η = 0,
k0 = 30 m−1, χ = 0.32k0 and the polarization is TM(y). (b) Same as
in (a), when χ = 0.35k0 and for TE(y) polarization.
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Figure 5. (a) Same as in Fig. 4(a) when χ = 0.82k0. (b) Same as in
Fig. 4(b), when χ = 0.85k0.

the following rule for cylinder radii greater than 2 cm and time lengths
of the incident pulse shorter than 0.9 ns:

t0 = −n · r
c0

+
2

(
χ

k0
− a

)
n1

c0
(8)

It represents the time interval between the maxima of incident and
backscattered field: it corresponds to the propagation time along the
vertical path from the observation point to the nearest point of the
target and back to the observation point. Two examples are given in
Figs. 4 and 5. In these figures, Vst is plotted versus t when n1 = 1.5,
a = 2 cm, η = 0, k0 = 30 m−1, −n·r

c0 = 1 ns: in Fig. 4(a) χ = 0.32k0,
and the polarization is TM(y), in (b) χ = 0.35k0 and the polarization
is TE(y); in Fig. 5(a) χ = 0.82k0 and the polarization is TM(y), in (b)
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Figure 6. Vst vs. t for the same case as in Fig. 4(a): (a) second
reflection, (b) third reflection.

χ = 0.85k0 and the polarization is TE(y). It can be appreciated that
t0 always verifies Eq. (8) rule.

It is worth stressing that the first absolute |Vst| maximum is,
in both polarization cases, followed by local maxima in t = t0m
(m = 1, 2, 3, . . .):

t0m = −n · r
c0

+
2m

(
χ

k0
− a

)
n1

c0
(9)

Such weaker peaks correspond to multiple reflections between the
buried cylinder and the planar air-soil interface. Note that the first
return, as well as the following echoes, somehow resemble in shape the
incident pulse (eventually with the sign changed). Figures 6 and 7
show the peaks relevant to the second (graph (a)) and third (graph
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Figure 7. Vst vs. t for the same case as in Fig. 4(b): (a) second
reflection, (b) third reflection.

(b)) reflections in TM(y) and TE(y) polarization, respectively, for the
same cases as in Figs. 4(a) and 4(b). Of course, at each reflection the
back-scattered field amplitude decreases.

The third step in our detection procedure is the determination
of the target radius. Obviously, once a is obtained, it is possible to
calculate χ directly from the second-step results. In Fig. 8 different
values of a are considered, while keeping fixed the difference χ

k0
− a: in

particular, in Fig. 8(a) Vst is shown as a function of t when k0 = 30 m−1,
for TM(y) polarization, χ

k0
−a = 50 cm: a = 3, 6, or 9 cm; in Fig. 8(b),

the same as in (a) is reported for TE(y) polarization, χ
k0

− a = 30 cm:
a = 2, 4, or 5 cm. Figure 9 is an extension of Fig. 8. From the graphs
reported in Fig. 8, it can be appreciated that the peaks examined in
the previous step of our procedure, due to the reverberations between
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Figure 8. (a) Vst as a function of t when k0 = 30 m−1, for TM(y)

polarization, χ
k0

− a = 50 cm: a = 3 cm (full line), a = 6 cm (full line
with squares), or a = 9 cm (full line with crosses). (b) Same as in (a)
for TE(y) polarization, χ

k0
− a = 30 cm: a = 2 cm (full line), a = 4 cm

(full line with squares), or a = 5 cm (full line with crosses).

the target and the air-soil interface, are centered on fixed instants, as
they depend on the quantity χ

k0
− a. The graphs of Fig. 9 show,

however, that in the Vst curve other peaks are present: they are
not simultaneous and shift towards larger values of t as a becomes
larger. We have conjectured that such peaks could be generated by to
the so-called creeping wave [24], guided by the curved surface of the
cylinder: in other words, they are connected to the signal propagation
along the vertical path from the observation point to the target,
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Figure 9. Extensions of the plots reported in Fig. 8.

circumnavigation of the cylinder at a velocity slower than the light
one, and coming back to the observation point.

If tcw is the instant of the maximum (or minimum) in the creeping-
wave peak, we estimated and plotted the quantity |tcw−t0| as a function
of a: we found that such time interval is proportional to the cylinder
radius (see Figs. 10(a) and (b)), with a proportionality constant
independent of other involved physical and geometrical parameters,
such as the incident pulse duration (Figs. 10(c) and (d)), or the
quantity χ

k0
− a (Figs. 10(e) and (f)). Therefore, from the knowledge

of Vst(t) it is possible to extract, through tcw, the size of the buried
object.
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Figure 10. (a) Time interval |tcw − t0| as a function of a, when
k0 = 30 m−1, TM(y) polarization, χ

k0
− a = 1 m. (b) Same as in (a) for

TE(y) polarization. (c) and (d) Same as in (a) and (b), sets of curves
with k0 ranging from 30 to 50 m−1. (e) and (f) Same as in (a) and (b),
sets of curves with χ

k0
− a ranging from 0.5 m to 1 m.

4. CONCLUSIONS

We have presented an analytic solution for the electromagnetic
scattering problem of a short-pulse plane wave by a finite set of
buried perfectly-conducting circular cylinders. The method has been
applied to both TE and TM polarizations. For the simpler case of one
buried cylinder, we investigated the effects of the various geometrical
parameters involved: cylinder position and radius, position of the
observation point, incident-pulse time duration. Finally, the technique
has been applied to the practical case of the detection of one buried
perfectly-conducting cylinder, yielding good results for the depth and
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the size of the buried object.
Future work is in progress, for the detection of a set of cylinders

and the extension to dielectric objects. Moreover, since the scattering
algorithm is implemented in the frequency domain, it may be employed
to model dispersive soils.
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